qcow2: Refactor update_refcount
[armpft.git] / gdbstub.c
blob7b32fab589343c4e231dacfdf2c1fc30b8abc875
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
42 #include "kvm.h"
45 enum {
46 GDB_SIGNAL_0 = 0,
47 GDB_SIGNAL_INT = 2,
48 GDB_SIGNAL_TRAP = 5,
49 GDB_SIGNAL_UNKNOWN = 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table[] = {
61 TARGET_SIGHUP,
62 TARGET_SIGINT,
63 TARGET_SIGQUIT,
64 TARGET_SIGILL,
65 TARGET_SIGTRAP,
66 TARGET_SIGABRT,
67 -1, /* SIGEMT */
68 TARGET_SIGFPE,
69 TARGET_SIGKILL,
70 TARGET_SIGBUS,
71 TARGET_SIGSEGV,
72 TARGET_SIGSYS,
73 TARGET_SIGPIPE,
74 TARGET_SIGALRM,
75 TARGET_SIGTERM,
76 TARGET_SIGURG,
77 TARGET_SIGSTOP,
78 TARGET_SIGTSTP,
79 TARGET_SIGCONT,
80 TARGET_SIGCHLD,
81 TARGET_SIGTTIN,
82 TARGET_SIGTTOU,
83 TARGET_SIGIO,
84 TARGET_SIGXCPU,
85 TARGET_SIGXFSZ,
86 TARGET_SIGVTALRM,
87 TARGET_SIGPROF,
88 TARGET_SIGWINCH,
89 -1, /* SIGLOST */
90 TARGET_SIGUSR1,
91 TARGET_SIGUSR2,
92 #ifdef TARGET_SIGPWR
93 TARGET_SIGPWR,
94 #else
95 -1,
96 #endif
97 -1, /* SIGPOLL */
98 -1,
99 -1,
109 #ifdef __SIGRTMIN
110 __SIGRTMIN + 1,
111 __SIGRTMIN + 2,
112 __SIGRTMIN + 3,
113 __SIGRTMIN + 4,
114 __SIGRTMIN + 5,
115 __SIGRTMIN + 6,
116 __SIGRTMIN + 7,
117 __SIGRTMIN + 8,
118 __SIGRTMIN + 9,
119 __SIGRTMIN + 10,
120 __SIGRTMIN + 11,
121 __SIGRTMIN + 12,
122 __SIGRTMIN + 13,
123 __SIGRTMIN + 14,
124 __SIGRTMIN + 15,
125 __SIGRTMIN + 16,
126 __SIGRTMIN + 17,
127 __SIGRTMIN + 18,
128 __SIGRTMIN + 19,
129 __SIGRTMIN + 20,
130 __SIGRTMIN + 21,
131 __SIGRTMIN + 22,
132 __SIGRTMIN + 23,
133 __SIGRTMIN + 24,
134 __SIGRTMIN + 25,
135 __SIGRTMIN + 26,
136 __SIGRTMIN + 27,
137 __SIGRTMIN + 28,
138 __SIGRTMIN + 29,
139 __SIGRTMIN + 30,
140 __SIGRTMIN + 31,
141 -1, /* SIGCANCEL */
142 __SIGRTMIN,
143 __SIGRTMIN + 32,
144 __SIGRTMIN + 33,
145 __SIGRTMIN + 34,
146 __SIGRTMIN + 35,
147 __SIGRTMIN + 36,
148 __SIGRTMIN + 37,
149 __SIGRTMIN + 38,
150 __SIGRTMIN + 39,
151 __SIGRTMIN + 40,
152 __SIGRTMIN + 41,
153 __SIGRTMIN + 42,
154 __SIGRTMIN + 43,
155 __SIGRTMIN + 44,
156 __SIGRTMIN + 45,
157 __SIGRTMIN + 46,
158 __SIGRTMIN + 47,
159 __SIGRTMIN + 48,
160 __SIGRTMIN + 49,
161 __SIGRTMIN + 50,
162 __SIGRTMIN + 51,
163 __SIGRTMIN + 52,
164 __SIGRTMIN + 53,
165 __SIGRTMIN + 54,
166 __SIGRTMIN + 55,
167 __SIGRTMIN + 56,
168 __SIGRTMIN + 57,
169 __SIGRTMIN + 58,
170 __SIGRTMIN + 59,
171 __SIGRTMIN + 60,
172 __SIGRTMIN + 61,
173 __SIGRTMIN + 62,
174 __SIGRTMIN + 63,
175 __SIGRTMIN + 64,
176 __SIGRTMIN + 65,
177 __SIGRTMIN + 66,
178 __SIGRTMIN + 67,
179 __SIGRTMIN + 68,
180 __SIGRTMIN + 69,
181 __SIGRTMIN + 70,
182 __SIGRTMIN + 71,
183 __SIGRTMIN + 72,
184 __SIGRTMIN + 73,
185 __SIGRTMIN + 74,
186 __SIGRTMIN + 75,
187 __SIGRTMIN + 76,
188 __SIGRTMIN + 77,
189 __SIGRTMIN + 78,
190 __SIGRTMIN + 79,
191 __SIGRTMIN + 80,
192 __SIGRTMIN + 81,
193 __SIGRTMIN + 82,
194 __SIGRTMIN + 83,
195 __SIGRTMIN + 84,
196 __SIGRTMIN + 85,
197 __SIGRTMIN + 86,
198 __SIGRTMIN + 87,
199 __SIGRTMIN + 88,
200 __SIGRTMIN + 89,
201 __SIGRTMIN + 90,
202 __SIGRTMIN + 91,
203 __SIGRTMIN + 92,
204 __SIGRTMIN + 93,
205 __SIGRTMIN + 94,
206 __SIGRTMIN + 95,
207 -1, /* SIGINFO */
208 -1, /* UNKNOWN */
209 -1, /* DEFAULT */
216 #endif
218 #else
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
222 enum {
223 TARGET_SIGINT = 2,
224 TARGET_SIGTRAP = 5
227 static int gdb_signal_table[] = {
230 TARGET_SIGINT,
233 TARGET_SIGTRAP
235 #endif
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig)
240 int i;
241 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
242 if (gdb_signal_table[i] == sig)
243 return i;
244 return GDB_SIGNAL_UNKNOWN;
246 #endif
248 static int gdb_signal_to_target (int sig)
250 if (sig < ARRAY_SIZE (gdb_signal_table))
251 return gdb_signal_table[sig];
252 else
253 return -1;
256 //#define DEBUG_GDB
258 typedef struct GDBRegisterState {
259 int base_reg;
260 int num_regs;
261 gdb_reg_cb get_reg;
262 gdb_reg_cb set_reg;
263 const char *xml;
264 struct GDBRegisterState *next;
265 } GDBRegisterState;
267 enum RSState {
268 RS_INACTIVE,
269 RS_IDLE,
270 RS_GETLINE,
271 RS_CHKSUM1,
272 RS_CHKSUM2,
273 RS_SYSCALL,
275 typedef struct GDBState {
276 CPUState *c_cpu; /* current CPU for step/continue ops */
277 CPUState *g_cpu; /* current CPU for other ops */
278 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
279 enum RSState state; /* parsing state */
280 char line_buf[MAX_PACKET_LENGTH];
281 int line_buf_index;
282 int line_csum;
283 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
284 int last_packet_len;
285 int signal;
286 #ifdef CONFIG_USER_ONLY
287 int fd;
288 int running_state;
289 #else
290 CharDriverState *chr;
291 CharDriverState *mon_chr;
292 #endif
293 } GDBState;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
300 static GDBState *gdbserver_state;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd = -1;
311 static int get_char(GDBState *s)
313 uint8_t ch;
314 int ret;
316 for(;;) {
317 ret = recv(s->fd, &ch, 1, 0);
318 if (ret < 0) {
319 if (errno == ECONNRESET)
320 s->fd = -1;
321 if (errno != EINTR && errno != EAGAIN)
322 return -1;
323 } else if (ret == 0) {
324 close(s->fd);
325 s->fd = -1;
326 return -1;
327 } else {
328 break;
331 return ch;
333 #endif
335 static gdb_syscall_complete_cb gdb_current_syscall_cb;
337 static enum {
338 GDB_SYS_UNKNOWN,
339 GDB_SYS_ENABLED,
340 GDB_SYS_DISABLED,
341 } gdb_syscall_mode;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
348 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
349 : GDB_SYS_DISABLED);
351 return gdb_syscall_mode == GDB_SYS_ENABLED;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState *s)
357 #ifdef CONFIG_USER_ONLY
358 s->running_state = 1;
359 #else
360 vm_start();
361 #endif
364 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
366 #ifdef CONFIG_USER_ONLY
367 int ret;
369 while (len > 0) {
370 ret = send(s->fd, buf, len, 0);
371 if (ret < 0) {
372 if (errno != EINTR && errno != EAGAIN)
373 return;
374 } else {
375 buf += ret;
376 len -= ret;
379 #else
380 qemu_chr_write(s->chr, buf, len);
381 #endif
384 static inline int fromhex(int v)
386 if (v >= '0' && v <= '9')
387 return v - '0';
388 else if (v >= 'A' && v <= 'F')
389 return v - 'A' + 10;
390 else if (v >= 'a' && v <= 'f')
391 return v - 'a' + 10;
392 else
393 return 0;
396 static inline int tohex(int v)
398 if (v < 10)
399 return v + '0';
400 else
401 return v - 10 + 'a';
404 static void memtohex(char *buf, const uint8_t *mem, int len)
406 int i, c;
407 char *q;
408 q = buf;
409 for(i = 0; i < len; i++) {
410 c = mem[i];
411 *q++ = tohex(c >> 4);
412 *q++ = tohex(c & 0xf);
414 *q = '\0';
417 static void hextomem(uint8_t *mem, const char *buf, int len)
419 int i;
421 for(i = 0; i < len; i++) {
422 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
423 buf += 2;
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState *s, const char *buf, int len)
430 int csum, i;
431 uint8_t *p;
433 for(;;) {
434 p = s->last_packet;
435 *(p++) = '$';
436 memcpy(p, buf, len);
437 p += len;
438 csum = 0;
439 for(i = 0; i < len; i++) {
440 csum += buf[i];
442 *(p++) = '#';
443 *(p++) = tohex((csum >> 4) & 0xf);
444 *(p++) = tohex((csum) & 0xf);
446 s->last_packet_len = p - s->last_packet;
447 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
449 #ifdef CONFIG_USER_ONLY
450 i = get_char(s);
451 if (i < 0)
452 return -1;
453 if (i == '+')
454 break;
455 #else
456 break;
457 #endif
459 return 0;
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState *s, const char *buf)
465 #ifdef DEBUG_GDB
466 printf("reply='%s'\n", buf);
467 #endif
469 return put_packet_binary(s, buf, strlen(buf));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
478 return 1; \
479 } while(0)
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
482 return 2; \
483 } while(0)
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
486 return 4; \
487 } while(0)
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
490 return 8; \
491 } while(0)
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
496 #else
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
499 #endif
501 #if defined(TARGET_I386)
503 #ifdef TARGET_X86_64
504 static const int gpr_map[16] = {
505 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
506 8, 9, 10, 11, 12, 13, 14, 15
508 #else
509 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
510 #endif
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
516 if (n < CPU_NB_REGS) {
517 GET_REGL(env->regs[gpr_map[n]]);
518 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
519 /* FIXME: byteswap float values. */
520 #ifdef USE_X86LDOUBLE
521 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
522 #else
523 memset(mem_buf, 0, 10);
524 #endif
525 return 10;
526 } else if (n >= CPU_NB_REGS + 24) {
527 n -= CPU_NB_REGS + 24;
528 if (n < CPU_NB_REGS) {
529 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
530 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
531 return 16;
532 } else if (n == CPU_NB_REGS) {
533 GET_REG32(env->mxcsr);
535 } else {
536 n -= CPU_NB_REGS;
537 switch (n) {
538 case 0: GET_REGL(env->eip);
539 case 1: GET_REG32(env->eflags);
540 case 2: GET_REG32(env->segs[R_CS].selector);
541 case 3: GET_REG32(env->segs[R_SS].selector);
542 case 4: GET_REG32(env->segs[R_DS].selector);
543 case 5: GET_REG32(env->segs[R_ES].selector);
544 case 6: GET_REG32(env->segs[R_FS].selector);
545 case 7: GET_REG32(env->segs[R_GS].selector);
546 /* 8...15 x87 regs. */
547 case 16: GET_REG32(env->fpuc);
548 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
549 case 18: GET_REG32(0); /* ftag */
550 case 19: GET_REG32(0); /* fiseg */
551 case 20: GET_REG32(0); /* fioff */
552 case 21: GET_REG32(0); /* foseg */
553 case 22: GET_REG32(0); /* fooff */
554 case 23: GET_REG32(0); /* fop */
555 /* 24+ xmm regs. */
558 return 0;
561 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
563 uint32_t tmp;
565 if (i < CPU_NB_REGS) {
566 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
567 return sizeof(target_ulong);
568 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
569 i -= CPU_NB_REGS + 8;
570 #ifdef USE_X86LDOUBLE
571 memcpy(&env->fpregs[i], mem_buf, 10);
572 #endif
573 return 10;
574 } else if (i >= CPU_NB_REGS + 24) {
575 i -= CPU_NB_REGS + 24;
576 if (i < CPU_NB_REGS) {
577 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
578 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
579 return 16;
580 } else if (i == CPU_NB_REGS) {
581 env->mxcsr = ldl_p(mem_buf);
582 return 4;
584 } else {
585 i -= CPU_NB_REGS;
586 switch (i) {
587 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
588 case 1: env->eflags = ldl_p(mem_buf); return 4;
589 #if defined(CONFIG_USER_ONLY)
590 #define LOAD_SEG(index, sreg)\
591 tmp = ldl_p(mem_buf);\
592 if (tmp != env->segs[sreg].selector)\
593 cpu_x86_load_seg(env, sreg, tmp);
594 #else
595 /* FIXME: Honor segment registers. Needs to avoid raising an exception
596 when the selector is invalid. */
597 #define LOAD_SEG(index, sreg) do {} while(0)
598 #endif
599 case 2: LOAD_SEG(10, R_CS); return 4;
600 case 3: LOAD_SEG(11, R_SS); return 4;
601 case 4: LOAD_SEG(12, R_DS); return 4;
602 case 5: LOAD_SEG(13, R_ES); return 4;
603 case 6: LOAD_SEG(14, R_FS); return 4;
604 case 7: LOAD_SEG(15, R_GS); return 4;
605 /* 8...15 x87 regs. */
606 case 16: env->fpuc = ldl_p(mem_buf); return 4;
607 case 17:
608 tmp = ldl_p(mem_buf);
609 env->fpstt = (tmp >> 11) & 7;
610 env->fpus = tmp & ~0x3800;
611 return 4;
612 case 18: /* ftag */ return 4;
613 case 19: /* fiseg */ return 4;
614 case 20: /* fioff */ return 4;
615 case 21: /* foseg */ return 4;
616 case 22: /* fooff */ return 4;
617 case 23: /* fop */ return 4;
618 /* 24+ xmm regs. */
621 /* Unrecognised register. */
622 return 0;
625 #elif defined (TARGET_PPC)
627 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
628 expects whatever the target description contains. Due to a
629 historical mishap the FP registers appear in between core integer
630 regs and PC, MSR, CR, and so forth. We hack round this by giving the
631 FP regs zero size when talking to a newer gdb. */
632 #define NUM_CORE_REGS 71
633 #if defined (TARGET_PPC64)
634 #define GDB_CORE_XML "power64-core.xml"
635 #else
636 #define GDB_CORE_XML "power-core.xml"
637 #endif
639 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
641 if (n < 32) {
642 /* gprs */
643 GET_REGL(env->gpr[n]);
644 } else if (n < 64) {
645 /* fprs */
646 if (gdb_has_xml)
647 return 0;
648 stfq_p(mem_buf, env->fpr[n-32]);
649 return 8;
650 } else {
651 switch (n) {
652 case 64: GET_REGL(env->nip);
653 case 65: GET_REGL(env->msr);
654 case 66:
656 uint32_t cr = 0;
657 int i;
658 for (i = 0; i < 8; i++)
659 cr |= env->crf[i] << (32 - ((i + 1) * 4));
660 GET_REG32(cr);
662 case 67: GET_REGL(env->lr);
663 case 68: GET_REGL(env->ctr);
664 case 69: GET_REGL(env->xer);
665 case 70:
667 if (gdb_has_xml)
668 return 0;
669 GET_REG32(0); /* fpscr */
673 return 0;
676 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
678 if (n < 32) {
679 /* gprs */
680 env->gpr[n] = ldtul_p(mem_buf);
681 return sizeof(target_ulong);
682 } else if (n < 64) {
683 /* fprs */
684 if (gdb_has_xml)
685 return 0;
686 env->fpr[n-32] = ldfq_p(mem_buf);
687 return 8;
688 } else {
689 switch (n) {
690 case 64:
691 env->nip = ldtul_p(mem_buf);
692 return sizeof(target_ulong);
693 case 65:
694 ppc_store_msr(env, ldtul_p(mem_buf));
695 return sizeof(target_ulong);
696 case 66:
698 uint32_t cr = ldl_p(mem_buf);
699 int i;
700 for (i = 0; i < 8; i++)
701 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
702 return 4;
704 case 67:
705 env->lr = ldtul_p(mem_buf);
706 return sizeof(target_ulong);
707 case 68:
708 env->ctr = ldtul_p(mem_buf);
709 return sizeof(target_ulong);
710 case 69:
711 env->xer = ldtul_p(mem_buf);
712 return sizeof(target_ulong);
713 case 70:
714 /* fpscr */
715 if (gdb_has_xml)
716 return 0;
717 return 4;
720 return 0;
723 #elif defined (TARGET_SPARC)
725 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
726 #define NUM_CORE_REGS 86
727 #else
728 #define NUM_CORE_REGS 72
729 #endif
731 #ifdef TARGET_ABI32
732 #define GET_REGA(val) GET_REG32(val)
733 #else
734 #define GET_REGA(val) GET_REGL(val)
735 #endif
737 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
739 if (n < 8) {
740 /* g0..g7 */
741 GET_REGA(env->gregs[n]);
743 if (n < 32) {
744 /* register window */
745 GET_REGA(env->regwptr[n - 8]);
747 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
748 if (n < 64) {
749 /* fprs */
750 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
752 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
753 switch (n) {
754 case 64: GET_REGA(env->y);
755 case 65: GET_REGA(GET_PSR(env));
756 case 66: GET_REGA(env->wim);
757 case 67: GET_REGA(env->tbr);
758 case 68: GET_REGA(env->pc);
759 case 69: GET_REGA(env->npc);
760 case 70: GET_REGA(env->fsr);
761 case 71: GET_REGA(0); /* csr */
762 default: GET_REGA(0);
764 #else
765 if (n < 64) {
766 /* f0-f31 */
767 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
769 if (n < 80) {
770 /* f32-f62 (double width, even numbers only) */
771 uint64_t val;
773 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
774 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
775 GET_REG64(val);
777 switch (n) {
778 case 80: GET_REGL(env->pc);
779 case 81: GET_REGL(env->npc);
780 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
781 ((env->asi & 0xff) << 24) |
782 ((env->pstate & 0xfff) << 8) |
783 GET_CWP64(env));
784 case 83: GET_REGL(env->fsr);
785 case 84: GET_REGL(env->fprs);
786 case 85: GET_REGL(env->y);
788 #endif
789 return 0;
792 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
794 #if defined(TARGET_ABI32)
795 abi_ulong tmp;
797 tmp = ldl_p(mem_buf);
798 #else
799 target_ulong tmp;
801 tmp = ldtul_p(mem_buf);
802 #endif
804 if (n < 8) {
805 /* g0..g7 */
806 env->gregs[n] = tmp;
807 } else if (n < 32) {
808 /* register window */
809 env->regwptr[n - 8] = tmp;
811 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
812 else if (n < 64) {
813 /* fprs */
814 *((uint32_t *)&env->fpr[n - 32]) = tmp;
815 } else {
816 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
817 switch (n) {
818 case 64: env->y = tmp; break;
819 case 65: PUT_PSR(env, tmp); break;
820 case 66: env->wim = tmp; break;
821 case 67: env->tbr = tmp; break;
822 case 68: env->pc = tmp; break;
823 case 69: env->npc = tmp; break;
824 case 70: env->fsr = tmp; break;
825 default: return 0;
828 return 4;
829 #else
830 else if (n < 64) {
831 /* f0-f31 */
832 env->fpr[n] = ldfl_p(mem_buf);
833 return 4;
834 } else if (n < 80) {
835 /* f32-f62 (double width, even numbers only) */
836 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
838 } else {
839 switch (n) {
840 case 80: env->pc = tmp; break;
841 case 81: env->npc = tmp; break;
842 case 82:
843 PUT_CCR(env, tmp >> 32);
844 env->asi = (tmp >> 24) & 0xff;
845 env->pstate = (tmp >> 8) & 0xfff;
846 PUT_CWP64(env, tmp & 0xff);
847 break;
848 case 83: env->fsr = tmp; break;
849 case 84: env->fprs = tmp; break;
850 case 85: env->y = tmp; break;
851 default: return 0;
854 return 8;
855 #endif
857 #elif defined (TARGET_ARM)
859 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
860 whatever the target description contains. Due to a historical mishap
861 the FPA registers appear in between core integer regs and the CPSR.
862 We hack round this by giving the FPA regs zero size when talking to a
863 newer gdb. */
864 #define NUM_CORE_REGS 26
865 #define GDB_CORE_XML "arm-core.xml"
867 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
869 if (n < 16) {
870 /* Core integer register. */
871 GET_REG32(env->regs[n]);
873 if (n < 24) {
874 /* FPA registers. */
875 if (gdb_has_xml)
876 return 0;
877 memset(mem_buf, 0, 12);
878 return 12;
880 switch (n) {
881 case 24:
882 /* FPA status register. */
883 if (gdb_has_xml)
884 return 0;
885 GET_REG32(0);
886 case 25:
887 /* CPSR */
888 GET_REG32(cpsr_read(env));
890 /* Unknown register. */
891 return 0;
894 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
896 uint32_t tmp;
898 tmp = ldl_p(mem_buf);
900 /* Mask out low bit of PC to workaround gdb bugs. This will probably
901 cause problems if we ever implement the Jazelle DBX extensions. */
902 if (n == 15)
903 tmp &= ~1;
905 if (n < 16) {
906 /* Core integer register. */
907 env->regs[n] = tmp;
908 return 4;
910 if (n < 24) { /* 16-23 */
911 /* FPA registers (ignored). */
912 if (gdb_has_xml)
913 return 0;
914 return 12;
916 switch (n) {
917 case 24:
918 /* FPA status register (ignored). */
919 if (gdb_has_xml)
920 return 0;
921 return 4;
922 case 25:
923 /* CPSR */
924 cpsr_write (env, tmp, 0xffffffff);
925 return 4;
927 /* Unknown register. */
928 return 0;
931 #elif defined (TARGET_M68K)
933 #define NUM_CORE_REGS 18
935 #define GDB_CORE_XML "cf-core.xml"
937 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
939 if (n < 8) {
940 /* D0-D7 */
941 GET_REG32(env->dregs[n]);
942 } else if (n < 16) {
943 /* A0-A7 */
944 GET_REG32(env->aregs[n - 8]);
945 } else {
946 switch (n) {
947 case 16: GET_REG32(env->sr);
948 case 17: GET_REG32(env->pc);
951 /* FP registers not included here because they vary between
952 ColdFire and m68k. Use XML bits for these. */
953 return 0;
956 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
958 uint32_t tmp;
960 tmp = ldl_p(mem_buf);
962 if (n < 8) {
963 /* D0-D7 */
964 env->dregs[n] = tmp;
965 } else if (n < 8) {
966 /* A0-A7 */
967 env->aregs[n - 8] = tmp;
968 } else {
969 switch (n) {
970 case 16: env->sr = tmp; break;
971 case 17: env->pc = tmp; break;
972 default: return 0;
975 return 4;
977 #elif defined (TARGET_MIPS)
979 #define NUM_CORE_REGS 73
981 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
983 if (n < 32) {
984 GET_REGL(env->active_tc.gpr[n]);
986 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
987 if (n >= 38 && n < 70) {
988 if (env->CP0_Status & (1 << CP0St_FR))
989 GET_REGL(env->active_fpu.fpr[n - 38].d);
990 else
991 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
993 switch (n) {
994 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
995 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
998 switch (n) {
999 case 32: GET_REGL((int32_t)env->CP0_Status);
1000 case 33: GET_REGL(env->active_tc.LO[0]);
1001 case 34: GET_REGL(env->active_tc.HI[0]);
1002 case 35: GET_REGL(env->CP0_BadVAddr);
1003 case 36: GET_REGL((int32_t)env->CP0_Cause);
1004 case 37: GET_REGL(env->active_tc.PC);
1005 case 72: GET_REGL(0); /* fp */
1006 case 89: GET_REGL((int32_t)env->CP0_PRid);
1008 if (n >= 73 && n <= 88) {
1009 /* 16 embedded regs. */
1010 GET_REGL(0);
1013 return 0;
1016 /* convert MIPS rounding mode in FCR31 to IEEE library */
1017 static unsigned int ieee_rm[] =
1019 float_round_nearest_even,
1020 float_round_to_zero,
1021 float_round_up,
1022 float_round_down
1024 #define RESTORE_ROUNDING_MODE \
1025 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1027 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1029 target_ulong tmp;
1031 tmp = ldtul_p(mem_buf);
1033 if (n < 32) {
1034 env->active_tc.gpr[n] = tmp;
1035 return sizeof(target_ulong);
1037 if (env->CP0_Config1 & (1 << CP0C1_FP)
1038 && n >= 38 && n < 73) {
1039 if (n < 70) {
1040 if (env->CP0_Status & (1 << CP0St_FR))
1041 env->active_fpu.fpr[n - 38].d = tmp;
1042 else
1043 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1045 switch (n) {
1046 case 70:
1047 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1048 /* set rounding mode */
1049 RESTORE_ROUNDING_MODE;
1050 #ifndef CONFIG_SOFTFLOAT
1051 /* no floating point exception for native float */
1052 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1053 #endif
1054 break;
1055 case 71: env->active_fpu.fcr0 = tmp; break;
1057 return sizeof(target_ulong);
1059 switch (n) {
1060 case 32: env->CP0_Status = tmp; break;
1061 case 33: env->active_tc.LO[0] = tmp; break;
1062 case 34: env->active_tc.HI[0] = tmp; break;
1063 case 35: env->CP0_BadVAddr = tmp; break;
1064 case 36: env->CP0_Cause = tmp; break;
1065 case 37: env->active_tc.PC = tmp; break;
1066 case 72: /* fp, ignored */ break;
1067 default:
1068 if (n > 89)
1069 return 0;
1070 /* Other registers are readonly. Ignore writes. */
1071 break;
1074 return sizeof(target_ulong);
1076 #elif defined (TARGET_SH4)
1078 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1079 /* FIXME: We should use XML for this. */
1081 #define NUM_CORE_REGS 59
1083 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1085 if (n < 8) {
1086 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1087 GET_REGL(env->gregs[n + 16]);
1088 } else {
1089 GET_REGL(env->gregs[n]);
1091 } else if (n < 16) {
1092 GET_REGL(env->gregs[n - 8]);
1093 } else if (n >= 25 && n < 41) {
1094 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1095 } else if (n >= 43 && n < 51) {
1096 GET_REGL(env->gregs[n - 43]);
1097 } else if (n >= 51 && n < 59) {
1098 GET_REGL(env->gregs[n - (51 - 16)]);
1100 switch (n) {
1101 case 16: GET_REGL(env->pc);
1102 case 17: GET_REGL(env->pr);
1103 case 18: GET_REGL(env->gbr);
1104 case 19: GET_REGL(env->vbr);
1105 case 20: GET_REGL(env->mach);
1106 case 21: GET_REGL(env->macl);
1107 case 22: GET_REGL(env->sr);
1108 case 23: GET_REGL(env->fpul);
1109 case 24: GET_REGL(env->fpscr);
1110 case 41: GET_REGL(env->ssr);
1111 case 42: GET_REGL(env->spc);
1114 return 0;
1117 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1119 uint32_t tmp;
1121 tmp = ldl_p(mem_buf);
1123 if (n < 8) {
1124 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1125 env->gregs[n + 16] = tmp;
1126 } else {
1127 env->gregs[n] = tmp;
1129 return 4;
1130 } else if (n < 16) {
1131 env->gregs[n - 8] = tmp;
1132 return 4;
1133 } else if (n >= 25 && n < 41) {
1134 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1135 } else if (n >= 43 && n < 51) {
1136 env->gregs[n - 43] = tmp;
1137 return 4;
1138 } else if (n >= 51 && n < 59) {
1139 env->gregs[n - (51 - 16)] = tmp;
1140 return 4;
1142 switch (n) {
1143 case 16: env->pc = tmp;
1144 case 17: env->pr = tmp;
1145 case 18: env->gbr = tmp;
1146 case 19: env->vbr = tmp;
1147 case 20: env->mach = tmp;
1148 case 21: env->macl = tmp;
1149 case 22: env->sr = tmp;
1150 case 23: env->fpul = tmp;
1151 case 24: env->fpscr = tmp;
1152 case 41: env->ssr = tmp;
1153 case 42: env->spc = tmp;
1154 default: return 0;
1157 return 4;
1159 #elif defined (TARGET_MICROBLAZE)
1161 #define NUM_CORE_REGS (32 + 5)
1163 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1165 if (n < 32) {
1166 GET_REG32(env->regs[n]);
1167 } else {
1168 GET_REG32(env->sregs[n - 32]);
1170 return 0;
1173 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1175 uint32_t tmp;
1177 if (n > NUM_CORE_REGS)
1178 return 0;
1180 tmp = ldl_p(mem_buf);
1182 if (n < 32) {
1183 env->regs[n] = tmp;
1184 } else {
1185 env->sregs[n - 32] = tmp;
1187 return 4;
1189 #elif defined (TARGET_CRIS)
1191 #define NUM_CORE_REGS 49
1193 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1195 uint8_t srs;
1197 srs = env->pregs[PR_SRS];
1198 if (n < 16) {
1199 GET_REG32(env->regs[n]);
1202 if (n >= 21 && n < 32) {
1203 GET_REG32(env->pregs[n - 16]);
1205 if (n >= 33 && n < 49) {
1206 GET_REG32(env->sregs[srs][n - 33]);
1208 switch (n) {
1209 case 16: GET_REG8(env->pregs[0]);
1210 case 17: GET_REG8(env->pregs[1]);
1211 case 18: GET_REG32(env->pregs[2]);
1212 case 19: GET_REG8(srs);
1213 case 20: GET_REG16(env->pregs[4]);
1214 case 32: GET_REG32(env->pc);
1217 return 0;
1220 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1222 uint32_t tmp;
1224 if (n > 49)
1225 return 0;
1227 tmp = ldl_p(mem_buf);
1229 if (n < 16) {
1230 env->regs[n] = tmp;
1233 if (n >= 21 && n < 32) {
1234 env->pregs[n - 16] = tmp;
1237 /* FIXME: Should support function regs be writable? */
1238 switch (n) {
1239 case 16: return 1;
1240 case 17: return 1;
1241 case 18: env->pregs[PR_PID] = tmp; break;
1242 case 19: return 1;
1243 case 20: return 2;
1244 case 32: env->pc = tmp; break;
1247 return 4;
1249 #elif defined (TARGET_ALPHA)
1251 #define NUM_CORE_REGS 65
1253 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1255 if (n < 31) {
1256 GET_REGL(env->ir[n]);
1258 else if (n == 31) {
1259 GET_REGL(0);
1261 else if (n<63) {
1262 uint64_t val;
1264 val=*((uint64_t *)&env->fir[n-32]);
1265 GET_REGL(val);
1267 else if (n==63) {
1268 GET_REGL(env->fpcr);
1270 else if (n==64) {
1271 GET_REGL(env->pc);
1273 else {
1274 GET_REGL(0);
1277 return 0;
1280 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1282 target_ulong tmp;
1283 tmp = ldtul_p(mem_buf);
1285 if (n < 31) {
1286 env->ir[n] = tmp;
1289 if (n > 31 && n < 63) {
1290 env->fir[n - 32] = ldfl_p(mem_buf);
1293 if (n == 64 ) {
1294 env->pc=tmp;
1297 return 8;
1299 #else
1301 #define NUM_CORE_REGS 0
1303 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1305 return 0;
1308 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1310 return 0;
1313 #endif
1315 static int num_g_regs = NUM_CORE_REGS;
1317 #ifdef GDB_CORE_XML
1318 /* Encode data using the encoding for 'x' packets. */
1319 static int memtox(char *buf, const char *mem, int len)
1321 char *p = buf;
1322 char c;
1324 while (len--) {
1325 c = *(mem++);
1326 switch (c) {
1327 case '#': case '$': case '*': case '}':
1328 *(p++) = '}';
1329 *(p++) = c ^ 0x20;
1330 break;
1331 default:
1332 *(p++) = c;
1333 break;
1336 return p - buf;
1339 static const char *get_feature_xml(const char *p, const char **newp)
1341 extern const char *const xml_builtin[][2];
1342 size_t len;
1343 int i;
1344 const char *name;
1345 static char target_xml[1024];
1347 len = 0;
1348 while (p[len] && p[len] != ':')
1349 len++;
1350 *newp = p + len;
1352 name = NULL;
1353 if (strncmp(p, "target.xml", len) == 0) {
1354 /* Generate the XML description for this CPU. */
1355 if (!target_xml[0]) {
1356 GDBRegisterState *r;
1358 snprintf(target_xml, sizeof(target_xml),
1359 "<?xml version=\"1.0\"?>"
1360 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1361 "<target>"
1362 "<xi:include href=\"%s\"/>",
1363 GDB_CORE_XML);
1365 for (r = first_cpu->gdb_regs; r; r = r->next) {
1366 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1367 pstrcat(target_xml, sizeof(target_xml), r->xml);
1368 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1370 pstrcat(target_xml, sizeof(target_xml), "</target>");
1372 return target_xml;
1374 for (i = 0; ; i++) {
1375 name = xml_builtin[i][0];
1376 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1377 break;
1379 return name ? xml_builtin[i][1] : NULL;
1381 #endif
1383 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1385 GDBRegisterState *r;
1387 if (reg < NUM_CORE_REGS)
1388 return cpu_gdb_read_register(env, mem_buf, reg);
1390 for (r = env->gdb_regs; r; r = r->next) {
1391 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1392 return r->get_reg(env, mem_buf, reg - r->base_reg);
1395 return 0;
1398 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1400 GDBRegisterState *r;
1402 if (reg < NUM_CORE_REGS)
1403 return cpu_gdb_write_register(env, mem_buf, reg);
1405 for (r = env->gdb_regs; r; r = r->next) {
1406 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1407 return r->set_reg(env, mem_buf, reg - r->base_reg);
1410 return 0;
1413 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1414 specifies the first register number and these registers are included in
1415 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1416 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1419 void gdb_register_coprocessor(CPUState * env,
1420 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1421 int num_regs, const char *xml, int g_pos)
1423 GDBRegisterState *s;
1424 GDBRegisterState **p;
1425 static int last_reg = NUM_CORE_REGS;
1427 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1428 s->base_reg = last_reg;
1429 s->num_regs = num_regs;
1430 s->get_reg = get_reg;
1431 s->set_reg = set_reg;
1432 s->xml = xml;
1433 p = &env->gdb_regs;
1434 while (*p) {
1435 /* Check for duplicates. */
1436 if (strcmp((*p)->xml, xml) == 0)
1437 return;
1438 p = &(*p)->next;
1440 /* Add to end of list. */
1441 last_reg += num_regs;
1442 *p = s;
1443 if (g_pos) {
1444 if (g_pos != s->base_reg) {
1445 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1446 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1447 } else {
1448 num_g_regs = last_reg;
1453 #ifndef CONFIG_USER_ONLY
1454 static const int xlat_gdb_type[] = {
1455 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1456 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1457 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1459 #endif
1461 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1463 CPUState *env;
1464 int err = 0;
1466 if (kvm_enabled())
1467 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1469 switch (type) {
1470 case GDB_BREAKPOINT_SW:
1471 case GDB_BREAKPOINT_HW:
1472 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1473 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1474 if (err)
1475 break;
1477 return err;
1478 #ifndef CONFIG_USER_ONLY
1479 case GDB_WATCHPOINT_WRITE:
1480 case GDB_WATCHPOINT_READ:
1481 case GDB_WATCHPOINT_ACCESS:
1482 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1483 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1484 NULL);
1485 if (err)
1486 break;
1488 return err;
1489 #endif
1490 default:
1491 return -ENOSYS;
1495 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1497 CPUState *env;
1498 int err = 0;
1500 if (kvm_enabled())
1501 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1503 switch (type) {
1504 case GDB_BREAKPOINT_SW:
1505 case GDB_BREAKPOINT_HW:
1506 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1507 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1508 if (err)
1509 break;
1511 return err;
1512 #ifndef CONFIG_USER_ONLY
1513 case GDB_WATCHPOINT_WRITE:
1514 case GDB_WATCHPOINT_READ:
1515 case GDB_WATCHPOINT_ACCESS:
1516 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1517 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1518 if (err)
1519 break;
1521 return err;
1522 #endif
1523 default:
1524 return -ENOSYS;
1528 static void gdb_breakpoint_remove_all(void)
1530 CPUState *env;
1532 if (kvm_enabled()) {
1533 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1534 return;
1537 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1538 cpu_breakpoint_remove_all(env, BP_GDB);
1539 #ifndef CONFIG_USER_ONLY
1540 cpu_watchpoint_remove_all(env, BP_GDB);
1541 #endif
1545 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1547 #if defined(TARGET_I386)
1548 s->c_cpu->eip = pc;
1549 cpu_synchronize_state(s->c_cpu, 1);
1550 #elif defined (TARGET_PPC)
1551 s->c_cpu->nip = pc;
1552 #elif defined (TARGET_SPARC)
1553 s->c_cpu->pc = pc;
1554 s->c_cpu->npc = pc + 4;
1555 #elif defined (TARGET_ARM)
1556 s->c_cpu->regs[15] = pc;
1557 #elif defined (TARGET_SH4)
1558 s->c_cpu->pc = pc;
1559 #elif defined (TARGET_MIPS)
1560 s->c_cpu->active_tc.PC = pc;
1561 #elif defined (TARGET_MICROBLAZE)
1562 s->c_cpu->sregs[SR_PC] = pc;
1563 #elif defined (TARGET_CRIS)
1564 s->c_cpu->pc = pc;
1565 #elif defined (TARGET_ALPHA)
1566 s->c_cpu->pc = pc;
1567 #endif
1570 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1572 CPUState *env;
1573 const char *p;
1574 int ch, reg_size, type, res, thread;
1575 char buf[MAX_PACKET_LENGTH];
1576 uint8_t mem_buf[MAX_PACKET_LENGTH];
1577 uint8_t *registers;
1578 target_ulong addr, len;
1580 #ifdef DEBUG_GDB
1581 printf("command='%s'\n", line_buf);
1582 #endif
1583 p = line_buf;
1584 ch = *p++;
1585 switch(ch) {
1586 case '?':
1587 /* TODO: Make this return the correct value for user-mode. */
1588 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1589 s->c_cpu->cpu_index+1);
1590 put_packet(s, buf);
1591 /* Remove all the breakpoints when this query is issued,
1592 * because gdb is doing and initial connect and the state
1593 * should be cleaned up.
1595 gdb_breakpoint_remove_all();
1596 break;
1597 case 'c':
1598 if (*p != '\0') {
1599 addr = strtoull(p, (char **)&p, 16);
1600 gdb_set_cpu_pc(s, addr);
1602 s->signal = 0;
1603 gdb_continue(s);
1604 return RS_IDLE;
1605 case 'C':
1606 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1607 if (s->signal == -1)
1608 s->signal = 0;
1609 gdb_continue(s);
1610 return RS_IDLE;
1611 case 'k':
1612 /* Kill the target */
1613 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1614 exit(0);
1615 case 'D':
1616 /* Detach packet */
1617 gdb_breakpoint_remove_all();
1618 gdb_continue(s);
1619 put_packet(s, "OK");
1620 break;
1621 case 's':
1622 if (*p != '\0') {
1623 addr = strtoull(p, (char **)&p, 16);
1624 gdb_set_cpu_pc(s, addr);
1626 cpu_single_step(s->c_cpu, sstep_flags);
1627 gdb_continue(s);
1628 return RS_IDLE;
1629 case 'F':
1631 target_ulong ret;
1632 target_ulong err;
1634 ret = strtoull(p, (char **)&p, 16);
1635 if (*p == ',') {
1636 p++;
1637 err = strtoull(p, (char **)&p, 16);
1638 } else {
1639 err = 0;
1641 if (*p == ',')
1642 p++;
1643 type = *p;
1644 if (gdb_current_syscall_cb)
1645 gdb_current_syscall_cb(s->c_cpu, ret, err);
1646 if (type == 'C') {
1647 put_packet(s, "T02");
1648 } else {
1649 gdb_continue(s);
1652 break;
1653 case 'g':
1654 cpu_synchronize_state(s->g_cpu, 0);
1655 len = 0;
1656 for (addr = 0; addr < num_g_regs; addr++) {
1657 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1658 len += reg_size;
1660 memtohex(buf, mem_buf, len);
1661 put_packet(s, buf);
1662 break;
1663 case 'G':
1664 registers = mem_buf;
1665 len = strlen(p) / 2;
1666 hextomem((uint8_t *)registers, p, len);
1667 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1668 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1669 len -= reg_size;
1670 registers += reg_size;
1672 cpu_synchronize_state(s->g_cpu, 1);
1673 put_packet(s, "OK");
1674 break;
1675 case 'm':
1676 addr = strtoull(p, (char **)&p, 16);
1677 if (*p == ',')
1678 p++;
1679 len = strtoull(p, NULL, 16);
1680 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1681 put_packet (s, "E14");
1682 } else {
1683 memtohex(buf, mem_buf, len);
1684 put_packet(s, buf);
1686 break;
1687 case 'M':
1688 addr = strtoull(p, (char **)&p, 16);
1689 if (*p == ',')
1690 p++;
1691 len = strtoull(p, (char **)&p, 16);
1692 if (*p == ':')
1693 p++;
1694 hextomem(mem_buf, p, len);
1695 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1696 put_packet(s, "E14");
1697 else
1698 put_packet(s, "OK");
1699 break;
1700 case 'p':
1701 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1702 This works, but can be very slow. Anything new enough to
1703 understand XML also knows how to use this properly. */
1704 if (!gdb_has_xml)
1705 goto unknown_command;
1706 addr = strtoull(p, (char **)&p, 16);
1707 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1708 if (reg_size) {
1709 memtohex(buf, mem_buf, reg_size);
1710 put_packet(s, buf);
1711 } else {
1712 put_packet(s, "E14");
1714 break;
1715 case 'P':
1716 if (!gdb_has_xml)
1717 goto unknown_command;
1718 addr = strtoull(p, (char **)&p, 16);
1719 if (*p == '=')
1720 p++;
1721 reg_size = strlen(p) / 2;
1722 hextomem(mem_buf, p, reg_size);
1723 gdb_write_register(s->g_cpu, mem_buf, addr);
1724 put_packet(s, "OK");
1725 break;
1726 case 'Z':
1727 case 'z':
1728 type = strtoul(p, (char **)&p, 16);
1729 if (*p == ',')
1730 p++;
1731 addr = strtoull(p, (char **)&p, 16);
1732 if (*p == ',')
1733 p++;
1734 len = strtoull(p, (char **)&p, 16);
1735 if (ch == 'Z')
1736 res = gdb_breakpoint_insert(addr, len, type);
1737 else
1738 res = gdb_breakpoint_remove(addr, len, type);
1739 if (res >= 0)
1740 put_packet(s, "OK");
1741 else if (res == -ENOSYS)
1742 put_packet(s, "");
1743 else
1744 put_packet(s, "E22");
1745 break;
1746 case 'H':
1747 type = *p++;
1748 thread = strtoull(p, (char **)&p, 16);
1749 if (thread == -1 || thread == 0) {
1750 put_packet(s, "OK");
1751 break;
1753 for (env = first_cpu; env != NULL; env = env->next_cpu)
1754 if (env->cpu_index + 1 == thread)
1755 break;
1756 if (env == NULL) {
1757 put_packet(s, "E22");
1758 break;
1760 switch (type) {
1761 case 'c':
1762 s->c_cpu = env;
1763 put_packet(s, "OK");
1764 break;
1765 case 'g':
1766 s->g_cpu = env;
1767 put_packet(s, "OK");
1768 break;
1769 default:
1770 put_packet(s, "E22");
1771 break;
1773 break;
1774 case 'T':
1775 thread = strtoull(p, (char **)&p, 16);
1776 #ifndef CONFIG_USER_ONLY
1777 if (thread > 0 && thread < smp_cpus + 1)
1778 #else
1779 if (thread == 1)
1780 #endif
1781 put_packet(s, "OK");
1782 else
1783 put_packet(s, "E22");
1784 break;
1785 case 'q':
1786 case 'Q':
1787 /* parse any 'q' packets here */
1788 if (!strcmp(p,"qemu.sstepbits")) {
1789 /* Query Breakpoint bit definitions */
1790 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1791 SSTEP_ENABLE,
1792 SSTEP_NOIRQ,
1793 SSTEP_NOTIMER);
1794 put_packet(s, buf);
1795 break;
1796 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1797 /* Display or change the sstep_flags */
1798 p += 10;
1799 if (*p != '=') {
1800 /* Display current setting */
1801 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1802 put_packet(s, buf);
1803 break;
1805 p++;
1806 type = strtoul(p, (char **)&p, 16);
1807 sstep_flags = type;
1808 put_packet(s, "OK");
1809 break;
1810 } else if (strcmp(p,"C") == 0) {
1811 /* "Current thread" remains vague in the spec, so always return
1812 * the first CPU (gdb returns the first thread). */
1813 put_packet(s, "QC1");
1814 break;
1815 } else if (strcmp(p,"fThreadInfo") == 0) {
1816 s->query_cpu = first_cpu;
1817 goto report_cpuinfo;
1818 } else if (strcmp(p,"sThreadInfo") == 0) {
1819 report_cpuinfo:
1820 if (s->query_cpu) {
1821 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1822 put_packet(s, buf);
1823 s->query_cpu = s->query_cpu->next_cpu;
1824 } else
1825 put_packet(s, "l");
1826 break;
1827 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1828 thread = strtoull(p+16, (char **)&p, 16);
1829 for (env = first_cpu; env != NULL; env = env->next_cpu)
1830 if (env->cpu_index + 1 == thread) {
1831 cpu_synchronize_state(env, 0);
1832 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1833 "CPU#%d [%s]", env->cpu_index,
1834 env->halted ? "halted " : "running");
1835 memtohex(buf, mem_buf, len);
1836 put_packet(s, buf);
1837 break;
1839 break;
1841 #ifdef CONFIG_USER_ONLY
1842 else if (strncmp(p, "Offsets", 7) == 0) {
1843 TaskState *ts = s->c_cpu->opaque;
1845 snprintf(buf, sizeof(buf),
1846 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1847 ";Bss=" TARGET_ABI_FMT_lx,
1848 ts->info->code_offset,
1849 ts->info->data_offset,
1850 ts->info->data_offset);
1851 put_packet(s, buf);
1852 break;
1854 #else /* !CONFIG_USER_ONLY */
1855 else if (strncmp(p, "Rcmd,", 5) == 0) {
1856 int len = strlen(p + 5);
1858 if ((len % 2) != 0) {
1859 put_packet(s, "E01");
1860 break;
1862 hextomem(mem_buf, p + 5, len);
1863 len = len / 2;
1864 mem_buf[len++] = 0;
1865 qemu_chr_read(s->mon_chr, mem_buf, len);
1866 put_packet(s, "OK");
1867 break;
1869 #endif /* !CONFIG_USER_ONLY */
1870 if (strncmp(p, "Supported", 9) == 0) {
1871 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1872 #ifdef GDB_CORE_XML
1873 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1874 #endif
1875 put_packet(s, buf);
1876 break;
1878 #ifdef GDB_CORE_XML
1879 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1880 const char *xml;
1881 target_ulong total_len;
1883 gdb_has_xml = 1;
1884 p += 19;
1885 xml = get_feature_xml(p, &p);
1886 if (!xml) {
1887 snprintf(buf, sizeof(buf), "E00");
1888 put_packet(s, buf);
1889 break;
1892 if (*p == ':')
1893 p++;
1894 addr = strtoul(p, (char **)&p, 16);
1895 if (*p == ',')
1896 p++;
1897 len = strtoul(p, (char **)&p, 16);
1899 total_len = strlen(xml);
1900 if (addr > total_len) {
1901 snprintf(buf, sizeof(buf), "E00");
1902 put_packet(s, buf);
1903 break;
1905 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1906 len = (MAX_PACKET_LENGTH - 5) / 2;
1907 if (len < total_len - addr) {
1908 buf[0] = 'm';
1909 len = memtox(buf + 1, xml + addr, len);
1910 } else {
1911 buf[0] = 'l';
1912 len = memtox(buf + 1, xml + addr, total_len - addr);
1914 put_packet_binary(s, buf, len + 1);
1915 break;
1917 #endif
1918 /* Unrecognised 'q' command. */
1919 goto unknown_command;
1921 default:
1922 unknown_command:
1923 /* put empty packet */
1924 buf[0] = '\0';
1925 put_packet(s, buf);
1926 break;
1928 return RS_IDLE;
1931 void gdb_set_stop_cpu(CPUState *env)
1933 gdbserver_state->c_cpu = env;
1934 gdbserver_state->g_cpu = env;
1937 #ifndef CONFIG_USER_ONLY
1938 static void gdb_vm_state_change(void *opaque, int running, int reason)
1940 GDBState *s = gdbserver_state;
1941 CPUState *env = s->c_cpu;
1942 char buf[256];
1943 const char *type;
1944 int ret;
1946 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1947 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
1948 return;
1950 /* disable single step if it was enable */
1951 cpu_single_step(env, 0);
1953 if (reason == EXCP_DEBUG) {
1954 if (env->watchpoint_hit) {
1955 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1956 case BP_MEM_READ:
1957 type = "r";
1958 break;
1959 case BP_MEM_ACCESS:
1960 type = "a";
1961 break;
1962 default:
1963 type = "";
1964 break;
1966 snprintf(buf, sizeof(buf),
1967 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1968 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1969 env->watchpoint_hit->vaddr);
1970 put_packet(s, buf);
1971 env->watchpoint_hit = NULL;
1972 return;
1974 tb_flush(env);
1975 ret = GDB_SIGNAL_TRAP;
1976 } else {
1977 ret = GDB_SIGNAL_INT;
1979 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1980 put_packet(s, buf);
1982 #endif
1984 /* Send a gdb syscall request.
1985 This accepts limited printf-style format specifiers, specifically:
1986 %x - target_ulong argument printed in hex.
1987 %lx - 64-bit argument printed in hex.
1988 %s - string pointer (target_ulong) and length (int) pair. */
1989 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1991 va_list va;
1992 char buf[256];
1993 char *p;
1994 target_ulong addr;
1995 uint64_t i64;
1996 GDBState *s;
1998 s = gdbserver_state;
1999 if (!s)
2000 return;
2001 gdb_current_syscall_cb = cb;
2002 s->state = RS_SYSCALL;
2003 #ifndef CONFIG_USER_ONLY
2004 vm_stop(EXCP_DEBUG);
2005 #endif
2006 s->state = RS_IDLE;
2007 va_start(va, fmt);
2008 p = buf;
2009 *(p++) = 'F';
2010 while (*fmt) {
2011 if (*fmt == '%') {
2012 fmt++;
2013 switch (*fmt++) {
2014 case 'x':
2015 addr = va_arg(va, target_ulong);
2016 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2017 break;
2018 case 'l':
2019 if (*(fmt++) != 'x')
2020 goto bad_format;
2021 i64 = va_arg(va, uint64_t);
2022 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2023 break;
2024 case 's':
2025 addr = va_arg(va, target_ulong);
2026 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2027 addr, va_arg(va, int));
2028 break;
2029 default:
2030 bad_format:
2031 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2032 fmt - 1);
2033 break;
2035 } else {
2036 *(p++) = *(fmt++);
2039 *p = 0;
2040 va_end(va);
2041 put_packet(s, buf);
2042 #ifdef CONFIG_USER_ONLY
2043 gdb_handlesig(s->c_cpu, 0);
2044 #else
2045 cpu_exit(s->c_cpu);
2046 #endif
2049 static void gdb_read_byte(GDBState *s, int ch)
2051 int i, csum;
2052 uint8_t reply;
2054 #ifndef CONFIG_USER_ONLY
2055 if (s->last_packet_len) {
2056 /* Waiting for a response to the last packet. If we see the start
2057 of a new command then abandon the previous response. */
2058 if (ch == '-') {
2059 #ifdef DEBUG_GDB
2060 printf("Got NACK, retransmitting\n");
2061 #endif
2062 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2064 #ifdef DEBUG_GDB
2065 else if (ch == '+')
2066 printf("Got ACK\n");
2067 else
2068 printf("Got '%c' when expecting ACK/NACK\n", ch);
2069 #endif
2070 if (ch == '+' || ch == '$')
2071 s->last_packet_len = 0;
2072 if (ch != '$')
2073 return;
2075 if (vm_running) {
2076 /* when the CPU is running, we cannot do anything except stop
2077 it when receiving a char */
2078 vm_stop(EXCP_INTERRUPT);
2079 } else
2080 #endif
2082 switch(s->state) {
2083 case RS_IDLE:
2084 if (ch == '$') {
2085 s->line_buf_index = 0;
2086 s->state = RS_GETLINE;
2088 break;
2089 case RS_GETLINE:
2090 if (ch == '#') {
2091 s->state = RS_CHKSUM1;
2092 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2093 s->state = RS_IDLE;
2094 } else {
2095 s->line_buf[s->line_buf_index++] = ch;
2097 break;
2098 case RS_CHKSUM1:
2099 s->line_buf[s->line_buf_index] = '\0';
2100 s->line_csum = fromhex(ch) << 4;
2101 s->state = RS_CHKSUM2;
2102 break;
2103 case RS_CHKSUM2:
2104 s->line_csum |= fromhex(ch);
2105 csum = 0;
2106 for(i = 0; i < s->line_buf_index; i++) {
2107 csum += s->line_buf[i];
2109 if (s->line_csum != (csum & 0xff)) {
2110 reply = '-';
2111 put_buffer(s, &reply, 1);
2112 s->state = RS_IDLE;
2113 } else {
2114 reply = '+';
2115 put_buffer(s, &reply, 1);
2116 s->state = gdb_handle_packet(s, s->line_buf);
2118 break;
2119 default:
2120 abort();
2125 #ifdef CONFIG_USER_ONLY
2127 gdb_queuesig (void)
2129 GDBState *s;
2131 s = gdbserver_state;
2133 if (gdbserver_fd < 0 || s->fd < 0)
2134 return 0;
2135 else
2136 return 1;
2140 gdb_handlesig (CPUState *env, int sig)
2142 GDBState *s;
2143 char buf[256];
2144 int n;
2146 s = gdbserver_state;
2147 if (gdbserver_fd < 0 || s->fd < 0)
2148 return sig;
2150 /* disable single step if it was enabled */
2151 cpu_single_step(env, 0);
2152 tb_flush(env);
2154 if (sig != 0)
2156 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2157 put_packet(s, buf);
2159 /* put_packet() might have detected that the peer terminated the
2160 connection. */
2161 if (s->fd < 0)
2162 return sig;
2164 sig = 0;
2165 s->state = RS_IDLE;
2166 s->running_state = 0;
2167 while (s->running_state == 0) {
2168 n = read (s->fd, buf, 256);
2169 if (n > 0)
2171 int i;
2173 for (i = 0; i < n; i++)
2174 gdb_read_byte (s, buf[i]);
2176 else if (n == 0 || errno != EAGAIN)
2178 /* XXX: Connection closed. Should probably wait for annother
2179 connection before continuing. */
2180 return sig;
2183 sig = s->signal;
2184 s->signal = 0;
2185 return sig;
2188 /* Tell the remote gdb that the process has exited. */
2189 void gdb_exit(CPUState *env, int code)
2191 GDBState *s;
2192 char buf[4];
2194 s = gdbserver_state;
2195 if (gdbserver_fd < 0 || s->fd < 0)
2196 return;
2198 snprintf(buf, sizeof(buf), "W%02x", code);
2199 put_packet(s, buf);
2202 /* Tell the remote gdb that the process has exited due to SIG. */
2203 void gdb_signalled(CPUState *env, int sig)
2205 GDBState *s;
2206 char buf[4];
2208 s = gdbserver_state;
2209 if (gdbserver_fd < 0 || s->fd < 0)
2210 return;
2212 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2213 put_packet(s, buf);
2216 static void gdb_accept(void)
2218 GDBState *s;
2219 struct sockaddr_in sockaddr;
2220 socklen_t len;
2221 int val, fd;
2223 for(;;) {
2224 len = sizeof(sockaddr);
2225 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2226 if (fd < 0 && errno != EINTR) {
2227 perror("accept");
2228 return;
2229 } else if (fd >= 0) {
2230 break;
2234 /* set short latency */
2235 val = 1;
2236 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2238 s = qemu_mallocz(sizeof(GDBState));
2239 s->c_cpu = first_cpu;
2240 s->g_cpu = first_cpu;
2241 s->fd = fd;
2242 gdb_has_xml = 0;
2244 gdbserver_state = s;
2246 fcntl(fd, F_SETFL, O_NONBLOCK);
2249 static int gdbserver_open(int port)
2251 struct sockaddr_in sockaddr;
2252 int fd, val, ret;
2254 fd = socket(PF_INET, SOCK_STREAM, 0);
2255 if (fd < 0) {
2256 perror("socket");
2257 return -1;
2260 /* allow fast reuse */
2261 val = 1;
2262 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2264 sockaddr.sin_family = AF_INET;
2265 sockaddr.sin_port = htons(port);
2266 sockaddr.sin_addr.s_addr = 0;
2267 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2268 if (ret < 0) {
2269 perror("bind");
2270 return -1;
2272 ret = listen(fd, 0);
2273 if (ret < 0) {
2274 perror("listen");
2275 return -1;
2277 return fd;
2280 int gdbserver_start(int port)
2282 gdbserver_fd = gdbserver_open(port);
2283 if (gdbserver_fd < 0)
2284 return -1;
2285 /* accept connections */
2286 gdb_accept();
2287 return 0;
2290 /* Disable gdb stub for child processes. */
2291 void gdbserver_fork(CPUState *env)
2293 GDBState *s = gdbserver_state;
2294 if (gdbserver_fd < 0 || s->fd < 0)
2295 return;
2296 close(s->fd);
2297 s->fd = -1;
2298 cpu_breakpoint_remove_all(env, BP_GDB);
2299 cpu_watchpoint_remove_all(env, BP_GDB);
2301 #else
2302 static int gdb_chr_can_receive(void *opaque)
2304 /* We can handle an arbitrarily large amount of data.
2305 Pick the maximum packet size, which is as good as anything. */
2306 return MAX_PACKET_LENGTH;
2309 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2311 int i;
2313 for (i = 0; i < size; i++) {
2314 gdb_read_byte(gdbserver_state, buf[i]);
2318 static void gdb_chr_event(void *opaque, int event)
2320 switch (event) {
2321 case CHR_EVENT_RESET:
2322 vm_stop(EXCP_INTERRUPT);
2323 gdb_has_xml = 0;
2324 break;
2325 default:
2326 break;
2330 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2332 char buf[MAX_PACKET_LENGTH];
2334 buf[0] = 'O';
2335 if (len > (MAX_PACKET_LENGTH/2) - 1)
2336 len = (MAX_PACKET_LENGTH/2) - 1;
2337 memtohex(buf + 1, (uint8_t *)msg, len);
2338 put_packet(s, buf);
2341 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2343 const char *p = (const char *)buf;
2344 int max_sz;
2346 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2347 for (;;) {
2348 if (len <= max_sz) {
2349 gdb_monitor_output(gdbserver_state, p, len);
2350 break;
2352 gdb_monitor_output(gdbserver_state, p, max_sz);
2353 p += max_sz;
2354 len -= max_sz;
2356 return len;
2359 #ifndef _WIN32
2360 static void gdb_sigterm_handler(int signal)
2362 if (vm_running)
2363 vm_stop(EXCP_INTERRUPT);
2365 #endif
2367 int gdbserver_start(const char *device)
2369 GDBState *s;
2370 char gdbstub_device_name[128];
2371 CharDriverState *chr = NULL;
2372 CharDriverState *mon_chr;
2374 if (!device)
2375 return -1;
2376 if (strcmp(device, "none") != 0) {
2377 if (strstart(device, "tcp:", NULL)) {
2378 /* enforce required TCP attributes */
2379 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2380 "%s,nowait,nodelay,server", device);
2381 device = gdbstub_device_name;
2383 #ifndef _WIN32
2384 else if (strcmp(device, "stdio") == 0) {
2385 struct sigaction act;
2387 memset(&act, 0, sizeof(act));
2388 act.sa_handler = gdb_sigterm_handler;
2389 sigaction(SIGINT, &act, NULL);
2391 #endif
2392 chr = qemu_chr_open("gdb", device, NULL);
2393 if (!chr)
2394 return -1;
2396 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2397 gdb_chr_event, NULL);
2400 s = gdbserver_state;
2401 if (!s) {
2402 s = qemu_mallocz(sizeof(GDBState));
2403 gdbserver_state = s;
2405 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2407 /* Initialize a monitor terminal for gdb */
2408 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2409 mon_chr->chr_write = gdb_monitor_write;
2410 monitor_init(mon_chr, 0);
2411 } else {
2412 if (s->chr)
2413 qemu_chr_close(s->chr);
2414 mon_chr = s->mon_chr;
2415 memset(s, 0, sizeof(GDBState));
2417 s->c_cpu = first_cpu;
2418 s->g_cpu = first_cpu;
2419 s->chr = chr;
2420 s->state = chr ? RS_IDLE : RS_INACTIVE;
2421 s->mon_chr = mon_chr;
2423 return 0;
2425 #endif