2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block_int.h"
29 #include "block/qcow2.h"
31 int qcow2_grow_l1_table(BlockDriverState
*bs
, int min_size
)
33 BDRVQcowState
*s
= bs
->opaque
;
34 int new_l1_size
, new_l1_size2
, ret
, i
;
35 uint64_t *new_l1_table
;
36 uint64_t new_l1_table_offset
;
39 new_l1_size
= s
->l1_size
;
40 if (min_size
<= new_l1_size
)
42 while (min_size
> new_l1_size
) {
43 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
46 printf("grow l1_table from %d to %d\n", s
->l1_size
, new_l1_size
);
49 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
50 new_l1_table
= qemu_mallocz(align_offset(new_l1_size2
, 512));
51 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
53 /* write new table (align to cluster) */
54 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
56 for(i
= 0; i
< s
->l1_size
; i
++)
57 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
58 ret
= bdrv_pwrite(s
->hd
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
59 if (ret
!= new_l1_size2
)
61 for(i
= 0; i
< s
->l1_size
; i
++)
62 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
65 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
66 cpu_to_be64w((uint64_t*)(data
+ 4), new_l1_table_offset
);
67 if (bdrv_pwrite(s
->hd
, offsetof(QCowHeader
, l1_size
), data
,
68 sizeof(data
)) != sizeof(data
))
70 qemu_free(s
->l1_table
);
71 qcow2_free_clusters(bs
, s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t));
72 s
->l1_table_offset
= new_l1_table_offset
;
73 s
->l1_table
= new_l1_table
;
74 s
->l1_size
= new_l1_size
;
77 qemu_free(s
->l1_table
);
81 void qcow2_l2_cache_reset(BlockDriverState
*bs
)
83 BDRVQcowState
*s
= bs
->opaque
;
85 memset(s
->l2_cache
, 0, s
->l2_size
* L2_CACHE_SIZE
* sizeof(uint64_t));
86 memset(s
->l2_cache_offsets
, 0, L2_CACHE_SIZE
* sizeof(uint64_t));
87 memset(s
->l2_cache_counts
, 0, L2_CACHE_SIZE
* sizeof(uint32_t));
90 static inline int l2_cache_new_entry(BlockDriverState
*bs
)
92 BDRVQcowState
*s
= bs
->opaque
;
96 /* find a new entry in the least used one */
98 min_count
= 0xffffffff;
99 for(i
= 0; i
< L2_CACHE_SIZE
; i
++) {
100 if (s
->l2_cache_counts
[i
] < min_count
) {
101 min_count
= s
->l2_cache_counts
[i
];
111 * seek l2_offset in the l2_cache table
112 * if not found, return NULL,
114 * increments the l2 cache hit count of the entry,
115 * if counter overflow, divide by two all counters
116 * return the pointer to the l2 cache entry
120 static uint64_t *seek_l2_table(BDRVQcowState
*s
, uint64_t l2_offset
)
124 for(i
= 0; i
< L2_CACHE_SIZE
; i
++) {
125 if (l2_offset
== s
->l2_cache_offsets
[i
]) {
126 /* increment the hit count */
127 if (++s
->l2_cache_counts
[i
] == 0xffffffff) {
128 for(j
= 0; j
< L2_CACHE_SIZE
; j
++) {
129 s
->l2_cache_counts
[j
] >>= 1;
132 return s
->l2_cache
+ (i
<< s
->l2_bits
);
141 * Loads a L2 table into memory. If the table is in the cache, the cache
142 * is used; otherwise the L2 table is loaded from the image file.
144 * Returns a pointer to the L2 table on success, or NULL if the read from
145 * the image file failed.
148 static uint64_t *l2_load(BlockDriverState
*bs
, uint64_t l2_offset
)
150 BDRVQcowState
*s
= bs
->opaque
;
154 /* seek if the table for the given offset is in the cache */
156 l2_table
= seek_l2_table(s
, l2_offset
);
157 if (l2_table
!= NULL
)
160 /* not found: load a new entry in the least used one */
162 min_index
= l2_cache_new_entry(bs
);
163 l2_table
= s
->l2_cache
+ (min_index
<< s
->l2_bits
);
164 if (bdrv_pread(s
->hd
, l2_offset
, l2_table
, s
->l2_size
* sizeof(uint64_t)) !=
165 s
->l2_size
* sizeof(uint64_t))
167 s
->l2_cache_offsets
[min_index
] = l2_offset
;
168 s
->l2_cache_counts
[min_index
] = 1;
174 * Writes one sector of the L1 table to the disk (can't update single entries
175 * and we really don't want bdrv_pread to perform a read-modify-write)
177 #define L1_ENTRIES_PER_SECTOR (512 / 8)
178 static int write_l1_entry(BDRVQcowState
*s
, int l1_index
)
180 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
184 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
185 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
186 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
189 if (bdrv_pwrite(s
->hd
, s
->l1_table_offset
+ 8 * l1_start_index
,
190 buf
, sizeof(buf
)) != sizeof(buf
))
201 * Allocate a new l2 entry in the file. If l1_index points to an already
202 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
203 * table) copy the contents of the old L2 table into the newly allocated one.
204 * Otherwise the new table is initialized with zeros.
208 static uint64_t *l2_allocate(BlockDriverState
*bs
, int l1_index
)
210 BDRVQcowState
*s
= bs
->opaque
;
212 uint64_t old_l2_offset
;
213 uint64_t *l2_table
, l2_offset
;
215 old_l2_offset
= s
->l1_table
[l1_index
];
217 /* allocate a new l2 entry */
219 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
221 /* update the L1 entry */
223 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
224 if (write_l1_entry(s
, l1_index
) < 0) {
228 /* allocate a new entry in the l2 cache */
230 min_index
= l2_cache_new_entry(bs
);
231 l2_table
= s
->l2_cache
+ (min_index
<< s
->l2_bits
);
233 if (old_l2_offset
== 0) {
234 /* if there was no old l2 table, clear the new table */
235 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
237 /* if there was an old l2 table, read it from the disk */
238 if (bdrv_pread(s
->hd
, old_l2_offset
,
239 l2_table
, s
->l2_size
* sizeof(uint64_t)) !=
240 s
->l2_size
* sizeof(uint64_t))
243 /* write the l2 table to the file */
244 if (bdrv_pwrite(s
->hd
, l2_offset
,
245 l2_table
, s
->l2_size
* sizeof(uint64_t)) !=
246 s
->l2_size
* sizeof(uint64_t))
249 /* update the l2 cache entry */
251 s
->l2_cache_offsets
[min_index
] = l2_offset
;
252 s
->l2_cache_counts
[min_index
] = 1;
257 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
258 uint64_t *l2_table
, uint64_t start
, uint64_t mask
)
261 uint64_t offset
= be64_to_cpu(l2_table
[0]) & ~mask
;
266 for (i
= start
; i
< start
+ nb_clusters
; i
++)
267 if (offset
+ (uint64_t) i
* cluster_size
!= (be64_to_cpu(l2_table
[i
]) & ~mask
))
273 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
277 while(nb_clusters
-- && l2_table
[i
] == 0)
283 /* The crypt function is compatible with the linux cryptoloop
284 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
286 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
287 uint8_t *out_buf
, const uint8_t *in_buf
,
288 int nb_sectors
, int enc
,
297 for(i
= 0; i
< nb_sectors
; i
++) {
298 ivec
.ll
[0] = cpu_to_le64(sector_num
);
300 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
309 int qcow2_read(BlockDriverState
*bs
, int64_t sector_num
, uint8_t *buf
,
312 BDRVQcowState
*s
= bs
->opaque
;
313 int ret
, index_in_cluster
, n
, n1
;
314 uint64_t cluster_offset
;
316 while (nb_sectors
> 0) {
318 cluster_offset
= qcow2_get_cluster_offset(bs
, sector_num
<< 9, &n
);
319 index_in_cluster
= sector_num
& (s
->cluster_sectors
- 1);
320 if (!cluster_offset
) {
321 if (bs
->backing_hd
) {
322 /* read from the base image */
323 n1
= qcow2_backing_read1(bs
->backing_hd
, sector_num
, buf
, n
);
325 ret
= bdrv_read(bs
->backing_hd
, sector_num
, buf
, n1
);
330 memset(buf
, 0, 512 * n
);
332 } else if (cluster_offset
& QCOW_OFLAG_COMPRESSED
) {
333 if (qcow2_decompress_cluster(s
, cluster_offset
) < 0)
335 memcpy(buf
, s
->cluster_cache
+ index_in_cluster
* 512, 512 * n
);
337 ret
= bdrv_pread(s
->hd
, cluster_offset
+ index_in_cluster
* 512, buf
, n
* 512);
340 if (s
->crypt_method
) {
341 qcow2_encrypt_sectors(s
, sector_num
, buf
, buf
, n
, 0,
342 &s
->aes_decrypt_key
);
352 static int copy_sectors(BlockDriverState
*bs
, uint64_t start_sect
,
353 uint64_t cluster_offset
, int n_start
, int n_end
)
355 BDRVQcowState
*s
= bs
->opaque
;
361 ret
= qcow2_read(bs
, start_sect
+ n_start
, s
->cluster_data
, n
);
364 if (s
->crypt_method
) {
365 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
367 s
->cluster_data
, n
, 1,
368 &s
->aes_encrypt_key
);
370 ret
= bdrv_write(s
->hd
, (cluster_offset
>> 9) + n_start
,
381 * For a given offset of the disk image, return cluster offset in
384 * on entry, *num is the number of contiguous clusters we'd like to
385 * access following offset.
387 * on exit, *num is the number of contiguous clusters we can read.
389 * Return 1, if the offset is found
390 * Return 0, otherwise.
394 uint64_t qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
397 BDRVQcowState
*s
= bs
->opaque
;
398 unsigned int l1_index
, l2_index
;
399 uint64_t l2_offset
, *l2_table
, cluster_offset
;
401 unsigned int index_in_cluster
, nb_clusters
;
402 uint64_t nb_available
, nb_needed
;
404 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
405 nb_needed
= *num
+ index_in_cluster
;
407 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
409 /* compute how many bytes there are between the offset and
410 * the end of the l1 entry
413 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
415 /* compute the number of available sectors */
417 nb_available
= (nb_available
>> 9) + index_in_cluster
;
419 if (nb_needed
> nb_available
) {
420 nb_needed
= nb_available
;
425 /* seek the the l2 offset in the l1 table */
427 l1_index
= offset
>> l1_bits
;
428 if (l1_index
>= s
->l1_size
)
431 l2_offset
= s
->l1_table
[l1_index
];
433 /* seek the l2 table of the given l2 offset */
438 /* load the l2 table in memory */
440 l2_offset
&= ~QCOW_OFLAG_COPIED
;
441 l2_table
= l2_load(bs
, l2_offset
);
442 if (l2_table
== NULL
)
445 /* find the cluster offset for the given disk offset */
447 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
448 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
449 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
451 if (!cluster_offset
) {
452 /* how many empty clusters ? */
453 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
455 /* how many allocated clusters ? */
456 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
457 &l2_table
[l2_index
], 0, QCOW_OFLAG_COPIED
);
460 nb_available
= (c
* s
->cluster_sectors
);
462 if (nb_available
> nb_needed
)
463 nb_available
= nb_needed
;
465 *num
= nb_available
- index_in_cluster
;
467 return cluster_offset
& ~QCOW_OFLAG_COPIED
;
473 * for a given disk offset, load (and allocate if needed)
476 * the l2 table offset in the qcow2 file and the cluster index
477 * in the l2 table are given to the caller.
481 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
482 uint64_t **new_l2_table
,
483 uint64_t *new_l2_offset
,
486 BDRVQcowState
*s
= bs
->opaque
;
487 unsigned int l1_index
, l2_index
;
488 uint64_t l2_offset
, *l2_table
;
491 /* seek the the l2 offset in the l1 table */
493 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
494 if (l1_index
>= s
->l1_size
) {
495 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1);
499 l2_offset
= s
->l1_table
[l1_index
];
501 /* seek the l2 table of the given l2 offset */
503 if (l2_offset
& QCOW_OFLAG_COPIED
) {
504 /* load the l2 table in memory */
505 l2_offset
&= ~QCOW_OFLAG_COPIED
;
506 l2_table
= l2_load(bs
, l2_offset
);
507 if (l2_table
== NULL
)
511 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t));
512 l2_table
= l2_allocate(bs
, l1_index
);
513 if (l2_table
== NULL
)
515 l2_offset
= s
->l1_table
[l1_index
] & ~QCOW_OFLAG_COPIED
;
518 /* find the cluster offset for the given disk offset */
520 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
522 *new_l2_table
= l2_table
;
523 *new_l2_offset
= l2_offset
;
524 *new_l2_index
= l2_index
;
530 * alloc_compressed_cluster_offset
532 * For a given offset of the disk image, return cluster offset in
535 * If the offset is not found, allocate a new compressed cluster.
537 * Return the cluster offset if successful,
538 * Return 0, otherwise.
542 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
546 BDRVQcowState
*s
= bs
->opaque
;
548 uint64_t l2_offset
, *l2_table
, cluster_offset
;
551 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
555 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
556 if (cluster_offset
& QCOW_OFLAG_COPIED
)
557 return cluster_offset
& ~QCOW_OFLAG_COPIED
;
560 qcow2_free_any_clusters(bs
, cluster_offset
, 1);
562 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
563 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
564 (cluster_offset
>> 9);
566 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
567 ((uint64_t)nb_csectors
<< s
->csize_shift
);
569 /* update L2 table */
571 /* compressed clusters never have the copied flag */
573 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
574 if (bdrv_pwrite(s
->hd
,
575 l2_offset
+ l2_index
* sizeof(uint64_t),
577 sizeof(uint64_t)) != sizeof(uint64_t))
580 return cluster_offset
;
584 * Write L2 table updates to disk, writing whole sectors to avoid a
585 * read-modify-write in bdrv_pwrite
587 #define L2_ENTRIES_PER_SECTOR (512 / 8)
588 static int write_l2_entries(BDRVQcowState
*s
, uint64_t *l2_table
,
589 uint64_t l2_offset
, int l2_index
, int num
)
591 int l2_start_index
= l2_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
592 int start_offset
= (8 * l2_index
) & ~511;
593 int end_offset
= (8 * (l2_index
+ num
) + 511) & ~511;
594 size_t len
= end_offset
- start_offset
;
596 if (bdrv_pwrite(s
->hd
, l2_offset
+ start_offset
, &l2_table
[l2_start_index
],
605 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, uint64_t cluster_offset
,
608 BDRVQcowState
*s
= bs
->opaque
;
609 int i
, j
= 0, l2_index
, ret
;
610 uint64_t *old_cluster
, start_sect
, l2_offset
, *l2_table
;
612 if (m
->nb_clusters
== 0)
615 old_cluster
= qemu_malloc(m
->nb_clusters
* sizeof(uint64_t));
617 /* copy content of unmodified sectors */
618 start_sect
= (m
->offset
& ~(s
->cluster_size
- 1)) >> 9;
620 ret
= copy_sectors(bs
, start_sect
, cluster_offset
, 0, m
->n_start
);
625 if (m
->nb_available
& (s
->cluster_sectors
- 1)) {
626 uint64_t end
= m
->nb_available
& ~(uint64_t)(s
->cluster_sectors
- 1);
627 ret
= copy_sectors(bs
, start_sect
+ end
, cluster_offset
+ (end
<< 9),
628 m
->nb_available
- end
, s
->cluster_sectors
);
634 /* update L2 table */
635 if (!get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_offset
, &l2_index
))
638 for (i
= 0; i
< m
->nb_clusters
; i
++) {
639 /* if two concurrent writes happen to the same unallocated cluster
640 * each write allocates separate cluster and writes data concurrently.
641 * The first one to complete updates l2 table with pointer to its
642 * cluster the second one has to do RMW (which is done above by
643 * copy_sectors()), update l2 table with its cluster pointer and free
644 * old cluster. This is what this loop does */
645 if(l2_table
[l2_index
+ i
] != 0)
646 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
648 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
649 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
652 if (write_l2_entries(s
, l2_table
, l2_offset
, l2_index
, m
->nb_clusters
) < 0) {
657 for (i
= 0; i
< j
; i
++)
658 qcow2_free_any_clusters(bs
,
659 be64_to_cpu(old_cluster
[i
]) & ~QCOW_OFLAG_COPIED
, 1);
663 qemu_free(old_cluster
);
668 * alloc_cluster_offset
670 * For a given offset of the disk image, return cluster offset in
673 * If the offset is not found, allocate a new cluster.
675 * Return the cluster offset if successful,
676 * Return 0, otherwise.
680 uint64_t qcow2_alloc_cluster_offset(BlockDriverState
*bs
,
682 int n_start
, int n_end
,
683 int *num
, QCowL2Meta
*m
)
685 BDRVQcowState
*s
= bs
->opaque
;
687 uint64_t l2_offset
, *l2_table
, cluster_offset
;
688 unsigned int nb_clusters
, i
= 0;
689 QCowL2Meta
*old_alloc
;
691 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_offset
, &l2_index
);
695 nb_clusters
= size_to_clusters(s
, n_end
<< 9);
697 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
699 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
701 /* We keep all QCOW_OFLAG_COPIED clusters */
703 if (cluster_offset
& QCOW_OFLAG_COPIED
) {
704 nb_clusters
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
705 &l2_table
[l2_index
], 0, 0);
707 cluster_offset
&= ~QCOW_OFLAG_COPIED
;
713 /* for the moment, multiple compressed clusters are not managed */
715 if (cluster_offset
& QCOW_OFLAG_COMPRESSED
)
718 /* how many available clusters ? */
720 while (i
< nb_clusters
) {
721 i
+= count_contiguous_clusters(nb_clusters
- i
, s
->cluster_size
,
722 &l2_table
[l2_index
], i
, 0);
724 if(be64_to_cpu(l2_table
[l2_index
+ i
]))
727 i
+= count_contiguous_free_clusters(nb_clusters
- i
,
728 &l2_table
[l2_index
+ i
]);
730 cluster_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
732 if ((cluster_offset
& QCOW_OFLAG_COPIED
) ||
733 (cluster_offset
& QCOW_OFLAG_COMPRESSED
))
739 * Check if there already is an AIO write request in flight which allocates
740 * the same cluster. In this case we need to wait until the previous
741 * request has completed and updated the L2 table accordingly.
743 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
745 uint64_t end_offset
= offset
+ nb_clusters
* s
->cluster_size
;
746 uint64_t old_offset
= old_alloc
->offset
;
747 uint64_t old_end_offset
= old_alloc
->offset
+
748 old_alloc
->nb_clusters
* s
->cluster_size
;
750 if (end_offset
< old_offset
|| offset
> old_end_offset
) {
751 /* No intersection */
753 if (offset
< old_offset
) {
754 /* Stop at the start of a running allocation */
755 nb_clusters
= (old_offset
- offset
) >> s
->cluster_bits
;
760 if (nb_clusters
== 0) {
761 /* Set dependency and wait for a callback */
762 m
->depends_on
= old_alloc
;
774 QLIST_INSERT_HEAD(&s
->cluster_allocs
, m
, next_in_flight
);
776 /* allocate a new cluster */
778 cluster_offset
= qcow2_alloc_clusters(bs
, nb_clusters
* s
->cluster_size
);
780 /* save info needed for meta data update */
782 m
->n_start
= n_start
;
783 m
->nb_clusters
= nb_clusters
;
786 m
->nb_available
= MIN(nb_clusters
<< (s
->cluster_bits
- 9), n_end
);
788 *num
= m
->nb_available
- n_start
;
790 return cluster_offset
;
793 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
794 const uint8_t *buf
, int buf_size
)
796 z_stream strm1
, *strm
= &strm1
;
799 memset(strm
, 0, sizeof(*strm
));
801 strm
->next_in
= (uint8_t *)buf
;
802 strm
->avail_in
= buf_size
;
803 strm
->next_out
= out_buf
;
804 strm
->avail_out
= out_buf_size
;
806 ret
= inflateInit2(strm
, -12);
809 ret
= inflate(strm
, Z_FINISH
);
810 out_len
= strm
->next_out
- out_buf
;
811 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
812 out_len
!= out_buf_size
) {
820 int qcow2_decompress_cluster(BDRVQcowState
*s
, uint64_t cluster_offset
)
822 int ret
, csize
, nb_csectors
, sector_offset
;
825 coffset
= cluster_offset
& s
->cluster_offset_mask
;
826 if (s
->cluster_cache_offset
!= coffset
) {
827 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
828 sector_offset
= coffset
& 511;
829 csize
= nb_csectors
* 512 - sector_offset
;
830 ret
= bdrv_read(s
->hd
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
834 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
835 s
->cluster_data
+ sector_offset
, csize
) < 0) {
838 s
->cluster_cache_offset
= coffset
;