2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GPL.
13 #include "primecell.h"
15 #include "qemu-timer.h"
29 #define BP_OLED_I2C 0x01
30 #define BP_OLED_SSI 0x02
31 #define BP_GAMEPAD 0x04
33 typedef const struct {
43 } stellaris_board_info
;
45 /* General purpose timer module. */
47 typedef struct gptm_state
{
56 uint32_t match_prescale
[2];
59 struct gptm_state
*opaque
[2];
61 /* The timers have an alternate output used to trigger the ADC. */
66 static void gptm_update_irq(gptm_state
*s
)
69 level
= (s
->state
& s
->mask
) != 0;
70 qemu_set_irq(s
->irq
, level
);
73 static void gptm_stop(gptm_state
*s
, int n
)
75 qemu_del_timer(s
->timer
[n
]);
78 static void gptm_reload(gptm_state
*s
, int n
, int reset
)
82 tick
= qemu_get_clock(vm_clock
);
87 /* 32-bit CountDown. */
89 count
= s
->load
[0] | (s
->load
[1] << 16);
90 tick
+= (int64_t)count
* system_clock_scale
;
91 } else if (s
->config
== 1) {
92 /* 32-bit RTC. 1Hz tick. */
93 tick
+= ticks_per_sec
;
94 } else if (s
->mode
[n
] == 0xa) {
95 /* PWM mode. Not implemented. */
97 hw_error("TODO: 16-bit timer mode 0x%x\n", s
->mode
[n
]);
100 qemu_mod_timer(s
->timer
[n
], tick
);
103 static void gptm_tick(void *opaque
)
105 gptm_state
**p
= (gptm_state
**)opaque
;
111 if (s
->config
== 0) {
113 if ((s
->control
& 0x20)) {
114 /* Output trigger. */
115 qemu_irq_raise(s
->trigger
);
116 qemu_irq_lower(s
->trigger
);
118 if (s
->mode
[0] & 1) {
123 gptm_reload(s
, 0, 0);
125 } else if (s
->config
== 1) {
129 match
= s
->match
[0] | (s
->match
[1] << 16);
135 gptm_reload(s
, 0, 0);
136 } else if (s
->mode
[n
] == 0xa) {
137 /* PWM mode. Not implemented. */
139 hw_error("TODO: 16-bit timer mode 0x%x\n", s
->mode
[n
]);
144 static uint32_t gptm_read(void *opaque
, target_phys_addr_t offset
)
146 gptm_state
*s
= (gptm_state
*)opaque
;
151 case 0x04: /* TAMR */
153 case 0x08: /* TBMR */
162 return s
->state
& s
->mask
;
165 case 0x28: /* TAILR */
166 return s
->load
[0] | ((s
->config
< 4) ? (s
->load
[1] << 16) : 0);
167 case 0x2c: /* TBILR */
169 case 0x30: /* TAMARCHR */
170 return s
->match
[0] | ((s
->config
< 4) ? (s
->match
[1] << 16) : 0);
171 case 0x34: /* TBMATCHR */
173 case 0x38: /* TAPR */
174 return s
->prescale
[0];
175 case 0x3c: /* TBPR */
176 return s
->prescale
[1];
177 case 0x40: /* TAPMR */
178 return s
->match_prescale
[0];
179 case 0x44: /* TBPMR */
180 return s
->match_prescale
[1];
185 hw_error("TODO: Timer value read\n");
187 hw_error("gptm_read: Bad offset 0x%x\n", (int)offset
);
192 static void gptm_write(void *opaque
, target_phys_addr_t offset
, uint32_t value
)
194 gptm_state
*s
= (gptm_state
*)opaque
;
197 /* The timers should be disabled before changing the configuration.
198 We take advantage of this and defer everything until the timer
204 case 0x04: /* TAMR */
207 case 0x08: /* TBMR */
213 /* TODO: Implement pause. */
214 if ((oldval
^ value
) & 1) {
216 gptm_reload(s
, 0, 1);
221 if (((oldval
^ value
) & 0x100) && s
->config
>= 4) {
223 gptm_reload(s
, 1, 1);
230 s
->mask
= value
& 0x77;
236 case 0x28: /* TAILR */
237 s
->load
[0] = value
& 0xffff;
239 s
->load
[1] = value
>> 16;
242 case 0x2c: /* TBILR */
243 s
->load
[1] = value
& 0xffff;
245 case 0x30: /* TAMARCHR */
246 s
->match
[0] = value
& 0xffff;
248 s
->match
[1] = value
>> 16;
251 case 0x34: /* TBMATCHR */
252 s
->match
[1] = value
>> 16;
254 case 0x38: /* TAPR */
255 s
->prescale
[0] = value
;
257 case 0x3c: /* TBPR */
258 s
->prescale
[1] = value
;
260 case 0x40: /* TAPMR */
261 s
->match_prescale
[0] = value
;
263 case 0x44: /* TBPMR */
264 s
->match_prescale
[0] = value
;
267 hw_error("gptm_write: Bad offset 0x%x\n", (int)offset
);
272 static CPUReadMemoryFunc
*gptm_readfn
[] = {
278 static CPUWriteMemoryFunc
*gptm_writefn
[] = {
284 static void gptm_save(QEMUFile
*f
, void *opaque
)
286 gptm_state
*s
= (gptm_state
*)opaque
;
288 qemu_put_be32(f
, s
->config
);
289 qemu_put_be32(f
, s
->mode
[0]);
290 qemu_put_be32(f
, s
->mode
[1]);
291 qemu_put_be32(f
, s
->control
);
292 qemu_put_be32(f
, s
->state
);
293 qemu_put_be32(f
, s
->mask
);
294 qemu_put_be32(f
, s
->mode
[0]);
295 qemu_put_be32(f
, s
->mode
[0]);
296 qemu_put_be32(f
, s
->load
[0]);
297 qemu_put_be32(f
, s
->load
[1]);
298 qemu_put_be32(f
, s
->match
[0]);
299 qemu_put_be32(f
, s
->match
[1]);
300 qemu_put_be32(f
, s
->prescale
[0]);
301 qemu_put_be32(f
, s
->prescale
[1]);
302 qemu_put_be32(f
, s
->match_prescale
[0]);
303 qemu_put_be32(f
, s
->match_prescale
[1]);
304 qemu_put_be32(f
, s
->rtc
);
305 qemu_put_be64(f
, s
->tick
[0]);
306 qemu_put_be64(f
, s
->tick
[1]);
307 qemu_put_timer(f
, s
->timer
[0]);
308 qemu_put_timer(f
, s
->timer
[1]);
311 static int gptm_load(QEMUFile
*f
, void *opaque
, int version_id
)
313 gptm_state
*s
= (gptm_state
*)opaque
;
318 s
->config
= qemu_get_be32(f
);
319 s
->mode
[0] = qemu_get_be32(f
);
320 s
->mode
[1] = qemu_get_be32(f
);
321 s
->control
= qemu_get_be32(f
);
322 s
->state
= qemu_get_be32(f
);
323 s
->mask
= qemu_get_be32(f
);
324 s
->mode
[0] = qemu_get_be32(f
);
325 s
->mode
[0] = qemu_get_be32(f
);
326 s
->load
[0] = qemu_get_be32(f
);
327 s
->load
[1] = qemu_get_be32(f
);
328 s
->match
[0] = qemu_get_be32(f
);
329 s
->match
[1] = qemu_get_be32(f
);
330 s
->prescale
[0] = qemu_get_be32(f
);
331 s
->prescale
[1] = qemu_get_be32(f
);
332 s
->match_prescale
[0] = qemu_get_be32(f
);
333 s
->match_prescale
[1] = qemu_get_be32(f
);
334 s
->rtc
= qemu_get_be32(f
);
335 s
->tick
[0] = qemu_get_be64(f
);
336 s
->tick
[1] = qemu_get_be64(f
);
337 qemu_get_timer(f
, s
->timer
[0]);
338 qemu_get_timer(f
, s
->timer
[1]);
343 static void stellaris_gptm_init(uint32_t base
, qemu_irq irq
, qemu_irq trigger
)
348 s
= (gptm_state
*)qemu_mallocz(sizeof(gptm_state
));
350 s
->trigger
= trigger
;
351 s
->opaque
[0] = s
->opaque
[1] = s
;
353 iomemtype
= cpu_register_io_memory(0, gptm_readfn
,
355 cpu_register_physical_memory(base
, 0x00001000, iomemtype
);
356 s
->timer
[0] = qemu_new_timer(vm_clock
, gptm_tick
, &s
->opaque
[0]);
357 s
->timer
[1] = qemu_new_timer(vm_clock
, gptm_tick
, &s
->opaque
[1]);
358 register_savevm("stellaris_gptm", -1, 1, gptm_save
, gptm_load
, s
);
362 /* System controller. */
379 stellaris_board_info
*board
;
382 static void ssys_update(ssys_state
*s
)
384 qemu_set_irq(s
->irq
, (s
->int_status
& s
->int_mask
) != 0);
387 static uint32_t pllcfg_sandstorm
[16] = {
389 0x1ae0, /* 1.8432 Mhz */
391 0xd573, /* 2.4576 Mhz */
392 0x37a6, /* 3.57954 Mhz */
393 0x1ae2, /* 3.6864 Mhz */
395 0x98bc, /* 4.906 Mhz */
396 0x935b, /* 4.9152 Mhz */
398 0x4dee, /* 5.12 Mhz */
400 0x75db, /* 6.144 Mhz */
401 0x1ae6, /* 7.3728 Mhz */
403 0x585b /* 8.192 Mhz */
406 static uint32_t pllcfg_fury
[16] = {
408 0x1b20, /* 1.8432 Mhz */
410 0xf42b, /* 2.4576 Mhz */
411 0x37e3, /* 3.57954 Mhz */
412 0x1b21, /* 3.6864 Mhz */
414 0x98ee, /* 4.906 Mhz */
415 0xd5b4, /* 4.9152 Mhz */
417 0x4e27, /* 5.12 Mhz */
419 0xec1c, /* 6.144 Mhz */
420 0x1b23, /* 7.3728 Mhz */
422 0xb11c /* 8.192 Mhz */
425 static uint32_t ssys_read(void *opaque
, target_phys_addr_t offset
)
427 ssys_state
*s
= (ssys_state
*)opaque
;
430 case 0x000: /* DID0 */
431 return s
->board
->did0
;
432 case 0x004: /* DID1 */
433 return s
->board
->did1
;
434 case 0x008: /* DC0 */
435 return s
->board
->dc0
;
436 case 0x010: /* DC1 */
437 return s
->board
->dc1
;
438 case 0x014: /* DC2 */
439 return s
->board
->dc2
;
440 case 0x018: /* DC3 */
441 return s
->board
->dc3
;
442 case 0x01c: /* DC4 */
443 return s
->board
->dc4
;
444 case 0x030: /* PBORCTL */
446 case 0x034: /* LDOPCTL */
448 case 0x040: /* SRCR0 */
450 case 0x044: /* SRCR1 */
452 case 0x048: /* SRCR2 */
454 case 0x050: /* RIS */
455 return s
->int_status
;
456 case 0x054: /* IMC */
458 case 0x058: /* MISC */
459 return s
->int_status
& s
->int_mask
;
460 case 0x05c: /* RESC */
462 case 0x060: /* RCC */
464 case 0x064: /* PLLCFG */
467 xtal
= (s
->rcc
>> 6) & 0xf;
468 if (s
->board
->did0
& (1 << 16)) {
469 return pllcfg_fury
[xtal
];
471 return pllcfg_sandstorm
[xtal
];
474 case 0x100: /* RCGC0 */
476 case 0x104: /* RCGC1 */
478 case 0x108: /* RCGC2 */
480 case 0x110: /* SCGC0 */
482 case 0x114: /* SCGC1 */
484 case 0x118: /* SCGC2 */
486 case 0x120: /* DCGC0 */
488 case 0x124: /* DCGC1 */
490 case 0x128: /* DCGC2 */
492 case 0x150: /* CLKVCLR */
494 case 0x160: /* LDOARST */
496 case 0x1e0: /* USER0 */
498 case 0x1e4: /* USER1 */
501 hw_error("ssys_read: Bad offset 0x%x\n", (int)offset
);
506 static void ssys_calculate_system_clock(ssys_state
*s
)
508 system_clock_scale
= 5 * (((s
->rcc
>> 23) & 0xf) + 1);
511 static void ssys_write(void *opaque
, target_phys_addr_t offset
, uint32_t value
)
513 ssys_state
*s
= (ssys_state
*)opaque
;
516 case 0x030: /* PBORCTL */
517 s
->pborctl
= value
& 0xffff;
519 case 0x034: /* LDOPCTL */
520 s
->ldopctl
= value
& 0x1f;
522 case 0x040: /* SRCR0 */
523 case 0x044: /* SRCR1 */
524 case 0x048: /* SRCR2 */
525 fprintf(stderr
, "Peripheral reset not implemented\n");
527 case 0x054: /* IMC */
528 s
->int_mask
= value
& 0x7f;
530 case 0x058: /* MISC */
531 s
->int_status
&= ~value
;
533 case 0x05c: /* RESC */
534 s
->resc
= value
& 0x3f;
536 case 0x060: /* RCC */
537 if ((s
->rcc
& (1 << 13)) != 0 && (value
& (1 << 13)) == 0) {
539 s
->int_status
|= (1 << 6);
542 ssys_calculate_system_clock(s
);
544 case 0x100: /* RCGC0 */
547 case 0x104: /* RCGC1 */
550 case 0x108: /* RCGC2 */
553 case 0x110: /* SCGC0 */
556 case 0x114: /* SCGC1 */
559 case 0x118: /* SCGC2 */
562 case 0x120: /* DCGC0 */
565 case 0x124: /* DCGC1 */
568 case 0x128: /* DCGC2 */
571 case 0x150: /* CLKVCLR */
574 case 0x160: /* LDOARST */
578 hw_error("ssys_write: Bad offset 0x%x\n", (int)offset
);
583 static CPUReadMemoryFunc
*ssys_readfn
[] = {
589 static CPUWriteMemoryFunc
*ssys_writefn
[] = {
595 static void ssys_reset(void *opaque
)
597 ssys_state
*s
= (ssys_state
*)opaque
;
606 static void ssys_save(QEMUFile
*f
, void *opaque
)
608 ssys_state
*s
= (ssys_state
*)opaque
;
610 qemu_put_be32(f
, s
->pborctl
);
611 qemu_put_be32(f
, s
->ldopctl
);
612 qemu_put_be32(f
, s
->int_mask
);
613 qemu_put_be32(f
, s
->int_status
);
614 qemu_put_be32(f
, s
->resc
);
615 qemu_put_be32(f
, s
->rcc
);
616 qemu_put_be32(f
, s
->rcgc
[0]);
617 qemu_put_be32(f
, s
->rcgc
[1]);
618 qemu_put_be32(f
, s
->rcgc
[2]);
619 qemu_put_be32(f
, s
->scgc
[0]);
620 qemu_put_be32(f
, s
->scgc
[1]);
621 qemu_put_be32(f
, s
->scgc
[2]);
622 qemu_put_be32(f
, s
->dcgc
[0]);
623 qemu_put_be32(f
, s
->dcgc
[1]);
624 qemu_put_be32(f
, s
->dcgc
[2]);
625 qemu_put_be32(f
, s
->clkvclr
);
626 qemu_put_be32(f
, s
->ldoarst
);
629 static int ssys_load(QEMUFile
*f
, void *opaque
, int version_id
)
631 ssys_state
*s
= (ssys_state
*)opaque
;
636 s
->pborctl
= qemu_get_be32(f
);
637 s
->ldopctl
= qemu_get_be32(f
);
638 s
->int_mask
= qemu_get_be32(f
);
639 s
->int_status
= qemu_get_be32(f
);
640 s
->resc
= qemu_get_be32(f
);
641 s
->rcc
= qemu_get_be32(f
);
642 s
->rcgc
[0] = qemu_get_be32(f
);
643 s
->rcgc
[1] = qemu_get_be32(f
);
644 s
->rcgc
[2] = qemu_get_be32(f
);
645 s
->scgc
[0] = qemu_get_be32(f
);
646 s
->scgc
[1] = qemu_get_be32(f
);
647 s
->scgc
[2] = qemu_get_be32(f
);
648 s
->dcgc
[0] = qemu_get_be32(f
);
649 s
->dcgc
[1] = qemu_get_be32(f
);
650 s
->dcgc
[2] = qemu_get_be32(f
);
651 s
->clkvclr
= qemu_get_be32(f
);
652 s
->ldoarst
= qemu_get_be32(f
);
653 ssys_calculate_system_clock(s
);
658 static void stellaris_sys_init(uint32_t base
, qemu_irq irq
,
659 stellaris_board_info
* board
,
665 s
= (ssys_state
*)qemu_mallocz(sizeof(ssys_state
));
668 /* Most devices come preprogrammed with a MAC address in the user data. */
669 s
->user0
= macaddr
[0] | (macaddr
[1] << 8) | (macaddr
[2] << 16);
670 s
->user1
= macaddr
[3] | (macaddr
[4] << 8) | (macaddr
[5] << 16);
672 iomemtype
= cpu_register_io_memory(0, ssys_readfn
,
674 cpu_register_physical_memory(base
, 0x00001000, iomemtype
);
676 register_savevm("stellaris_sys", -1, 1, ssys_save
, ssys_load
, s
);
680 /* I2C controller. */
693 } stellaris_i2c_state
;
695 #define STELLARIS_I2C_MCS_BUSY 0x01
696 #define STELLARIS_I2C_MCS_ERROR 0x02
697 #define STELLARIS_I2C_MCS_ADRACK 0x04
698 #define STELLARIS_I2C_MCS_DATACK 0x08
699 #define STELLARIS_I2C_MCS_ARBLST 0x10
700 #define STELLARIS_I2C_MCS_IDLE 0x20
701 #define STELLARIS_I2C_MCS_BUSBSY 0x40
703 static uint32_t stellaris_i2c_read(void *opaque
, target_phys_addr_t offset
)
705 stellaris_i2c_state
*s
= (stellaris_i2c_state
*)opaque
;
711 /* We don't emulate timing, so the controller is never busy. */
712 return s
->mcs
| STELLARIS_I2C_MCS_IDLE
;
715 case 0x0c: /* MTPR */
717 case 0x10: /* MIMR */
719 case 0x14: /* MRIS */
721 case 0x18: /* MMIS */
722 return s
->mris
& s
->mimr
;
726 hw_error("strllaris_i2c_read: Bad offset 0x%x\n", (int)offset
);
731 static void stellaris_i2c_update(stellaris_i2c_state
*s
)
735 level
= (s
->mris
& s
->mimr
) != 0;
736 qemu_set_irq(s
->irq
, level
);
739 static void stellaris_i2c_write(void *opaque
, target_phys_addr_t offset
,
742 stellaris_i2c_state
*s
= (stellaris_i2c_state
*)opaque
;
746 s
->msa
= value
& 0xff;
749 if ((s
->mcr
& 0x10) == 0) {
750 /* Disabled. Do nothing. */
753 /* Grab the bus if this is starting a transfer. */
754 if ((value
& 2) && (s
->mcs
& STELLARIS_I2C_MCS_BUSBSY
) == 0) {
755 if (i2c_start_transfer(s
->bus
, s
->msa
>> 1, s
->msa
& 1)) {
756 s
->mcs
|= STELLARIS_I2C_MCS_ARBLST
;
758 s
->mcs
&= ~STELLARIS_I2C_MCS_ARBLST
;
759 s
->mcs
|= STELLARIS_I2C_MCS_BUSBSY
;
762 /* If we don't have the bus then indicate an error. */
763 if (!i2c_bus_busy(s
->bus
)
764 || (s
->mcs
& STELLARIS_I2C_MCS_BUSBSY
) == 0) {
765 s
->mcs
|= STELLARIS_I2C_MCS_ERROR
;
768 s
->mcs
&= ~STELLARIS_I2C_MCS_ERROR
;
770 /* Transfer a byte. */
771 /* TODO: Handle errors. */
774 s
->mdr
= i2c_recv(s
->bus
) & 0xff;
777 i2c_send(s
->bus
, s
->mdr
);
779 /* Raise an interrupt. */
783 /* Finish transfer. */
784 i2c_end_transfer(s
->bus
);
785 s
->mcs
&= ~STELLARIS_I2C_MCS_BUSBSY
;
789 s
->mdr
= value
& 0xff;
791 case 0x0c: /* MTPR */
792 s
->mtpr
= value
& 0xff;
794 case 0x10: /* MIMR */
797 case 0x1c: /* MICR */
803 "stellaris_i2c_write: Loopback not implemented\n");
806 "stellaris_i2c_write: Slave mode not implemented\n");
807 s
->mcr
= value
& 0x31;
810 hw_error("stellaris_i2c_write: Bad offset 0x%x\n",
813 stellaris_i2c_update(s
);
816 static void stellaris_i2c_reset(stellaris_i2c_state
*s
)
818 if (s
->mcs
& STELLARIS_I2C_MCS_BUSBSY
)
819 i2c_end_transfer(s
->bus
);
828 stellaris_i2c_update(s
);
831 static CPUReadMemoryFunc
*stellaris_i2c_readfn
[] = {
837 static CPUWriteMemoryFunc
*stellaris_i2c_writefn
[] = {
843 static void stellaris_i2c_save(QEMUFile
*f
, void *opaque
)
845 stellaris_i2c_state
*s
= (stellaris_i2c_state
*)opaque
;
847 qemu_put_be32(f
, s
->msa
);
848 qemu_put_be32(f
, s
->mcs
);
849 qemu_put_be32(f
, s
->mdr
);
850 qemu_put_be32(f
, s
->mtpr
);
851 qemu_put_be32(f
, s
->mimr
);
852 qemu_put_be32(f
, s
->mris
);
853 qemu_put_be32(f
, s
->mcr
);
856 static int stellaris_i2c_load(QEMUFile
*f
, void *opaque
, int version_id
)
858 stellaris_i2c_state
*s
= (stellaris_i2c_state
*)opaque
;
863 s
->msa
= qemu_get_be32(f
);
864 s
->mcs
= qemu_get_be32(f
);
865 s
->mdr
= qemu_get_be32(f
);
866 s
->mtpr
= qemu_get_be32(f
);
867 s
->mimr
= qemu_get_be32(f
);
868 s
->mris
= qemu_get_be32(f
);
869 s
->mcr
= qemu_get_be32(f
);
874 static void stellaris_i2c_init(SysBusDevice
* dev
)
876 stellaris_i2c_state
*s
= FROM_SYSBUS(stellaris_i2c_state
, dev
);
880 sysbus_init_irq(dev
, &s
->irq
);
881 bus
= i2c_init_bus(&dev
->qdev
, "i2c");
884 iomemtype
= cpu_register_io_memory(0, stellaris_i2c_readfn
,
885 stellaris_i2c_writefn
, s
);
886 sysbus_init_mmio(dev
, 0x1000, iomemtype
);
887 /* ??? For now we only implement the master interface. */
888 stellaris_i2c_reset(s
);
889 register_savevm("stellaris_i2c", -1, 1,
890 stellaris_i2c_save
, stellaris_i2c_load
, s
);
893 /* Analogue to Digital Converter. This is only partially implemented,
894 enough for applications that use a combined ADC and timer tick. */
896 #define STELLARIS_ADC_EM_CONTROLLER 0
897 #define STELLARIS_ADC_EM_COMP 1
898 #define STELLARIS_ADC_EM_EXTERNAL 4
899 #define STELLARIS_ADC_EM_TIMER 5
900 #define STELLARIS_ADC_EM_PWM0 6
901 #define STELLARIS_ADC_EM_PWM1 7
902 #define STELLARIS_ADC_EM_PWM2 8
904 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
905 #define STELLARIS_ADC_FIFO_FULL 0x1000
925 } stellaris_adc_state
;
927 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state
*s
, int n
)
931 tail
= s
->fifo
[n
].state
& 0xf;
932 if (s
->fifo
[n
].state
& STELLARIS_ADC_FIFO_EMPTY
) {
935 s
->fifo
[n
].state
= (s
->fifo
[n
].state
& ~0xf) | ((tail
+ 1) & 0xf);
936 s
->fifo
[n
].state
&= ~STELLARIS_ADC_FIFO_FULL
;
937 if (tail
+ 1 == ((s
->fifo
[n
].state
>> 4) & 0xf))
938 s
->fifo
[n
].state
|= STELLARIS_ADC_FIFO_EMPTY
;
940 return s
->fifo
[n
].data
[tail
];
943 static void stellaris_adc_fifo_write(stellaris_adc_state
*s
, int n
,
948 head
= (s
->fifo
[n
].state
>> 4) & 0xf;
949 if (s
->fifo
[n
].state
& STELLARIS_ADC_FIFO_FULL
) {
953 s
->fifo
[n
].data
[head
] = value
;
954 head
= (head
+ 1) & 0xf;
955 s
->fifo
[n
].state
&= ~STELLARIS_ADC_FIFO_EMPTY
;
956 s
->fifo
[n
].state
= (s
->fifo
[n
].state
& ~0xf0) | (head
<< 4);
957 if ((s
->fifo
[n
].state
& 0xf) == head
)
958 s
->fifo
[n
].state
|= STELLARIS_ADC_FIFO_FULL
;
961 static void stellaris_adc_update(stellaris_adc_state
*s
)
965 level
= (s
->ris
& s
->im
) != 0;
966 qemu_set_irq(s
->irq
, level
);
969 static void stellaris_adc_trigger(void *opaque
, int irq
, int level
)
971 stellaris_adc_state
*s
= (stellaris_adc_state
*)opaque
;
973 if ((s
->actss
& 1) == 0) {
977 /* Some applications use the ADC as a random number source, so introduce
978 some variation into the signal. */
979 s
->noise
= s
->noise
* 314159 + 1;
980 /* ??? actual inputs not implemented. Return an arbitrary value. */
981 stellaris_adc_fifo_write(s
, 0, 0x200 + ((s
->noise
>> 16) & 7));
983 stellaris_adc_update(s
);
986 static void stellaris_adc_reset(stellaris_adc_state
*s
)
990 for (n
= 0; n
< 4; n
++) {
993 s
->fifo
[n
].state
= STELLARIS_ADC_FIFO_EMPTY
;
997 static uint32_t stellaris_adc_read(void *opaque
, target_phys_addr_t offset
)
999 stellaris_adc_state
*s
= (stellaris_adc_state
*)opaque
;
1001 /* TODO: Implement this. */
1002 if (offset
>= 0x40 && offset
< 0xc0) {
1004 n
= (offset
- 0x40) >> 5;
1005 switch (offset
& 0x1f) {
1006 case 0x00: /* SSMUX */
1008 case 0x04: /* SSCTL */
1010 case 0x08: /* SSFIFO */
1011 return stellaris_adc_fifo_read(s
, n
);
1012 case 0x0c: /* SSFSTAT */
1013 return s
->fifo
[n
].state
;
1019 case 0x00: /* ACTSS */
1021 case 0x04: /* RIS */
1025 case 0x0c: /* ISC */
1026 return s
->ris
& s
->im
;
1027 case 0x10: /* OSTAT */
1029 case 0x14: /* EMUX */
1031 case 0x18: /* USTAT */
1033 case 0x20: /* SSPRI */
1035 case 0x30: /* SAC */
1038 hw_error("strllaris_adc_read: Bad offset 0x%x\n",
1044 static void stellaris_adc_write(void *opaque
, target_phys_addr_t offset
,
1047 stellaris_adc_state
*s
= (stellaris_adc_state
*)opaque
;
1049 /* TODO: Implement this. */
1050 if (offset
>= 0x40 && offset
< 0xc0) {
1052 n
= (offset
- 0x40) >> 5;
1053 switch (offset
& 0x1f) {
1054 case 0x00: /* SSMUX */
1055 s
->ssmux
[n
] = value
& 0x33333333;
1057 case 0x04: /* SSCTL */
1059 hw_error("ADC: Unimplemented sequence %x\n",
1062 s
->ssctl
[n
] = value
;
1069 case 0x00: /* ACTSS */
1070 s
->actss
= value
& 0xf;
1072 hw_error("Not implemented: ADC sequencers 1-3\n");
1078 case 0x0c: /* ISC */
1081 case 0x10: /* OSTAT */
1084 case 0x14: /* EMUX */
1087 case 0x18: /* USTAT */
1090 case 0x20: /* SSPRI */
1093 case 0x28: /* PSSI */
1094 hw_error("Not implemented: ADC sample initiate\n");
1096 case 0x30: /* SAC */
1100 hw_error("stellaris_adc_write: Bad offset 0x%x\n", (int)offset
);
1102 stellaris_adc_update(s
);
1105 static CPUReadMemoryFunc
*stellaris_adc_readfn
[] = {
1111 static CPUWriteMemoryFunc
*stellaris_adc_writefn
[] = {
1112 stellaris_adc_write
,
1113 stellaris_adc_write
,
1117 static void stellaris_adc_save(QEMUFile
*f
, void *opaque
)
1119 stellaris_adc_state
*s
= (stellaris_adc_state
*)opaque
;
1123 qemu_put_be32(f
, s
->actss
);
1124 qemu_put_be32(f
, s
->ris
);
1125 qemu_put_be32(f
, s
->im
);
1126 qemu_put_be32(f
, s
->emux
);
1127 qemu_put_be32(f
, s
->ostat
);
1128 qemu_put_be32(f
, s
->ustat
);
1129 qemu_put_be32(f
, s
->sspri
);
1130 qemu_put_be32(f
, s
->sac
);
1131 for (i
= 0; i
< 4; i
++) {
1132 qemu_put_be32(f
, s
->fifo
[i
].state
);
1133 for (j
= 0; j
< 16; j
++) {
1134 qemu_put_be32(f
, s
->fifo
[i
].data
[j
]);
1136 qemu_put_be32(f
, s
->ssmux
[i
]);
1137 qemu_put_be32(f
, s
->ssctl
[i
]);
1139 qemu_put_be32(f
, s
->noise
);
1142 static int stellaris_adc_load(QEMUFile
*f
, void *opaque
, int version_id
)
1144 stellaris_adc_state
*s
= (stellaris_adc_state
*)opaque
;
1148 if (version_id
!= 1)
1151 s
->actss
= qemu_get_be32(f
);
1152 s
->ris
= qemu_get_be32(f
);
1153 s
->im
= qemu_get_be32(f
);
1154 s
->emux
= qemu_get_be32(f
);
1155 s
->ostat
= qemu_get_be32(f
);
1156 s
->ustat
= qemu_get_be32(f
);
1157 s
->sspri
= qemu_get_be32(f
);
1158 s
->sac
= qemu_get_be32(f
);
1159 for (i
= 0; i
< 4; i
++) {
1160 s
->fifo
[i
].state
= qemu_get_be32(f
);
1161 for (j
= 0; j
< 16; j
++) {
1162 s
->fifo
[i
].data
[j
] = qemu_get_be32(f
);
1164 s
->ssmux
[i
] = qemu_get_be32(f
);
1165 s
->ssctl
[i
] = qemu_get_be32(f
);
1167 s
->noise
= qemu_get_be32(f
);
1172 static qemu_irq
stellaris_adc_init(uint32_t base
, qemu_irq irq
)
1174 stellaris_adc_state
*s
;
1178 s
= (stellaris_adc_state
*)qemu_mallocz(sizeof(stellaris_adc_state
));
1181 iomemtype
= cpu_register_io_memory(0, stellaris_adc_readfn
,
1182 stellaris_adc_writefn
, s
);
1183 cpu_register_physical_memory(base
, 0x00001000, iomemtype
);
1184 stellaris_adc_reset(s
);
1185 qi
= qemu_allocate_irqs(stellaris_adc_trigger
, s
, 1);
1186 register_savevm("stellaris_adc", -1, 1,
1187 stellaris_adc_save
, stellaris_adc_load
, s
);
1191 /* Some boards have both an OLED controller and SD card connected to
1192 the same SSI port, with the SD card chip select connected to a
1193 GPIO pin. Technically the OLED chip select is connected to the SSI
1194 Fss pin. We do not bother emulating that as both devices should
1195 never be selected simultaneously, and our OLED controller ignores stray
1196 0xff commands that occur when deselecting the SD card. */
1203 } stellaris_ssi_bus_state
;
1205 static void stellaris_ssi_bus_select(void *opaque
, int irq
, int level
)
1207 stellaris_ssi_bus_state
*s
= (stellaris_ssi_bus_state
*)opaque
;
1209 s
->current_dev
= level
;
1212 static uint32_t stellaris_ssi_bus_transfer(SSISlave
*dev
, uint32_t val
)
1214 stellaris_ssi_bus_state
*s
= FROM_SSI_SLAVE(stellaris_ssi_bus_state
, dev
);
1216 return ssi_transfer(s
->bus
[s
->current_dev
], val
);
1219 static void stellaris_ssi_bus_save(QEMUFile
*f
, void *opaque
)
1221 stellaris_ssi_bus_state
*s
= (stellaris_ssi_bus_state
*)opaque
;
1223 qemu_put_be32(f
, s
->current_dev
);
1226 static int stellaris_ssi_bus_load(QEMUFile
*f
, void *opaque
, int version_id
)
1228 stellaris_ssi_bus_state
*s
= (stellaris_ssi_bus_state
*)opaque
;
1230 if (version_id
!= 1)
1233 s
->current_dev
= qemu_get_be32(f
);
1238 static void stellaris_ssi_bus_init(SSISlave
*dev
)
1240 stellaris_ssi_bus_state
*s
= FROM_SSI_SLAVE(stellaris_ssi_bus_state
, dev
);
1242 s
->bus
[0] = ssi_create_bus(&dev
->qdev
, "ssi0");
1243 s
->bus
[1] = ssi_create_bus(&dev
->qdev
, "ssi1");
1244 qdev_init_gpio_in(&dev
->qdev
, stellaris_ssi_bus_select
, 1);
1246 register_savevm("stellaris_ssi_bus", -1, 1,
1247 stellaris_ssi_bus_save
, stellaris_ssi_bus_load
, s
);
1251 static stellaris_board_info stellaris_boards
[] = {
1255 0x001f001f, /* dc0 */
1265 0x00ff007f, /* dc0 */
1270 BP_OLED_SSI
| BP_GAMEPAD
1274 static void stellaris_init(const char *kernel_filename
, const char *cpu_model
,
1275 stellaris_board_info
*board
)
1277 static const int uart_irq
[] = {5, 6, 33, 34};
1278 static const int timer_irq
[] = {19, 21, 23, 35};
1279 static const uint32_t gpio_addr
[7] =
1280 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1281 0x40024000, 0x40025000, 0x40026000};
1282 static const int gpio_irq
[7] = {0, 1, 2, 3, 4, 30, 31};
1285 qemu_irq
*gpio_in
[7];
1286 qemu_irq
*gpio_out
[7];
1293 flash_size
= ((board
->dc0
& 0xffff) + 1) << 1;
1294 sram_size
= (board
->dc0
>> 18) + 1;
1295 pic
= armv7m_init(flash_size
, sram_size
, kernel_filename
, cpu_model
);
1297 if (board
->dc1
& (1 << 16)) {
1298 adc
= stellaris_adc_init(0x40038000, pic
[14]);
1302 for (i
= 0; i
< 4; i
++) {
1303 if (board
->dc2
& (0x10000 << i
)) {
1304 stellaris_gptm_init(0x40030000 + i
* 0x1000,
1305 pic
[timer_irq
[i
]], adc
);
1309 stellaris_sys_init(0x400fe000, pic
[28], board
, nd_table
[0].macaddr
);
1311 for (i
= 0; i
< 7; i
++) {
1312 if (board
->dc4
& (1 << i
)) {
1313 gpio_in
[i
] = pl061_init(gpio_addr
[i
], pic
[gpio_irq
[i
]],
1318 if (board
->dc2
& (1 << 12)) {
1320 dev
= sysbus_create_simple("stellaris-i2c", 0x40020000, pic
[8]);
1321 i2c
= (i2c_bus
*)qdev_get_child_bus(dev
, "i2c");
1322 if (board
->peripherals
& BP_OLED_I2C
) {
1323 i2c_create_slave(i2c
, "ssd0303", 0x3d);
1327 for (i
= 0; i
< 4; i
++) {
1328 if (board
->dc2
& (1 << i
)) {
1329 sysbus_create_simple("pl011_luminary", 0x4000c000 + i
* 0x1000,
1333 if (board
->dc2
& (1 << 4)) {
1335 dev
= sysbus_create_simple("pl022", 0x40008000, pic
[7]);
1336 if (board
->peripherals
& BP_OLED_SSI
) {
1340 bus
= qdev_get_child_bus(dev
, "ssi");
1341 mux
= ssi_create_slave(bus
, "evb6965-ssi");
1342 gpio_out
[GPIO_D
][0] = qdev_get_gpio_in(mux
, 0);
1344 bus
= qdev_get_child_bus(mux
, "ssi0");
1345 dev
= ssi_create_slave(bus
, "ssi-sd");
1347 bus
= qdev_get_child_bus(mux
, "ssi1");
1348 dev
= ssi_create_slave(bus
, "ssd0323");
1349 gpio_out
[GPIO_C
][7] = qdev_get_gpio_in(dev
, 0);
1351 /* Make sure the select pin is high. */
1352 qemu_irq_raise(gpio_out
[GPIO_D
][0]);
1355 if (board
->dc4
& (1 << 28)) {
1358 qemu_check_nic_model(&nd_table
[0], "stellaris");
1360 enet
= qdev_create(NULL
, "stellaris_enet");
1361 qdev_set_netdev(enet
, &nd_table
[0]);
1363 sysbus_mmio_map(sysbus_from_qdev(enet
), 0, 0x40048000);
1364 sysbus_connect_irq(sysbus_from_qdev(enet
), 0, pic
[42]);
1366 if (board
->peripherals
& BP_GAMEPAD
) {
1367 qemu_irq gpad_irq
[5];
1368 static const int gpad_keycode
[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1370 gpad_irq
[0] = qemu_irq_invert(gpio_in
[GPIO_E
][0]); /* up */
1371 gpad_irq
[1] = qemu_irq_invert(gpio_in
[GPIO_E
][1]); /* down */
1372 gpad_irq
[2] = qemu_irq_invert(gpio_in
[GPIO_E
][2]); /* left */
1373 gpad_irq
[3] = qemu_irq_invert(gpio_in
[GPIO_E
][3]); /* right */
1374 gpad_irq
[4] = qemu_irq_invert(gpio_in
[GPIO_F
][1]); /* select */
1376 stellaris_gamepad_init(5, gpad_irq
, gpad_keycode
);
1380 /* FIXME: Figure out how to generate these from stellaris_boards. */
1381 static void lm3s811evb_init(ram_addr_t ram_size
,
1382 const char *boot_device
,
1383 const char *kernel_filename
, const char *kernel_cmdline
,
1384 const char *initrd_filename
, const char *cpu_model
)
1386 stellaris_init(kernel_filename
, cpu_model
, &stellaris_boards
[0]);
1389 static void lm3s6965evb_init(ram_addr_t ram_size
,
1390 const char *boot_device
,
1391 const char *kernel_filename
, const char *kernel_cmdline
,
1392 const char *initrd_filename
, const char *cpu_model
)
1394 stellaris_init(kernel_filename
, cpu_model
, &stellaris_boards
[1]);
1397 static QEMUMachine lm3s811evb_machine
= {
1398 .name
= "lm3s811evb",
1399 .desc
= "Stellaris LM3S811EVB",
1400 .init
= lm3s811evb_init
,
1403 static QEMUMachine lm3s6965evb_machine
= {
1404 .name
= "lm3s6965evb",
1405 .desc
= "Stellaris LM3S6965EVB",
1406 .init
= lm3s6965evb_init
,
1409 static void stellaris_machine_init(void)
1411 qemu_register_machine(&lm3s811evb_machine
);
1412 qemu_register_machine(&lm3s6965evb_machine
);
1415 machine_init(stellaris_machine_init
);
1417 static SSISlaveInfo stellaris_ssi_bus_info
= {
1418 .init
= stellaris_ssi_bus_init
,
1419 .transfer
= stellaris_ssi_bus_transfer
1422 static void stellaris_register_devices(void)
1424 sysbus_register_dev("stellaris-i2c", sizeof(stellaris_i2c_state
),
1425 stellaris_i2c_init
);
1426 ssi_register_slave("evb6965-ssi", sizeof(stellaris_ssi_bus_state
),
1427 &stellaris_ssi_bus_info
);
1430 device_init(stellaris_register_devices
)