various fixes to MidiRegionView selection handling, key handling, drawing of ghost...
[ardour2.git] / libs / qm-dsp / dsp / tempotracking / DownBeat.cpp
blob8de1b6469e3d37b7e8d4df00c9718ae80df74e81
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
3 /*
4 QM DSP Library
6 Centre for Digital Music, Queen Mary, University of London.
7 This file copyright 2008-2009 Matthew Davies and QMUL.
9 This program is free software; you can redistribute it and/or
10 modify it under the terms of the GNU General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version. See the file
13 COPYING included with this distribution for more information.
16 #include "DownBeat.h"
18 #include "maths/MathAliases.h"
19 #include "maths/MathUtilities.h"
20 #include "maths/KLDivergence.h"
21 #include "dsp/transforms/FFT.h"
23 #include <iostream>
24 #include <cstdlib>
26 DownBeat::DownBeat(float originalSampleRate,
27 size_t decimationFactor,
28 size_t dfIncrement) :
29 m_bpb(0),
30 m_rate(originalSampleRate),
31 m_factor(decimationFactor),
32 m_increment(dfIncrement),
33 m_decimator1(0),
34 m_decimator2(0),
35 m_buffer(0),
36 m_decbuf(0),
37 m_bufsiz(0),
38 m_buffill(0),
39 m_beatframesize(0),
40 m_beatframe(0)
42 // beat frame size is next power of two up from 1.3 seconds at the
43 // downsampled rate (happens to produce 4096 for 44100 or 48000 at
44 // 16x decimation, which is our expected normal situation)
45 m_beatframesize = MathUtilities::nextPowerOfTwo
46 (int((m_rate / decimationFactor) * 1.3));
47 // std::cerr << "rate = " << m_rate << ", bfs = " << m_beatframesize << std::endl;
48 m_beatframe = new double[m_beatframesize];
49 m_fftRealOut = new double[m_beatframesize];
50 m_fftImagOut = new double[m_beatframesize];
51 m_fft = new FFTReal(m_beatframesize);
54 DownBeat::~DownBeat()
56 delete m_decimator1;
57 delete m_decimator2;
58 if (m_buffer) free(m_buffer);
59 delete[] m_decbuf;
60 delete[] m_beatframe;
61 delete[] m_fftRealOut;
62 delete[] m_fftImagOut;
63 delete m_fft;
66 void
67 DownBeat::setBeatsPerBar(int bpb)
69 m_bpb = bpb;
72 void
73 DownBeat::makeDecimators()
75 // std::cerr << "m_factor = " << m_factor << std::endl;
76 if (m_factor < 2) return;
77 size_t highest = Decimator::getHighestSupportedFactor();
78 if (m_factor <= highest) {
79 m_decimator1 = new Decimator(m_increment, m_factor);
80 // std::cerr << "DownBeat: decimator 1 factor " << m_factor << ", size " << m_increment << std::endl;
81 return;
83 m_decimator1 = new Decimator(m_increment, highest);
84 // std::cerr << "DownBeat: decimator 1 factor " << highest << ", size " << m_increment << std::endl;
85 m_decimator2 = new Decimator(m_increment / highest, m_factor / highest);
86 // std::cerr << "DownBeat: decimator 2 factor " << m_factor / highest << ", size " << m_increment / highest << std::endl;
87 m_decbuf = new float[m_increment / highest];
90 void
91 DownBeat::pushAudioBlock(const float *audio)
93 if (m_buffill + (m_increment / m_factor) > m_bufsiz) {
94 if (m_bufsiz == 0) m_bufsiz = m_increment * 16;
95 else m_bufsiz = m_bufsiz * 2;
96 if (!m_buffer) {
97 m_buffer = (float *)malloc(m_bufsiz * sizeof(float));
98 } else {
99 // std::cerr << "DownBeat::pushAudioBlock: realloc m_buffer to " << m_bufsiz << std::endl;
100 m_buffer = (float *)realloc(m_buffer, m_bufsiz * sizeof(float));
103 if (!m_decimator1 && m_factor > 1) makeDecimators();
104 // float rmsin = 0, rmsout = 0;
105 // for (int i = 0; i < m_increment; ++i) {
106 // rmsin += audio[i] * audio[i];
107 // }
108 if (m_decimator2) {
109 m_decimator1->process(audio, m_decbuf);
110 m_decimator2->process(m_decbuf, m_buffer + m_buffill);
111 } else if (m_decimator1) {
112 m_decimator1->process(audio, m_buffer + m_buffill);
113 } else {
114 // just copy across (m_factor is presumably 1)
115 for (size_t i = 0; i < m_increment; ++i) {
116 (m_buffer + m_buffill)[i] = audio[i];
119 // for (int i = 0; i < m_increment / m_factor; ++i) {
120 // rmsout += m_buffer[m_buffill + i] * m_buffer[m_buffill + i];
121 // }
122 // std::cerr << "pushAudioBlock: rms in " << sqrt(rmsin) << ", out " << sqrt(rmsout) << std::endl;
123 m_buffill += m_increment / m_factor;
126 const float *
127 DownBeat::getBufferedAudio(size_t &length) const
129 length = m_buffill;
130 return m_buffer;
133 void
134 DownBeat::resetAudioBuffer()
136 if (m_buffer) free(m_buffer);
137 m_buffer = 0;
138 m_buffill = 0;
139 m_bufsiz = 0;
142 void
143 DownBeat::findDownBeats(const float *audio,
144 size_t audioLength,
145 const d_vec_t &beats,
146 i_vec_t &downbeats)
148 // FIND DOWNBEATS BY PARTITIONING THE INPUT AUDIO FILE INTO BEAT SEGMENTS
149 // WHERE THE AUDIO FRAMES ARE DOWNSAMPLED BY A FACTOR OF 16 (fs ~= 2700Hz)
150 // THEN TAKING THE JENSEN-SHANNON DIVERGENCE BETWEEN BEAT SYNCHRONOUS SPECTRAL FRAMES
152 // IMPLEMENTATION (MOSTLY) FOLLOWS:
153 // DAVIES AND PLUMBLEY "A SPECTRAL DIFFERENCE APPROACH TO EXTRACTING DOWNBEATS IN MUSICAL AUDIO"
154 // EUSIPCO 2006, FLORENCE, ITALY
156 d_vec_t newspec(m_beatframesize / 2); // magnitude spectrum of current beat
157 d_vec_t oldspec(m_beatframesize / 2); // magnitude spectrum of previous beat
159 m_beatsd.clear();
161 if (audioLength == 0) return;
163 for (size_t i = 0; i + 1 < beats.size(); ++i) {
165 // Copy the extents of the current beat from downsampled array
166 // into beat frame buffer
168 size_t beatstart = (beats[i] * m_increment) / m_factor;
169 size_t beatend = (beats[i+1] * m_increment) / m_factor;
170 if (beatend >= audioLength) beatend = audioLength - 1;
171 if (beatend < beatstart) beatend = beatstart;
172 size_t beatlen = beatend - beatstart;
174 // Also apply a Hanning window to the beat frame buffer, sized
175 // to the beat extents rather than the frame size. (Because
176 // the size varies, it's easier to do this by hand than use
177 // our Window abstraction.)
179 // std::cerr << "beatlen = " << beatlen << std::endl;
181 // float rms = 0;
182 for (size_t j = 0; j < beatlen && j < m_beatframesize; ++j) {
183 double mul = 0.5 * (1.0 - cos(TWO_PI * (double(j) / double(beatlen))));
184 m_beatframe[j] = audio[beatstart + j] * mul;
185 // rms += m_beatframe[j] * m_beatframe[j];
187 // rms = sqrt(rms);
188 // std::cerr << "beat " << i << ": audio rms " << rms << std::endl;
190 for (size_t j = beatlen; j < m_beatframesize; ++j) {
191 m_beatframe[j] = 0.0;
194 // Now FFT beat frame
196 m_fft->process(false, m_beatframe, m_fftRealOut, m_fftImagOut);
198 // Calculate magnitudes
200 for (size_t j = 0; j < m_beatframesize/2; ++j) {
201 newspec[j] = sqrt(m_fftRealOut[j] * m_fftRealOut[j] +
202 m_fftImagOut[j] * m_fftImagOut[j]);
205 // Preserve peaks by applying adaptive threshold
207 MathUtilities::adaptiveThreshold(newspec);
209 // Calculate JS divergence between new and old spectral frames
211 if (i > 0) { // otherwise we have no previous frame
212 m_beatsd.push_back(measureSpecDiff(oldspec, newspec));
213 // std::cerr << "specdiff: " << m_beatsd[m_beatsd.size()-1] << std::endl;
216 // Copy newspec across to old
218 for (size_t j = 0; j < m_beatframesize/2; ++j) {
219 oldspec[j] = newspec[j];
223 // We now have all spectral difference measures in specdiff
225 int timesig = m_bpb;
226 if (timesig == 0) timesig = 4;
228 d_vec_t dbcand(timesig); // downbeat candidates
230 for (int beat = 0; beat < timesig; ++beat) {
231 dbcand[beat] = 0;
234 // look for beat transition which leads to greatest spectral change
235 for (int beat = 0; beat < timesig; ++beat) {
236 int count = 0;
237 for (int example = beat-1; example < (int)m_beatsd.size(); example += timesig) {
238 if (example < 0) continue;
239 dbcand[beat] += (m_beatsd[example]) / timesig;
240 ++count;
242 if (count > 0) dbcand[beat] /= count;
243 // std::cerr << "dbcand[" << beat << "] = " << dbcand[beat] << std::endl;
246 // first downbeat is beat at index of maximum value of dbcand
247 int dbind = MathUtilities::getMax(dbcand);
249 // remaining downbeats are at timesig intervals from the first
250 for (int i = dbind; i < (int)beats.size(); i += timesig) {
251 downbeats.push_back(i);
255 double
256 DownBeat::measureSpecDiff(d_vec_t oldspec, d_vec_t newspec)
258 // JENSEN-SHANNON DIVERGENCE BETWEEN SPECTRAL FRAMES
260 unsigned int SPECSIZE = 512; // ONLY LOOK AT FIRST 512 SAMPLES OF SPECTRUM.
261 if (SPECSIZE > oldspec.size()/4) {
262 SPECSIZE = oldspec.size()/4;
264 double SD = 0.;
265 double sd1 = 0.;
267 double sumnew = 0.;
268 double sumold = 0.;
270 for (unsigned int i = 0;i < SPECSIZE;i++)
272 newspec[i] +=EPS;
273 oldspec[i] +=EPS;
275 sumnew+=newspec[i];
276 sumold+=oldspec[i];
279 for (unsigned int i = 0;i < SPECSIZE;i++)
281 newspec[i] /= (sumnew);
282 oldspec[i] /= (sumold);
284 // IF ANY SPECTRAL VALUES ARE 0 (SHOULDN'T BE ANY!) SET THEM TO 1
285 if (newspec[i] == 0)
287 newspec[i] = 1.;
290 if (oldspec[i] == 0)
292 oldspec[i] = 1.;
295 // JENSEN-SHANNON CALCULATION
296 sd1 = 0.5*oldspec[i] + 0.5*newspec[i];
297 SD = SD + (-sd1*log(sd1)) + (0.5*(oldspec[i]*log(oldspec[i]))) + (0.5*(newspec[i]*log(newspec[i])));
300 return SD;
303 void
304 DownBeat::getBeatSD(vector<double> &beatsd) const
306 for (int i = 0; i < (int)m_beatsd.size(); ++i) beatsd.push_back(m_beatsd[i]);