Re-worked header files
[aom.git] / test / dct16x16_test.cc
blobb37d8e353fdb2480a01cba65d0115aae16850060
1 /*
2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved.
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
11 #include <math.h>
12 #include <stdlib.h>
13 #include <string.h>
15 #include "third_party/googletest/src/include/gtest/gtest.h"
16 #include "test/acm_random.h"
17 #include "test/clear_system_state.h"
18 #include "test/register_state_check.h"
19 #include "test/util.h"
21 #include "./vp9_rtcd.h"
22 #include "vp9/common/vp9_entropy.h"
23 #include "vp9/common/vp9_scan.h"
24 #include "vpx/vpx_codec.h"
25 #include "vpx/vpx_integer.h"
26 #include "vpx_ports/mem.h"
28 using libvpx_test::ACMRandom;
30 namespace {
32 #ifdef _MSC_VER
33 static int round(double x) {
34 if (x < 0)
35 return static_cast<int>(ceil(x - 0.5));
36 else
37 return static_cast<int>(floor(x + 0.5));
39 #endif
41 const int kNumCoeffs = 256;
42 const double PI = 3.1415926535898;
43 void reference2_16x16_idct_2d(double *input, double *output) {
44 double x;
45 for (int l = 0; l < 16; ++l) {
46 for (int k = 0; k < 16; ++k) {
47 double s = 0;
48 for (int i = 0; i < 16; ++i) {
49 for (int j = 0; j < 16; ++j) {
50 x = cos(PI * j * (l + 0.5) / 16.0) *
51 cos(PI * i * (k + 0.5) / 16.0) *
52 input[i * 16 + j] / 256;
53 if (i != 0)
54 x *= sqrt(2.0);
55 if (j != 0)
56 x *= sqrt(2.0);
57 s += x;
60 output[k*16+l] = s;
66 const double C1 = 0.995184726672197;
67 const double C2 = 0.98078528040323;
68 const double C3 = 0.956940335732209;
69 const double C4 = 0.923879532511287;
70 const double C5 = 0.881921264348355;
71 const double C6 = 0.831469612302545;
72 const double C7 = 0.773010453362737;
73 const double C8 = 0.707106781186548;
74 const double C9 = 0.634393284163646;
75 const double C10 = 0.555570233019602;
76 const double C11 = 0.471396736825998;
77 const double C12 = 0.38268343236509;
78 const double C13 = 0.290284677254462;
79 const double C14 = 0.195090322016128;
80 const double C15 = 0.098017140329561;
82 void butterfly_16x16_dct_1d(double input[16], double output[16]) {
83 double step[16];
84 double intermediate[16];
85 double temp1, temp2;
87 // step 1
88 step[ 0] = input[0] + input[15];
89 step[ 1] = input[1] + input[14];
90 step[ 2] = input[2] + input[13];
91 step[ 3] = input[3] + input[12];
92 step[ 4] = input[4] + input[11];
93 step[ 5] = input[5] + input[10];
94 step[ 6] = input[6] + input[ 9];
95 step[ 7] = input[7] + input[ 8];
96 step[ 8] = input[7] - input[ 8];
97 step[ 9] = input[6] - input[ 9];
98 step[10] = input[5] - input[10];
99 step[11] = input[4] - input[11];
100 step[12] = input[3] - input[12];
101 step[13] = input[2] - input[13];
102 step[14] = input[1] - input[14];
103 step[15] = input[0] - input[15];
105 // step 2
106 output[0] = step[0] + step[7];
107 output[1] = step[1] + step[6];
108 output[2] = step[2] + step[5];
109 output[3] = step[3] + step[4];
110 output[4] = step[3] - step[4];
111 output[5] = step[2] - step[5];
112 output[6] = step[1] - step[6];
113 output[7] = step[0] - step[7];
115 temp1 = step[ 8] * C7;
116 temp2 = step[15] * C9;
117 output[ 8] = temp1 + temp2;
119 temp1 = step[ 9] * C11;
120 temp2 = step[14] * C5;
121 output[ 9] = temp1 - temp2;
123 temp1 = step[10] * C3;
124 temp2 = step[13] * C13;
125 output[10] = temp1 + temp2;
127 temp1 = step[11] * C15;
128 temp2 = step[12] * C1;
129 output[11] = temp1 - temp2;
131 temp1 = step[11] * C1;
132 temp2 = step[12] * C15;
133 output[12] = temp2 + temp1;
135 temp1 = step[10] * C13;
136 temp2 = step[13] * C3;
137 output[13] = temp2 - temp1;
139 temp1 = step[ 9] * C5;
140 temp2 = step[14] * C11;
141 output[14] = temp2 + temp1;
143 temp1 = step[ 8] * C9;
144 temp2 = step[15] * C7;
145 output[15] = temp2 - temp1;
147 // step 3
148 step[ 0] = output[0] + output[3];
149 step[ 1] = output[1] + output[2];
150 step[ 2] = output[1] - output[2];
151 step[ 3] = output[0] - output[3];
153 temp1 = output[4] * C14;
154 temp2 = output[7] * C2;
155 step[ 4] = temp1 + temp2;
157 temp1 = output[5] * C10;
158 temp2 = output[6] * C6;
159 step[ 5] = temp1 + temp2;
161 temp1 = output[5] * C6;
162 temp2 = output[6] * C10;
163 step[ 6] = temp2 - temp1;
165 temp1 = output[4] * C2;
166 temp2 = output[7] * C14;
167 step[ 7] = temp2 - temp1;
169 step[ 8] = output[ 8] + output[11];
170 step[ 9] = output[ 9] + output[10];
171 step[10] = output[ 9] - output[10];
172 step[11] = output[ 8] - output[11];
174 step[12] = output[12] + output[15];
175 step[13] = output[13] + output[14];
176 step[14] = output[13] - output[14];
177 step[15] = output[12] - output[15];
179 // step 4
180 output[ 0] = (step[ 0] + step[ 1]);
181 output[ 8] = (step[ 0] - step[ 1]);
183 temp1 = step[2] * C12;
184 temp2 = step[3] * C4;
185 temp1 = temp1 + temp2;
186 output[ 4] = 2*(temp1 * C8);
188 temp1 = step[2] * C4;
189 temp2 = step[3] * C12;
190 temp1 = temp2 - temp1;
191 output[12] = 2 * (temp1 * C8);
193 output[ 2] = 2 * ((step[4] + step[ 5]) * C8);
194 output[14] = 2 * ((step[7] - step[ 6]) * C8);
196 temp1 = step[4] - step[5];
197 temp2 = step[6] + step[7];
198 output[ 6] = (temp1 + temp2);
199 output[10] = (temp1 - temp2);
201 intermediate[8] = step[8] + step[14];
202 intermediate[9] = step[9] + step[15];
204 temp1 = intermediate[8] * C12;
205 temp2 = intermediate[9] * C4;
206 temp1 = temp1 - temp2;
207 output[3] = 2 * (temp1 * C8);
209 temp1 = intermediate[8] * C4;
210 temp2 = intermediate[9] * C12;
211 temp1 = temp2 + temp1;
212 output[13] = 2 * (temp1 * C8);
214 output[ 9] = 2 * ((step[10] + step[11]) * C8);
216 intermediate[11] = step[10] - step[11];
217 intermediate[12] = step[12] + step[13];
218 intermediate[13] = step[12] - step[13];
219 intermediate[14] = step[ 8] - step[14];
220 intermediate[15] = step[ 9] - step[15];
222 output[15] = (intermediate[11] + intermediate[12]);
223 output[ 1] = -(intermediate[11] - intermediate[12]);
225 output[ 7] = 2 * (intermediate[13] * C8);
227 temp1 = intermediate[14] * C12;
228 temp2 = intermediate[15] * C4;
229 temp1 = temp1 - temp2;
230 output[11] = -2 * (temp1 * C8);
232 temp1 = intermediate[14] * C4;
233 temp2 = intermediate[15] * C12;
234 temp1 = temp2 + temp1;
235 output[ 5] = 2 * (temp1 * C8);
238 void reference_16x16_dct_2d(int16_t input[256], double output[256]) {
239 // First transform columns
240 for (int i = 0; i < 16; ++i) {
241 double temp_in[16], temp_out[16];
242 for (int j = 0; j < 16; ++j)
243 temp_in[j] = input[j * 16 + i];
244 butterfly_16x16_dct_1d(temp_in, temp_out);
245 for (int j = 0; j < 16; ++j)
246 output[j * 16 + i] = temp_out[j];
248 // Then transform rows
249 for (int i = 0; i < 16; ++i) {
250 double temp_in[16], temp_out[16];
251 for (int j = 0; j < 16; ++j)
252 temp_in[j] = output[j + i * 16];
253 butterfly_16x16_dct_1d(temp_in, temp_out);
254 // Scale by some magic number
255 for (int j = 0; j < 16; ++j)
256 output[j + i * 16] = temp_out[j]/2;
260 typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride);
261 typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride);
262 typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
263 int tx_type);
264 typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
265 int tx_type);
267 typedef std::tr1::tuple<FdctFunc, IdctFunc, int, vpx_bit_depth_t> Dct16x16Param;
268 typedef std::tr1::tuple<FhtFunc, IhtFunc, int, vpx_bit_depth_t> Ht16x16Param;
269 typedef std::tr1::tuple<IdctFunc, IdctFunc, int, vpx_bit_depth_t>
270 Idct16x16Param;
272 void fdct16x16_ref(const int16_t *in, tran_low_t *out, int stride,
273 int /*tx_type*/) {
274 vp9_fdct16x16_c(in, out, stride);
277 void idct16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
278 int /*tx_type*/) {
279 vp9_idct16x16_256_add_c(in, dest, stride);
282 void fht16x16_ref(const int16_t *in, tran_low_t *out, int stride,
283 int tx_type) {
284 vp9_fht16x16_c(in, out, stride, tx_type);
287 void iht16x16_ref(const tran_low_t *in, uint8_t *dest, int stride,
288 int tx_type) {
289 vp9_iht16x16_256_add_c(in, dest, stride, tx_type);
292 #if CONFIG_VP9_HIGHBITDEPTH
293 void idct16x16_10(const tran_low_t *in, uint8_t *out, int stride) {
294 vp9_highbd_idct16x16_256_add_c(in, out, stride, 10);
297 void idct16x16_12(const tran_low_t *in, uint8_t *out, int stride) {
298 vp9_highbd_idct16x16_256_add_c(in, out, stride, 12);
301 void idct16x16_10_ref(const tran_low_t *in, uint8_t *out, int stride,
302 int tx_type) {
303 idct16x16_10(in, out, stride);
306 void idct16x16_12_ref(const tran_low_t *in, uint8_t *out, int stride,
307 int tx_type) {
308 idct16x16_12(in, out, stride);
311 void iht16x16_10(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
312 vp9_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 10);
315 void iht16x16_12(const tran_low_t *in, uint8_t *out, int stride, int tx_type) {
316 vp9_highbd_iht16x16_256_add_c(in, out, stride, tx_type, 12);
319 void idct16x16_10_add_10_c(const tran_low_t *in, uint8_t *out, int stride) {
320 vp9_highbd_idct16x16_10_add_c(in, out, stride, 10);
323 void idct16x16_10_add_12_c(const tran_low_t *in, uint8_t *out, int stride) {
324 vp9_highbd_idct16x16_10_add_c(in, out, stride, 12);
327 #if HAVE_SSE2
328 void idct16x16_256_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
329 vp9_highbd_idct16x16_256_add_sse2(in, out, stride, 10);
332 void idct16x16_256_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
333 vp9_highbd_idct16x16_256_add_sse2(in, out, stride, 12);
336 void idct16x16_10_add_10_sse2(const tran_low_t *in, uint8_t *out, int stride) {
337 vp9_highbd_idct16x16_10_add_sse2(in, out, stride, 10);
340 void idct16x16_10_add_12_sse2(const tran_low_t *in, uint8_t *out, int stride) {
341 vp9_highbd_idct16x16_10_add_sse2(in, out, stride, 12);
343 #endif // HAVE_SSE2
344 #endif // CONFIG_VP9_HIGHBITDEPTH
346 class Trans16x16TestBase {
347 public:
348 virtual ~Trans16x16TestBase() {}
350 protected:
351 virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0;
353 virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0;
355 void RunAccuracyCheck() {
356 ACMRandom rnd(ACMRandom::DeterministicSeed());
357 uint32_t max_error = 0;
358 int64_t total_error = 0;
359 const int count_test_block = 10000;
360 for (int i = 0; i < count_test_block; ++i) {
361 DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]);
362 DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]);
363 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
364 DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
365 #if CONFIG_VP9_HIGHBITDEPTH
366 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
367 DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
368 #endif
370 // Initialize a test block with input range [-mask_, mask_].
371 for (int j = 0; j < kNumCoeffs; ++j) {
372 if (bit_depth_ == VPX_BITS_8) {
373 src[j] = rnd.Rand8();
374 dst[j] = rnd.Rand8();
375 test_input_block[j] = src[j] - dst[j];
376 #if CONFIG_VP9_HIGHBITDEPTH
377 } else {
378 src16[j] = rnd.Rand16() & mask_;
379 dst16[j] = rnd.Rand16() & mask_;
380 test_input_block[j] = src16[j] - dst16[j];
381 #endif
385 ASM_REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block,
386 test_temp_block, pitch_));
387 if (bit_depth_ == VPX_BITS_8) {
388 ASM_REGISTER_STATE_CHECK(
389 RunInvTxfm(test_temp_block, dst, pitch_));
390 #if CONFIG_VP9_HIGHBITDEPTH
391 } else {
392 ASM_REGISTER_STATE_CHECK(
393 RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
394 #endif
397 for (int j = 0; j < kNumCoeffs; ++j) {
398 #if CONFIG_VP9_HIGHBITDEPTH
399 const uint32_t diff =
400 bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
401 #else
402 const uint32_t diff = dst[j] - src[j];
403 #endif
404 const uint32_t error = diff * diff;
405 if (max_error < error)
406 max_error = error;
407 total_error += error;
411 EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error)
412 << "Error: 16x16 FHT/IHT has an individual round trip error > 1";
414 EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error)
415 << "Error: 16x16 FHT/IHT has average round trip error > 1 per block";
418 void RunCoeffCheck() {
419 ACMRandom rnd(ACMRandom::DeterministicSeed());
420 const int count_test_block = 1000;
421 DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]);
422 DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
423 DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
425 for (int i = 0; i < count_test_block; ++i) {
426 // Initialize a test block with input range [-mask_, mask_].
427 for (int j = 0; j < kNumCoeffs; ++j)
428 input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
430 fwd_txfm_ref(input_block, output_ref_block, pitch_, tx_type_);
431 ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, output_block, pitch_));
433 // The minimum quant value is 4.
434 for (int j = 0; j < kNumCoeffs; ++j)
435 EXPECT_EQ(output_block[j], output_ref_block[j]);
439 void RunMemCheck() {
440 ACMRandom rnd(ACMRandom::DeterministicSeed());
441 const int count_test_block = 1000;
442 DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
443 DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
444 DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
446 for (int i = 0; i < count_test_block; ++i) {
447 // Initialize a test block with input range [-mask_, mask_].
448 for (int j = 0; j < kNumCoeffs; ++j) {
449 input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
451 if (i == 0) {
452 for (int j = 0; j < kNumCoeffs; ++j)
453 input_extreme_block[j] = mask_;
454 } else if (i == 1) {
455 for (int j = 0; j < kNumCoeffs; ++j)
456 input_extreme_block[j] = -mask_;
459 fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
460 ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block,
461 output_block, pitch_));
463 // The minimum quant value is 4.
464 for (int j = 0; j < kNumCoeffs; ++j) {
465 EXPECT_EQ(output_block[j], output_ref_block[j]);
466 EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j]))
467 << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE";
472 void RunQuantCheck(int dc_thred, int ac_thred) {
473 ACMRandom rnd(ACMRandom::DeterministicSeed());
474 const int count_test_block = 100000;
475 DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
476 DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
478 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
479 DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
480 #if CONFIG_VP9_HIGHBITDEPTH
481 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
482 DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
483 #endif
485 for (int i = 0; i < count_test_block; ++i) {
486 // Initialize a test block with input range [-mask_, mask_].
487 for (int j = 0; j < kNumCoeffs; ++j) {
488 input_extreme_block[j] = rnd.Rand8() % 2 ? mask_ : -mask_;
490 if (i == 0)
491 for (int j = 0; j < kNumCoeffs; ++j)
492 input_extreme_block[j] = mask_;
493 if (i == 1)
494 for (int j = 0; j < kNumCoeffs; ++j)
495 input_extreme_block[j] = -mask_;
497 fwd_txfm_ref(input_extreme_block, output_ref_block, pitch_, tx_type_);
499 // clear reconstructed pixel buffers
500 memset(dst, 0, kNumCoeffs * sizeof(uint8_t));
501 memset(ref, 0, kNumCoeffs * sizeof(uint8_t));
502 #if CONFIG_VP9_HIGHBITDEPTH
503 memset(dst16, 0, kNumCoeffs * sizeof(uint16_t));
504 memset(ref16, 0, kNumCoeffs * sizeof(uint16_t));
505 #endif
507 // quantization with maximum allowed step sizes
508 output_ref_block[0] = (output_ref_block[0] / dc_thred) * dc_thred;
509 for (int j = 1; j < kNumCoeffs; ++j)
510 output_ref_block[j] = (output_ref_block[j] / ac_thred) * ac_thred;
511 if (bit_depth_ == VPX_BITS_8) {
512 inv_txfm_ref(output_ref_block, ref, pitch_, tx_type_);
513 ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block, dst, pitch_));
514 #if CONFIG_VP9_HIGHBITDEPTH
515 } else {
516 inv_txfm_ref(output_ref_block, CONVERT_TO_BYTEPTR(ref16), pitch_,
517 tx_type_);
518 ASM_REGISTER_STATE_CHECK(RunInvTxfm(output_ref_block,
519 CONVERT_TO_BYTEPTR(dst16), pitch_));
520 #endif
522 if (bit_depth_ == VPX_BITS_8) {
523 for (int j = 0; j < kNumCoeffs; ++j)
524 EXPECT_EQ(ref[j], dst[j]);
525 #if CONFIG_VP9_HIGHBITDEPTH
526 } else {
527 for (int j = 0; j < kNumCoeffs; ++j)
528 EXPECT_EQ(ref16[j], dst16[j]);
529 #endif
534 void RunInvAccuracyCheck() {
535 ACMRandom rnd(ACMRandom::DeterministicSeed());
536 const int count_test_block = 1000;
537 DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
538 DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
539 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
540 DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
541 #if CONFIG_VP9_HIGHBITDEPTH
542 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
543 DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
544 #endif // CONFIG_VP9_HIGHBITDEPTH
546 for (int i = 0; i < count_test_block; ++i) {
547 double out_r[kNumCoeffs];
549 // Initialize a test block with input range [-255, 255].
550 for (int j = 0; j < kNumCoeffs; ++j) {
551 if (bit_depth_ == VPX_BITS_8) {
552 src[j] = rnd.Rand8();
553 dst[j] = rnd.Rand8();
554 in[j] = src[j] - dst[j];
555 #if CONFIG_VP9_HIGHBITDEPTH
556 } else {
557 src16[j] = rnd.Rand16() & mask_;
558 dst16[j] = rnd.Rand16() & mask_;
559 in[j] = src16[j] - dst16[j];
560 #endif // CONFIG_VP9_HIGHBITDEPTH
564 reference_16x16_dct_2d(in, out_r);
565 for (int j = 0; j < kNumCoeffs; ++j)
566 coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
568 if (bit_depth_ == VPX_BITS_8) {
569 ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, 16));
570 #if CONFIG_VP9_HIGHBITDEPTH
571 } else {
572 ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
573 16));
574 #endif // CONFIG_VP9_HIGHBITDEPTH
577 for (int j = 0; j < kNumCoeffs; ++j) {
578 #if CONFIG_VP9_HIGHBITDEPTH
579 const uint32_t diff =
580 bit_depth_ == VPX_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
581 #else
582 const uint32_t diff = dst[j] - src[j];
583 #endif // CONFIG_VP9_HIGHBITDEPTH
584 const uint32_t error = diff * diff;
585 EXPECT_GE(1u, error)
586 << "Error: 16x16 IDCT has error " << error
587 << " at index " << j;
592 void CompareInvReference(IdctFunc ref_txfm, int thresh) {
593 ACMRandom rnd(ACMRandom::DeterministicSeed());
594 const int count_test_block = 10000;
595 const int eob = 10;
596 const int16_t *scan = vp9_default_scan_orders[TX_16X16].scan;
597 DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
598 DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
599 DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
600 #if CONFIG_VP9_HIGHBITDEPTH
601 DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
602 DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
603 #endif // CONFIG_VP9_HIGHBITDEPTH
605 for (int i = 0; i < count_test_block; ++i) {
606 for (int j = 0; j < kNumCoeffs; ++j) {
607 if (j < eob) {
608 // Random values less than the threshold, either positive or negative
609 coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2));
610 } else {
611 coeff[scan[j]] = 0;
613 if (bit_depth_ == VPX_BITS_8) {
614 dst[j] = 0;
615 ref[j] = 0;
616 #if CONFIG_VP9_HIGHBITDEPTH
617 } else {
618 dst16[j] = 0;
619 ref16[j] = 0;
620 #endif // CONFIG_VP9_HIGHBITDEPTH
623 if (bit_depth_ == VPX_BITS_8) {
624 ref_txfm(coeff, ref, pitch_);
625 ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
626 } else {
627 #if CONFIG_VP9_HIGHBITDEPTH
628 ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_);
629 ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16),
630 pitch_));
631 #endif // CONFIG_VP9_HIGHBITDEPTH
634 for (int j = 0; j < kNumCoeffs; ++j) {
635 #if CONFIG_VP9_HIGHBITDEPTH
636 const uint32_t diff =
637 bit_depth_ == VPX_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
638 #else
639 const uint32_t diff = dst[j] - ref[j];
640 #endif // CONFIG_VP9_HIGHBITDEPTH
641 const uint32_t error = diff * diff;
642 EXPECT_EQ(0u, error)
643 << "Error: 16x16 IDCT Comparison has error " << error
644 << " at index " << j;
649 int pitch_;
650 int tx_type_;
651 vpx_bit_depth_t bit_depth_;
652 int mask_;
653 FhtFunc fwd_txfm_ref;
654 IhtFunc inv_txfm_ref;
657 class Trans16x16DCT
658 : public Trans16x16TestBase,
659 public ::testing::TestWithParam<Dct16x16Param> {
660 public:
661 virtual ~Trans16x16DCT() {}
663 virtual void SetUp() {
664 fwd_txfm_ = GET_PARAM(0);
665 inv_txfm_ = GET_PARAM(1);
666 tx_type_ = GET_PARAM(2);
667 bit_depth_ = GET_PARAM(3);
668 pitch_ = 16;
669 fwd_txfm_ref = fdct16x16_ref;
670 inv_txfm_ref = idct16x16_ref;
671 mask_ = (1 << bit_depth_) - 1;
672 #if CONFIG_VP9_HIGHBITDEPTH
673 switch (bit_depth_) {
674 case VPX_BITS_10:
675 inv_txfm_ref = idct16x16_10_ref;
676 break;
677 case VPX_BITS_12:
678 inv_txfm_ref = idct16x16_12_ref;
679 break;
680 default:
681 inv_txfm_ref = idct16x16_ref;
682 break;
684 #else
685 inv_txfm_ref = idct16x16_ref;
686 #endif
688 virtual void TearDown() { libvpx_test::ClearSystemState(); }
690 protected:
691 void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
692 fwd_txfm_(in, out, stride);
694 void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
695 inv_txfm_(out, dst, stride);
698 FdctFunc fwd_txfm_;
699 IdctFunc inv_txfm_;
702 TEST_P(Trans16x16DCT, AccuracyCheck) {
703 RunAccuracyCheck();
706 TEST_P(Trans16x16DCT, CoeffCheck) {
707 RunCoeffCheck();
710 TEST_P(Trans16x16DCT, MemCheck) {
711 RunMemCheck();
714 TEST_P(Trans16x16DCT, QuantCheck) {
715 // Use maximally allowed quantization step sizes for DC and AC
716 // coefficients respectively.
717 RunQuantCheck(1336, 1828);
720 TEST_P(Trans16x16DCT, InvAccuracyCheck) {
721 RunInvAccuracyCheck();
724 class Trans16x16HT
725 : public Trans16x16TestBase,
726 public ::testing::TestWithParam<Ht16x16Param> {
727 public:
728 virtual ~Trans16x16HT() {}
730 virtual void SetUp() {
731 fwd_txfm_ = GET_PARAM(0);
732 inv_txfm_ = GET_PARAM(1);
733 tx_type_ = GET_PARAM(2);
734 bit_depth_ = GET_PARAM(3);
735 pitch_ = 16;
736 fwd_txfm_ref = fht16x16_ref;
737 inv_txfm_ref = iht16x16_ref;
738 mask_ = (1 << bit_depth_) - 1;
739 #if CONFIG_VP9_HIGHBITDEPTH
740 switch (bit_depth_) {
741 case VPX_BITS_10:
742 inv_txfm_ref = iht16x16_10;
743 break;
744 case VPX_BITS_12:
745 inv_txfm_ref = iht16x16_12;
746 break;
747 default:
748 inv_txfm_ref = iht16x16_ref;
749 break;
751 #else
752 inv_txfm_ref = iht16x16_ref;
753 #endif
755 virtual void TearDown() { libvpx_test::ClearSystemState(); }
757 protected:
758 void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
759 fwd_txfm_(in, out, stride, tx_type_);
761 void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
762 inv_txfm_(out, dst, stride, tx_type_);
765 FhtFunc fwd_txfm_;
766 IhtFunc inv_txfm_;
769 TEST_P(Trans16x16HT, AccuracyCheck) {
770 RunAccuracyCheck();
773 TEST_P(Trans16x16HT, CoeffCheck) {
774 RunCoeffCheck();
777 TEST_P(Trans16x16HT, MemCheck) {
778 RunMemCheck();
781 TEST_P(Trans16x16HT, QuantCheck) {
782 // The encoder skips any non-DC intra prediction modes,
783 // when the quantization step size goes beyond 988.
784 RunQuantCheck(429, 729);
787 class InvTrans16x16DCT
788 : public Trans16x16TestBase,
789 public ::testing::TestWithParam<Idct16x16Param> {
790 public:
791 virtual ~InvTrans16x16DCT() {}
793 virtual void SetUp() {
794 ref_txfm_ = GET_PARAM(0);
795 inv_txfm_ = GET_PARAM(1);
796 thresh_ = GET_PARAM(2);
797 bit_depth_ = GET_PARAM(3);
798 pitch_ = 16;
799 mask_ = (1 << bit_depth_) - 1;
801 virtual void TearDown() { libvpx_test::ClearSystemState(); }
803 protected:
804 void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {}
805 void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
806 inv_txfm_(out, dst, stride);
809 IdctFunc ref_txfm_;
810 IdctFunc inv_txfm_;
811 int thresh_;
814 TEST_P(InvTrans16x16DCT, CompareReference) {
815 CompareInvReference(ref_txfm_, thresh_);
818 using std::tr1::make_tuple;
820 #if CONFIG_VP9_HIGHBITDEPTH
821 INSTANTIATE_TEST_CASE_P(
822 C, Trans16x16DCT,
823 ::testing::Values(
824 make_tuple(&vp9_highbd_fdct16x16_c, &idct16x16_10, 0, VPX_BITS_10),
825 make_tuple(&vp9_highbd_fdct16x16_c, &idct16x16_12, 0, VPX_BITS_12),
826 make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, 0, VPX_BITS_8)));
827 #else
828 INSTANTIATE_TEST_CASE_P(
829 C, Trans16x16DCT,
830 ::testing::Values(
831 make_tuple(&vp9_fdct16x16_c, &vp9_idct16x16_256_add_c, 0, VPX_BITS_8)));
832 #endif // CONFIG_VP9_HIGHBITDEPTH
834 #if CONFIG_VP9_HIGHBITDEPTH
835 INSTANTIATE_TEST_CASE_P(
836 C, Trans16x16HT,
837 ::testing::Values(
838 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 0, VPX_BITS_10),
839 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 1, VPX_BITS_10),
840 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 2, VPX_BITS_10),
841 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_10, 3, VPX_BITS_10),
842 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 0, VPX_BITS_12),
843 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 1, VPX_BITS_12),
844 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 2, VPX_BITS_12),
845 make_tuple(&vp9_highbd_fht16x16_c, &iht16x16_12, 3, VPX_BITS_12),
846 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8),
847 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
848 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
849 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8)));
850 #else
851 INSTANTIATE_TEST_CASE_P(
852 C, Trans16x16HT,
853 ::testing::Values(
854 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8),
855 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
856 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
857 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_c, 3, VPX_BITS_8)));
858 #endif // CONFIG_VP9_HIGHBITDEPTH
860 #if HAVE_NEON_ASM && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
861 INSTANTIATE_TEST_CASE_P(
862 NEON, Trans16x16DCT,
863 ::testing::Values(
864 make_tuple(&vp9_fdct16x16_c,
865 &vp9_idct16x16_256_add_neon, 0, VPX_BITS_8)));
866 #endif
868 #if HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
869 INSTANTIATE_TEST_CASE_P(
870 SSE2, Trans16x16DCT,
871 ::testing::Values(
872 make_tuple(&vp9_fdct16x16_sse2,
873 &vp9_idct16x16_256_add_sse2, 0, VPX_BITS_8)));
874 INSTANTIATE_TEST_CASE_P(
875 SSE2, Trans16x16HT,
876 ::testing::Values(
877 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 0,
878 VPX_BITS_8),
879 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 1,
880 VPX_BITS_8),
881 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 2,
882 VPX_BITS_8),
883 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_sse2, 3,
884 VPX_BITS_8)));
885 #endif // HAVE_SSE2 && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
887 #if HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
888 INSTANTIATE_TEST_CASE_P(
889 SSE2, Trans16x16DCT,
890 ::testing::Values(
891 make_tuple(&vp9_highbd_fdct16x16_sse2,
892 &idct16x16_10, 0, VPX_BITS_10),
893 make_tuple(&vp9_highbd_fdct16x16_c,
894 &idct16x16_256_add_10_sse2, 0, VPX_BITS_10),
895 make_tuple(&vp9_highbd_fdct16x16_sse2,
896 &idct16x16_12, 0, VPX_BITS_12),
897 make_tuple(&vp9_highbd_fdct16x16_c,
898 &idct16x16_256_add_12_sse2, 0, VPX_BITS_12),
899 make_tuple(&vp9_fdct16x16_sse2,
900 &vp9_idct16x16_256_add_c, 0, VPX_BITS_8)));
901 INSTANTIATE_TEST_CASE_P(
902 SSE2, Trans16x16HT,
903 ::testing::Values(
904 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 0, VPX_BITS_10),
905 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 1, VPX_BITS_10),
906 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 2, VPX_BITS_10),
907 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_10, 3, VPX_BITS_10),
908 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 0, VPX_BITS_12),
909 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 1, VPX_BITS_12),
910 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 2, VPX_BITS_12),
911 make_tuple(&vp9_highbd_fht16x16_sse2, &iht16x16_12, 3, VPX_BITS_12),
912 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 0, VPX_BITS_8),
913 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 1, VPX_BITS_8),
914 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 2, VPX_BITS_8),
915 make_tuple(&vp9_fht16x16_sse2, &vp9_iht16x16_256_add_c, 3,
916 VPX_BITS_8)));
917 // Optimizations take effect at a threshold of 3155, so we use a value close to
918 // that to test both branches.
919 INSTANTIATE_TEST_CASE_P(
920 SSE2, InvTrans16x16DCT,
921 ::testing::Values(
922 make_tuple(&idct16x16_10_add_10_c,
923 &idct16x16_10_add_10_sse2, 3167, VPX_BITS_10),
924 make_tuple(&idct16x16_10,
925 &idct16x16_256_add_10_sse2, 3167, VPX_BITS_10),
926 make_tuple(&idct16x16_10_add_12_c,
927 &idct16x16_10_add_12_sse2, 3167, VPX_BITS_12),
928 make_tuple(&idct16x16_12,
929 &idct16x16_256_add_12_sse2, 3167, VPX_BITS_12)));
930 #endif // HAVE_SSE2 && CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
932 #if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
933 INSTANTIATE_TEST_CASE_P(
934 MSA, Trans16x16DCT,
935 ::testing::Values(
936 make_tuple(&vp9_fdct16x16_c,
937 &vp9_idct16x16_256_add_msa, 0, VPX_BITS_8)));
938 INSTANTIATE_TEST_CASE_P(
939 MSA, Trans16x16HT,
940 ::testing::Values(
941 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_msa, 0, VPX_BITS_8),
942 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_msa, 1, VPX_BITS_8),
943 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_msa, 2, VPX_BITS_8),
944 make_tuple(&vp9_fht16x16_c, &vp9_iht16x16_256_add_msa, 3, VPX_BITS_8)));
945 #endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
946 } // namespace