Merge "vp9_spatial_svc_encoder: Enable aq-mode for real-time mode."
[aom.git] / vp10 / common / thread_common.c
blob69c6471ffec43e8eeb4b47f9eeb52d81417b3092
1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
11 #include "./vpx_config.h"
12 #include "vpx_mem/vpx_mem.h"
13 #include "vp10/common/entropymode.h"
14 #include "vp10/common/thread_common.h"
15 #include "vp10/common/reconinter.h"
16 #include "vp10/common/loopfilter.h"
18 #if CONFIG_MULTITHREAD
19 static INLINE void mutex_lock(pthread_mutex_t *const mutex) {
20 const int kMaxTryLocks = 4000;
21 int locked = 0;
22 int i;
24 for (i = 0; i < kMaxTryLocks; ++i) {
25 if (!pthread_mutex_trylock(mutex)) {
26 locked = 1;
27 break;
31 if (!locked)
32 pthread_mutex_lock(mutex);
34 #endif // CONFIG_MULTITHREAD
36 static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) {
37 #if CONFIG_MULTITHREAD
38 const int nsync = lf_sync->sync_range;
40 if (r && !(c & (nsync - 1))) {
41 pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1];
42 mutex_lock(mutex);
44 while (c > lf_sync->cur_sb_col[r - 1] - nsync) {
45 pthread_cond_wait(&lf_sync->cond_[r - 1], mutex);
47 pthread_mutex_unlock(mutex);
49 #else
50 (void)lf_sync;
51 (void)r;
52 (void)c;
53 #endif // CONFIG_MULTITHREAD
56 static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c,
57 const int sb_cols) {
58 #if CONFIG_MULTITHREAD
59 const int nsync = lf_sync->sync_range;
60 int cur;
61 // Only signal when there are enough filtered SB for next row to run.
62 int sig = 1;
64 if (c < sb_cols - 1) {
65 cur = c;
66 if (c % nsync)
67 sig = 0;
68 } else {
69 cur = sb_cols + nsync;
72 if (sig) {
73 mutex_lock(&lf_sync->mutex_[r]);
75 lf_sync->cur_sb_col[r] = cur;
77 pthread_cond_signal(&lf_sync->cond_[r]);
78 pthread_mutex_unlock(&lf_sync->mutex_[r]);
80 #else
81 (void)lf_sync;
82 (void)r;
83 (void)c;
84 (void)sb_cols;
85 #endif // CONFIG_MULTITHREAD
88 // Implement row loopfiltering for each thread.
89 static INLINE
90 void thread_loop_filter_rows(const YV12_BUFFER_CONFIG *const frame_buffer,
91 VP10_COMMON *const cm,
92 struct macroblockd_plane planes[MAX_MB_PLANE],
93 int start, int stop, int y_only,
94 VP9LfSync *const lf_sync) {
95 const int num_planes = y_only ? 1 : MAX_MB_PLANE;
96 const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2;
97 int mi_row, mi_col;
98 enum lf_path path;
99 if (y_only)
100 path = LF_PATH_444;
101 else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1)
102 path = LF_PATH_420;
103 else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0)
104 path = LF_PATH_444;
105 else
106 path = LF_PATH_SLOW;
108 for (mi_row = start; mi_row < stop;
109 mi_row += lf_sync->num_workers * MI_BLOCK_SIZE) {
110 MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
112 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
113 const int r = mi_row >> MI_BLOCK_SIZE_LOG2;
114 const int c = mi_col >> MI_BLOCK_SIZE_LOG2;
115 LOOP_FILTER_MASK lfm;
116 int plane;
118 sync_read(lf_sync, r, c);
120 vp10_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
122 // TODO(JBB): Make setup_mask work for non 420.
123 vp10_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
124 &lfm);
126 vp10_filter_block_plane_ss00(cm, &planes[0], mi_row, &lfm);
127 for (plane = 1; plane < num_planes; ++plane) {
128 switch (path) {
129 case LF_PATH_420:
130 vp10_filter_block_plane_ss11(cm, &planes[plane], mi_row, &lfm);
131 break;
132 case LF_PATH_444:
133 vp10_filter_block_plane_ss00(cm, &planes[plane], mi_row, &lfm);
134 break;
135 case LF_PATH_SLOW:
136 vp10_filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
137 mi_row, mi_col);
138 break;
142 sync_write(lf_sync, r, c, sb_cols);
147 // Row-based multi-threaded loopfilter hook
148 static int loop_filter_row_worker(VP9LfSync *const lf_sync,
149 LFWorkerData *const lf_data) {
150 thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
151 lf_data->start, lf_data->stop, lf_data->y_only,
152 lf_sync);
153 return 1;
156 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame,
157 VP10_COMMON *cm,
158 struct macroblockd_plane planes[MAX_MB_PLANE],
159 int start, int stop, int y_only,
160 VPxWorker *workers, int nworkers,
161 VP9LfSync *lf_sync) {
162 const VPxWorkerInterface *const winterface = vpx_get_worker_interface();
163 // Number of superblock rows and cols
164 const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2;
165 // Decoder may allocate more threads than number of tiles based on user's
166 // input.
167 const int tile_cols = 1 << cm->log2_tile_cols;
168 const int num_workers = MIN(nworkers, tile_cols);
169 int i;
171 if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
172 num_workers > lf_sync->num_workers) {
173 vp10_loop_filter_dealloc(lf_sync);
174 vp10_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
177 // Initialize cur_sb_col to -1 for all SB rows.
178 memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows);
180 // Set up loopfilter thread data.
181 // The decoder is capping num_workers because it has been observed that using
182 // more threads on the loopfilter than there are cores will hurt performance
183 // on Android. This is because the system will only schedule the tile decode
184 // workers on cores equal to the number of tile columns. Then if the decoder
185 // tries to use more threads for the loopfilter, it will hurt performance
186 // because of contention. If the multithreading code changes in the future
187 // then the number of workers used by the loopfilter should be revisited.
188 for (i = 0; i < num_workers; ++i) {
189 VPxWorker *const worker = &workers[i];
190 LFWorkerData *const lf_data = &lf_sync->lfdata[i];
192 worker->hook = (VPxWorkerHook)loop_filter_row_worker;
193 worker->data1 = lf_sync;
194 worker->data2 = lf_data;
196 // Loopfilter data
197 vp10_loop_filter_data_reset(lf_data, frame, cm, planes);
198 lf_data->start = start + i * MI_BLOCK_SIZE;
199 lf_data->stop = stop;
200 lf_data->y_only = y_only;
202 // Start loopfiltering
203 if (i == num_workers - 1) {
204 winterface->execute(worker);
205 } else {
206 winterface->launch(worker);
210 // Wait till all rows are finished
211 for (i = 0; i < num_workers; ++i) {
212 winterface->sync(&workers[i]);
216 void vp10_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
217 VP10_COMMON *cm,
218 struct macroblockd_plane planes[MAX_MB_PLANE],
219 int frame_filter_level,
220 int y_only, int partial_frame,
221 VPxWorker *workers, int num_workers,
222 VP9LfSync *lf_sync) {
223 int start_mi_row, end_mi_row, mi_rows_to_filter;
225 if (!frame_filter_level) return;
227 start_mi_row = 0;
228 mi_rows_to_filter = cm->mi_rows;
229 if (partial_frame && cm->mi_rows > 8) {
230 start_mi_row = cm->mi_rows >> 1;
231 start_mi_row &= 0xfffffff8;
232 mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
234 end_mi_row = start_mi_row + mi_rows_to_filter;
235 vp10_loop_filter_frame_init(cm, frame_filter_level);
237 loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row,
238 y_only, workers, num_workers, lf_sync);
241 // Set up nsync by width.
242 static INLINE int get_sync_range(int width) {
243 // nsync numbers are picked by testing. For example, for 4k
244 // video, using 4 gives best performance.
245 if (width < 640)
246 return 1;
247 else if (width <= 1280)
248 return 2;
249 else if (width <= 4096)
250 return 4;
251 else
252 return 8;
255 // Allocate memory for lf row synchronization
256 void vp10_loop_filter_alloc(VP9LfSync *lf_sync, VP10_COMMON *cm, int rows,
257 int width, int num_workers) {
258 lf_sync->rows = rows;
259 #if CONFIG_MULTITHREAD
261 int i;
263 CHECK_MEM_ERROR(cm, lf_sync->mutex_,
264 vpx_malloc(sizeof(*lf_sync->mutex_) * rows));
265 if (lf_sync->mutex_) {
266 for (i = 0; i < rows; ++i) {
267 pthread_mutex_init(&lf_sync->mutex_[i], NULL);
271 CHECK_MEM_ERROR(cm, lf_sync->cond_,
272 vpx_malloc(sizeof(*lf_sync->cond_) * rows));
273 if (lf_sync->cond_) {
274 for (i = 0; i < rows; ++i) {
275 pthread_cond_init(&lf_sync->cond_[i], NULL);
279 #endif // CONFIG_MULTITHREAD
281 CHECK_MEM_ERROR(cm, lf_sync->lfdata,
282 vpx_malloc(num_workers * sizeof(*lf_sync->lfdata)));
283 lf_sync->num_workers = num_workers;
285 CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col,
286 vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows));
288 // Set up nsync.
289 lf_sync->sync_range = get_sync_range(width);
292 // Deallocate lf synchronization related mutex and data
293 void vp10_loop_filter_dealloc(VP9LfSync *lf_sync) {
294 if (lf_sync != NULL) {
295 #if CONFIG_MULTITHREAD
296 int i;
298 if (lf_sync->mutex_ != NULL) {
299 for (i = 0; i < lf_sync->rows; ++i) {
300 pthread_mutex_destroy(&lf_sync->mutex_[i]);
302 vpx_free(lf_sync->mutex_);
304 if (lf_sync->cond_ != NULL) {
305 for (i = 0; i < lf_sync->rows; ++i) {
306 pthread_cond_destroy(&lf_sync->cond_[i]);
308 vpx_free(lf_sync->cond_);
310 #endif // CONFIG_MULTITHREAD
311 vpx_free(lf_sync->lfdata);
312 vpx_free(lf_sync->cur_sb_col);
313 // clear the structure as the source of this call may be a resize in which
314 // case this call will be followed by an _alloc() which may fail.
315 vp10_zero(*lf_sync);
319 // Accumulate frame counts.
320 void vp10_accumulate_frame_counts(VP10_COMMON *cm, FRAME_COUNTS *counts,
321 int is_dec) {
322 int i, j, k, l, m;
324 for (i = 0; i < BLOCK_SIZE_GROUPS; i++)
325 for (j = 0; j < INTRA_MODES; j++)
326 cm->counts.y_mode[i][j] += counts->y_mode[i][j];
328 for (i = 0; i < INTRA_MODES; i++)
329 for (j = 0; j < INTRA_MODES; j++)
330 cm->counts.uv_mode[i][j] += counts->uv_mode[i][j];
332 for (i = 0; i < PARTITION_CONTEXTS; i++)
333 for (j = 0; j < PARTITION_TYPES; j++)
334 cm->counts.partition[i][j] += counts->partition[i][j];
336 if (is_dec) {
337 int n;
338 for (i = 0; i < TX_SIZES; i++)
339 for (j = 0; j < PLANE_TYPES; j++)
340 for (k = 0; k < REF_TYPES; k++)
341 for (l = 0; l < COEF_BANDS; l++)
342 for (m = 0; m < COEFF_CONTEXTS; m++) {
343 cm->counts.eob_branch[i][j][k][l][m] +=
344 counts->eob_branch[i][j][k][l][m];
345 for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
346 cm->counts.coef[i][j][k][l][m][n] +=
347 counts->coef[i][j][k][l][m][n];
349 } else {
350 for (i = 0; i < TX_SIZES; i++)
351 for (j = 0; j < PLANE_TYPES; j++)
352 for (k = 0; k < REF_TYPES; k++)
353 for (l = 0; l < COEF_BANDS; l++)
354 for (m = 0; m < COEFF_CONTEXTS; m++)
355 cm->counts.eob_branch[i][j][k][l][m] +=
356 counts->eob_branch[i][j][k][l][m];
357 // In the encoder, cm->counts.coef is only updated at frame
358 // level, so not need to accumulate it here.
359 // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++)
360 // cm->counts.coef[i][j][k][l][m][n] +=
361 // counts->coef[i][j][k][l][m][n];
364 for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++)
365 for (j = 0; j < SWITCHABLE_FILTERS; j++)
366 cm->counts.switchable_interp[i][j] += counts->switchable_interp[i][j];
368 for (i = 0; i < INTER_MODE_CONTEXTS; i++)
369 for (j = 0; j < INTER_MODES; j++)
370 cm->counts.inter_mode[i][j] += counts->inter_mode[i][j];
372 for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
373 for (j = 0; j < 2; j++)
374 cm->counts.intra_inter[i][j] += counts->intra_inter[i][j];
376 for (i = 0; i < COMP_INTER_CONTEXTS; i++)
377 for (j = 0; j < 2; j++)
378 cm->counts.comp_inter[i][j] += counts->comp_inter[i][j];
380 for (i = 0; i < REF_CONTEXTS; i++)
381 for (j = 0; j < 2; j++)
382 for (k = 0; k < 2; k++)
383 cm->counts.single_ref[i][j][k] += counts->single_ref[i][j][k];
385 for (i = 0; i < REF_CONTEXTS; i++)
386 for (j = 0; j < 2; j++)
387 cm->counts.comp_ref[i][j] += counts->comp_ref[i][j];
389 for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
390 for (j = 0; j < TX_SIZES; j++)
391 cm->counts.tx.p32x32[i][j] += counts->tx.p32x32[i][j];
393 for (j = 0; j < TX_SIZES - 1; j++)
394 cm->counts.tx.p16x16[i][j] += counts->tx.p16x16[i][j];
396 for (j = 0; j < TX_SIZES - 2; j++)
397 cm->counts.tx.p8x8[i][j] += counts->tx.p8x8[i][j];
400 for (i = 0; i < TX_SIZES; i++)
401 cm->counts.tx.tx_totals[i] += counts->tx.tx_totals[i];
403 for (i = 0; i < SKIP_CONTEXTS; i++)
404 for (j = 0; j < 2; j++)
405 cm->counts.skip[i][j] += counts->skip[i][j];
407 for (i = 0; i < MV_JOINTS; i++)
408 cm->counts.mv.joints[i] += counts->mv.joints[i];
410 for (k = 0; k < 2; k++) {
411 nmv_component_counts *comps = &cm->counts.mv.comps[k];
412 nmv_component_counts *comps_t = &counts->mv.comps[k];
414 for (i = 0; i < 2; i++) {
415 comps->sign[i] += comps_t->sign[i];
416 comps->class0_hp[i] += comps_t->class0_hp[i];
417 comps->hp[i] += comps_t->hp[i];
420 for (i = 0; i < MV_CLASSES; i++)
421 comps->classes[i] += comps_t->classes[i];
423 for (i = 0; i < CLASS0_SIZE; i++) {
424 comps->class0[i] += comps_t->class0[i];
425 for (j = 0; j < MV_FP_SIZE; j++)
426 comps->class0_fp[i][j] += comps_t->class0_fp[i][j];
429 for (i = 0; i < MV_OFFSET_BITS; i++)
430 for (j = 0; j < 2; j++)
431 comps->bits[i][j] += comps_t->bits[i][j];
433 for (i = 0; i < MV_FP_SIZE; i++)
434 comps->fp[i] += comps_t->fp[i];