2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
13 #include "test/av1_txfm_test.h"
15 namespace libaom_test
{
17 int get_txfm1d_size(TX_SIZE tx_size
) { return tx_size_wide
[tx_size
]; }
19 void get_txfm1d_type(TX_TYPE txfm2d_type
, TYPE_TXFM
*type0
, TYPE_TXFM
*type1
) {
20 switch (txfm2d_type
) {
45 case FLIPADST_FLIPADST
:
65 double invSqrt2
= 1 / pow(2, 0.5);
67 double dct_matrix(double n
, double k
, int size
) {
68 return cos(M_PI
* (2 * n
+ 1) * k
/ (2 * size
));
71 void reference_dct_1d(const double *in
, double *out
, int size
) {
72 for (int k
= 0; k
< size
; ++k
) {
74 for (int n
= 0; n
< size
; ++n
) {
75 out
[k
] += in
[n
] * dct_matrix(n
, k
, size
);
77 if (k
== 0) out
[k
] = out
[k
] * invSqrt2
;
81 void reference_idct_1d(const double *in
, double *out
, int size
) {
82 for (int k
= 0; k
< size
; ++k
) {
84 for (int n
= 0; n
< size
; ++n
) {
86 out
[k
] += invSqrt2
* in
[n
] * dct_matrix(k
, n
, size
);
88 out
[k
] += in
[n
] * dct_matrix(k
, n
, size
);
93 // TODO(any): Copied from dct.c. Should be replaced by a proper reference
94 // function that takes 'double' input & output.
95 static void fadst4(const tran_low_t
*input
, tran_low_t
*output
) {
96 tran_high_t x0
, x1
, x2
, x3
;
97 tran_high_t s0
, s1
, s2
, s3
, s4
, s5
, s6
, s7
;
104 if (!(x0
| x1
| x2
| x3
)) {
105 output
[0] = output
[1] = output
[2] = output
[3] = 0;
128 // 1-D transform scaling factor is sqrt(2).
129 output
[0] = (tran_low_t
)fdct_round_shift(s0
);
130 output
[1] = (tran_low_t
)fdct_round_shift(s1
);
131 output
[2] = (tran_low_t
)fdct_round_shift(s2
);
132 output
[3] = (tran_low_t
)fdct_round_shift(s3
);
135 void reference_adst_1d(const double *in
, double *out
, int size
) {
136 if (size
== 4) { // Special case.
137 tran_low_t int_input
[4];
138 for (int i
= 0; i
< 4; ++i
) {
139 int_input
[i
] = static_cast<tran_low_t
>(round(in
[i
]));
141 tran_low_t int_output
[4];
142 fadst4(int_input
, int_output
);
143 for (int i
= 0; i
< 4; ++i
) {
144 out
[i
] = int_output
[i
];
149 for (int k
= 0; k
< size
; ++k
) {
151 for (int n
= 0; n
< size
; ++n
) {
152 out
[k
] += in
[n
] * sin(M_PI
* (2 * n
+ 1) * (2 * k
+ 1) / (4 * size
));
157 void reference_hybrid_1d(double *in
, double *out
, int size
, int type
) {
158 if (type
== TYPE_DCT
)
159 reference_dct_1d(in
, out
, size
);
161 reference_adst_1d(in
, out
, size
);
164 double get_amplification_factor(TX_TYPE tx_type
, TX_SIZE tx_size
) {
165 TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg
;
166 av1_get_fwd_txfm_cfg(tx_type
, tx_size
, &fwd_txfm_flip_cfg
);
167 const int tx_width
= fwd_txfm_flip_cfg
.row_cfg
->txfm_size
;
168 const int tx_height
= fwd_txfm_flip_cfg
.col_cfg
->txfm_size
;
169 const int8_t *shift
= (tx_width
> tx_height
)
170 ? fwd_txfm_flip_cfg
.row_cfg
->shift
171 : fwd_txfm_flip_cfg
.col_cfg
->shift
;
172 const int amplify_bit
= shift
[0] + shift
[1] + shift
[2];
173 double amplify_factor
=
174 amplify_bit
>= 0 ? (1 << amplify_bit
) : (1.0 / (1 << -amplify_bit
));
176 // For rectangular transforms, we need to multiply by an extra factor.
177 const int rect_type
= get_rect_tx_log_ratio(tx_width
, tx_height
);
178 if (abs(rect_type
) == 1) {
179 amplify_factor
*= pow(2, 0.5);
180 } else if (abs(rect_type
) == 2) {
181 const int tx_max_dim
= AOMMAX(tx_width
, tx_height
);
182 const int rect_type2_shift
= (tx_max_dim
>= 32) ? 2 : 1;
183 amplify_factor
*= pow(2, rect_type2_shift
);
185 return amplify_factor
;
188 void reference_hybrid_2d(double *in
, double *out
, TX_TYPE tx_type
,
190 // Get transform type and size of each dimension.
193 get_txfm1d_type(tx_type
, &type0
, &type1
);
194 const int tx_width
= tx_size_wide
[tx_size
];
195 const int tx_height
= tx_size_high
[tx_size
];
197 double *const temp_in
= new double[AOMMAX(tx_width
, tx_height
)];
198 double *const temp_out
= new double[AOMMAX(tx_width
, tx_height
)];
199 double *const out_interm
= new double[tx_width
* tx_height
];
200 const int stride
= tx_width
;
202 // Transform columns.
203 for (int c
= 0; c
< tx_width
; ++c
) {
204 for (int r
= 0; r
< tx_height
; ++r
) {
205 temp_in
[r
] = in
[r
* stride
+ c
];
207 reference_hybrid_1d(temp_in
, temp_out
, tx_height
, type0
);
208 for (int r
= 0; r
< tx_height
; ++r
) {
209 out_interm
[r
* stride
+ c
] = temp_out
[r
];
214 for (int r
= 0; r
< tx_height
; ++r
) {
215 reference_hybrid_1d(out_interm
+ r
* stride
, out
+ r
* stride
, tx_width
,
224 // These transforms use an approximate 2D DCT transform, by only keeping the
225 // top-left quarter of the coefficients, and repacking them in the first
227 // TODO(urvang): Refactor this code.
228 if (tx_width
== 64 && tx_height
== 64) { // tx_size == TX_64X64
229 // Zero out top-right 32x32 area.
230 for (int row
= 0; row
< 32; ++row
) {
231 memset(out
+ row
* 64 + 32, 0, 32 * sizeof(*out
));
233 // Zero out the bottom 64x32 area.
234 memset(out
+ 32 * 64, 0, 32 * 64 * sizeof(*out
));
235 // Re-pack non-zero coeffs in the first 32x32 indices.
236 for (int row
= 1; row
< 32; ++row
) {
237 memcpy(out
+ row
* 32, out
+ row
* 64, 32 * sizeof(*out
));
239 } else if (tx_width
== 32 && tx_height
== 64) { // tx_size == TX_32X64
240 // Zero out the bottom 32x32 area.
241 memset(out
+ 32 * 32, 0, 32 * 32 * sizeof(*out
));
242 // Note: no repacking needed here.
243 } else if (tx_width
== 64 && tx_height
== 32) { // tx_size == TX_64X32
244 // Zero out right 32x32 area.
245 for (int row
= 0; row
< 32; ++row
) {
246 memset(out
+ row
* 64 + 32, 0, 32 * sizeof(*out
));
248 // Re-pack non-zero coeffs in the first 32x32 indices.
249 for (int row
= 1; row
< 32; ++row
) {
250 memcpy(out
+ row
* 32, out
+ row
* 64, 32 * sizeof(*out
));
252 } else if (tx_width
== 16 && tx_height
== 64) { // tx_size == TX_16X64
253 // Zero out the bottom 16x32 area.
254 memset(out
+ 16 * 32, 0, 16 * 32 * sizeof(*out
));
255 // Note: no repacking needed here.
256 } else if (tx_width
== 64 && tx_height
== 16) { // tx_size == TX_64X16
257 // Zero out right 32x16 area.
258 for (int row
= 0; row
< 16; ++row
) {
259 memset(out
+ row
* 64 + 32, 0, 32 * sizeof(*out
));
261 // Re-pack non-zero coeffs in the first 32x16 indices.
262 for (int row
= 1; row
< 16; ++row
) {
263 memcpy(out
+ row
* 32, out
+ row
* 64, 32 * sizeof(*out
));
266 #endif // CONFIG_TX_64X64
268 // Apply appropriate scale.
269 const double amplify_factor
= get_amplification_factor(tx_type
, tx_size
);
270 for (int c
= 0; c
< tx_width
; ++c
) {
271 for (int r
= 0; r
< tx_height
; ++r
) {
272 out
[r
* stride
+ c
] *= amplify_factor
;
277 template <typename Type
>
278 void fliplr(Type
*dest
, int width
, int height
, int stride
) {
279 for (int r
= 0; r
< height
; ++r
) {
280 for (int c
= 0; c
< width
/ 2; ++c
) {
281 const Type tmp
= dest
[r
* stride
+ c
];
282 dest
[r
* stride
+ c
] = dest
[r
* stride
+ width
- 1 - c
];
283 dest
[r
* stride
+ width
- 1 - c
] = tmp
;
288 template <typename Type
>
289 void flipud(Type
*dest
, int width
, int height
, int stride
) {
290 for (int c
= 0; c
< width
; ++c
) {
291 for (int r
= 0; r
< height
/ 2; ++r
) {
292 const Type tmp
= dest
[r
* stride
+ c
];
293 dest
[r
* stride
+ c
] = dest
[(height
- 1 - r
) * stride
+ c
];
294 dest
[(height
- 1 - r
) * stride
+ c
] = tmp
;
299 template <typename Type
>
300 void fliplrud(Type
*dest
, int width
, int height
, int stride
) {
301 for (int r
= 0; r
< height
/ 2; ++r
) {
302 for (int c
= 0; c
< width
; ++c
) {
303 const Type tmp
= dest
[r
* stride
+ c
];
304 dest
[r
* stride
+ c
] = dest
[(height
- 1 - r
) * stride
+ width
- 1 - c
];
305 dest
[(height
- 1 - r
) * stride
+ width
- 1 - c
] = tmp
;
310 template void fliplr
<double>(double *dest
, int width
, int height
, int stride
);
311 template void flipud
<double>(double *dest
, int width
, int height
, int stride
);
312 template void fliplrud
<double>(double *dest
, int width
, int height
, int stride
);
314 int bd_arr
[BD_NUM
] = { 8, 10, 12 };
317 int8_t low_range_arr
[BD_NUM
] = { 18, 32, 32 };
319 int8_t low_range_arr
[BD_NUM
] = { 16, 32, 32 };
320 #endif // CONFIG_TX64X64
321 int8_t high_range_arr
[BD_NUM
] = { 32, 32, 32 };
323 void txfm_stage_range_check(const int8_t *stage_range
, int stage_num
,
324 const int8_t *cos_bit
, int low_range
,
326 for (int i
= 0; i
< stage_num
; ++i
) {
327 EXPECT_LE(stage_range
[i
], low_range
);
329 for (int i
= 0; i
< stage_num
- 1; ++i
) {
330 // make sure there is no overflow while doing half_btf()
331 EXPECT_LE(stage_range
[i
] + cos_bit
[i
], high_range
);
332 EXPECT_LE(stage_range
[i
+ 1] + cos_bit
[i
], high_range
);
333 if (stage_range
[i
] + cos_bit
[i
] > high_range
) {
337 if (stage_range
[i
+ 1] + cos_bit
[i
] > high_range
) {
343 } // namespace libaom_test