Merge "Resolve a couple of TODOs in firstpass.c"
[aom.git] / vpx_dsp / loopfilter.c
blob46ef646173e79ca4b245ebf7e447d36ad6b4bfb7
1 /*
2 * Copyright (c) 2015 The WebM project authors. All Rights Reserved.
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
11 #include <stdlib.h>
13 #include "./vpx_config.h"
14 #include "vpx_dsp/vpx_dsp_common.h"
15 #include "vpx_ports/mem.h"
17 static INLINE int8_t signed_char_clamp(int t) {
18 return (int8_t)clamp(t, -128, 127);
21 #if CONFIG_VP9_HIGHBITDEPTH
22 static INLINE int16_t signed_char_clamp_high(int t, int bd) {
23 switch (bd) {
24 case 10:
25 return (int16_t)clamp(t, -128*4, 128*4-1);
26 case 12:
27 return (int16_t)clamp(t, -128*16, 128*16-1);
28 case 8:
29 default:
30 return (int16_t)clamp(t, -128, 128-1);
33 #endif
35 // should we apply any filter at all: 11111111 yes, 00000000 no
36 static INLINE int8_t filter_mask(uint8_t limit, uint8_t blimit,
37 uint8_t p3, uint8_t p2,
38 uint8_t p1, uint8_t p0,
39 uint8_t q0, uint8_t q1,
40 uint8_t q2, uint8_t q3) {
41 int8_t mask = 0;
42 mask |= (abs(p3 - p2) > limit) * -1;
43 mask |= (abs(p2 - p1) > limit) * -1;
44 mask |= (abs(p1 - p0) > limit) * -1;
45 mask |= (abs(q1 - q0) > limit) * -1;
46 mask |= (abs(q2 - q1) > limit) * -1;
47 mask |= (abs(q3 - q2) > limit) * -1;
48 mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1;
49 return ~mask;
52 static INLINE int8_t flat_mask4(uint8_t thresh,
53 uint8_t p3, uint8_t p2,
54 uint8_t p1, uint8_t p0,
55 uint8_t q0, uint8_t q1,
56 uint8_t q2, uint8_t q3) {
57 int8_t mask = 0;
58 mask |= (abs(p1 - p0) > thresh) * -1;
59 mask |= (abs(q1 - q0) > thresh) * -1;
60 mask |= (abs(p2 - p0) > thresh) * -1;
61 mask |= (abs(q2 - q0) > thresh) * -1;
62 mask |= (abs(p3 - p0) > thresh) * -1;
63 mask |= (abs(q3 - q0) > thresh) * -1;
64 return ~mask;
67 static INLINE int8_t flat_mask5(uint8_t thresh,
68 uint8_t p4, uint8_t p3,
69 uint8_t p2, uint8_t p1,
70 uint8_t p0, uint8_t q0,
71 uint8_t q1, uint8_t q2,
72 uint8_t q3, uint8_t q4) {
73 int8_t mask = ~flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3);
74 mask |= (abs(p4 - p0) > thresh) * -1;
75 mask |= (abs(q4 - q0) > thresh) * -1;
76 return ~mask;
79 // is there high edge variance internal edge: 11111111 yes, 00000000 no
80 static INLINE int8_t hev_mask(uint8_t thresh, uint8_t p1, uint8_t p0,
81 uint8_t q0, uint8_t q1) {
82 int8_t hev = 0;
83 hev |= (abs(p1 - p0) > thresh) * -1;
84 hev |= (abs(q1 - q0) > thresh) * -1;
85 return hev;
88 static INLINE void filter4(int8_t mask, uint8_t thresh, uint8_t *op1,
89 uint8_t *op0, uint8_t *oq0, uint8_t *oq1) {
90 int8_t filter1, filter2;
92 const int8_t ps1 = (int8_t) *op1 ^ 0x80;
93 const int8_t ps0 = (int8_t) *op0 ^ 0x80;
94 const int8_t qs0 = (int8_t) *oq0 ^ 0x80;
95 const int8_t qs1 = (int8_t) *oq1 ^ 0x80;
96 const uint8_t hev = hev_mask(thresh, *op1, *op0, *oq0, *oq1);
98 // add outer taps if we have high edge variance
99 int8_t filter = signed_char_clamp(ps1 - qs1) & hev;
101 // inner taps
102 filter = signed_char_clamp(filter + 3 * (qs0 - ps0)) & mask;
104 // save bottom 3 bits so that we round one side +4 and the other +3
105 // if it equals 4 we'll set to adjust by -1 to account for the fact
106 // we'd round 3 the other way
107 filter1 = signed_char_clamp(filter + 4) >> 3;
108 filter2 = signed_char_clamp(filter + 3) >> 3;
110 *oq0 = signed_char_clamp(qs0 - filter1) ^ 0x80;
111 *op0 = signed_char_clamp(ps0 + filter2) ^ 0x80;
113 // outer tap adjustments
114 filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev;
116 *oq1 = signed_char_clamp(qs1 - filter) ^ 0x80;
117 *op1 = signed_char_clamp(ps1 + filter) ^ 0x80;
120 void vpx_lpf_horizontal_4_c(uint8_t *s, int p /* pitch */,
121 const uint8_t *blimit, const uint8_t *limit,
122 const uint8_t *thresh) {
123 int i;
125 // loop filter designed to work using chars so that we can make maximum use
126 // of 8 bit simd instructions.
127 for (i = 0; i < 8; ++i) {
128 const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
129 const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
130 const int8_t mask = filter_mask(*limit, *blimit,
131 p3, p2, p1, p0, q0, q1, q2, q3);
132 filter4(mask, *thresh, s - 2 * p, s - 1 * p, s, s + 1 * p);
133 ++s;
137 void vpx_lpf_horizontal_4_dual_c(uint8_t *s, int p, const uint8_t *blimit0,
138 const uint8_t *limit0, const uint8_t *thresh0,
139 const uint8_t *blimit1, const uint8_t *limit1,
140 const uint8_t *thresh1) {
141 vpx_lpf_horizontal_4_c(s, p, blimit0, limit0, thresh0);
142 vpx_lpf_horizontal_4_c(s + 8, p, blimit1, limit1, thresh1);
145 void vpx_lpf_vertical_4_c(uint8_t *s, int pitch, const uint8_t *blimit,
146 const uint8_t *limit, const uint8_t *thresh) {
147 int i;
149 // loop filter designed to work using chars so that we can make maximum use
150 // of 8 bit simd instructions.
151 for (i = 0; i < 8; ++i) {
152 const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
153 const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3];
154 const int8_t mask = filter_mask(*limit, *blimit,
155 p3, p2, p1, p0, q0, q1, q2, q3);
156 filter4(mask, *thresh, s - 2, s - 1, s, s + 1);
157 s += pitch;
161 void vpx_lpf_vertical_4_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0,
162 const uint8_t *limit0, const uint8_t *thresh0,
163 const uint8_t *blimit1, const uint8_t *limit1,
164 const uint8_t *thresh1) {
165 vpx_lpf_vertical_4_c(s, pitch, blimit0, limit0, thresh0);
166 vpx_lpf_vertical_4_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1);
169 static INLINE void filter8(int8_t mask, uint8_t thresh, uint8_t flat,
170 uint8_t *op3, uint8_t *op2,
171 uint8_t *op1, uint8_t *op0,
172 uint8_t *oq0, uint8_t *oq1,
173 uint8_t *oq2, uint8_t *oq3) {
174 if (flat && mask) {
175 const uint8_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0;
176 const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3;
178 // 7-tap filter [1, 1, 1, 2, 1, 1, 1]
179 *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3);
180 *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3);
181 *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3);
182 *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3);
183 *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3);
184 *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3);
185 } else {
186 filter4(mask, thresh, op1, op0, oq0, oq1);
190 void vpx_lpf_horizontal_8_c(uint8_t *s, int p, const uint8_t *blimit,
191 const uint8_t *limit, const uint8_t *thresh) {
192 int i;
194 // loop filter designed to work using chars so that we can make maximum use
195 // of 8 bit simd instructions.
196 for (i = 0; i < 8; ++i) {
197 const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
198 const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
200 const int8_t mask = filter_mask(*limit, *blimit,
201 p3, p2, p1, p0, q0, q1, q2, q3);
202 const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
203 filter8(mask, *thresh, flat, s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
204 s, s + 1 * p, s + 2 * p, s + 3 * p);
205 ++s;
209 void vpx_lpf_horizontal_8_dual_c(uint8_t *s, int p, const uint8_t *blimit0,
210 const uint8_t *limit0, const uint8_t *thresh0,
211 const uint8_t *blimit1, const uint8_t *limit1,
212 const uint8_t *thresh1) {
213 vpx_lpf_horizontal_8_c(s, p, blimit0, limit0, thresh0);
214 vpx_lpf_horizontal_8_c(s + 8, p, blimit1, limit1, thresh1);
217 void vpx_lpf_vertical_8_c(uint8_t *s, int pitch, const uint8_t *blimit,
218 const uint8_t *limit, const uint8_t *thresh) {
219 int i;
221 for (i = 0; i < 8; ++i) {
222 const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
223 const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3];
224 const int8_t mask = filter_mask(*limit, *blimit,
225 p3, p2, p1, p0, q0, q1, q2, q3);
226 const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
227 filter8(mask, *thresh, flat, s - 4, s - 3, s - 2, s - 1,
228 s, s + 1, s + 2, s + 3);
229 s += pitch;
233 void vpx_lpf_vertical_8_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0,
234 const uint8_t *limit0, const uint8_t *thresh0,
235 const uint8_t *blimit1, const uint8_t *limit1,
236 const uint8_t *thresh1) {
237 vpx_lpf_vertical_8_c(s, pitch, blimit0, limit0, thresh0);
238 vpx_lpf_vertical_8_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1);
241 static INLINE void filter16(int8_t mask, uint8_t thresh,
242 uint8_t flat, uint8_t flat2,
243 uint8_t *op7, uint8_t *op6,
244 uint8_t *op5, uint8_t *op4,
245 uint8_t *op3, uint8_t *op2,
246 uint8_t *op1, uint8_t *op0,
247 uint8_t *oq0, uint8_t *oq1,
248 uint8_t *oq2, uint8_t *oq3,
249 uint8_t *oq4, uint8_t *oq5,
250 uint8_t *oq6, uint8_t *oq7) {
251 if (flat2 && flat && mask) {
252 const uint8_t p7 = *op7, p6 = *op6, p5 = *op5, p4 = *op4,
253 p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0;
255 const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3,
256 q4 = *oq4, q5 = *oq5, q6 = *oq6, q7 = *oq7;
258 // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1]
259 *op6 = ROUND_POWER_OF_TWO(p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 +
260 q0, 4);
261 *op5 = ROUND_POWER_OF_TWO(p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 +
262 q0 + q1, 4);
263 *op4 = ROUND_POWER_OF_TWO(p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 +
264 q0 + q1 + q2, 4);
265 *op3 = ROUND_POWER_OF_TWO(p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 +
266 q0 + q1 + q2 + q3, 4);
267 *op2 = ROUND_POWER_OF_TWO(p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 +
268 q0 + q1 + q2 + q3 + q4, 4);
269 *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 +
270 q0 + q1 + q2 + q3 + q4 + q5, 4);
271 *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 +
272 q0 + q1 + q2 + q3 + q4 + q5 + q6, 4);
273 *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 +
274 q0 * 2 + q1 + q2 + q3 + q4 + q5 + q6 + q7, 4);
275 *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 +
276 q0 + q1 * 2 + q2 + q3 + q4 + q5 + q6 + q7 * 2, 4);
277 *oq2 = ROUND_POWER_OF_TWO(p4 + p3 + p2 + p1 + p0 +
278 q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, 4);
279 *oq3 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + p0 +
280 q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4);
281 *oq4 = ROUND_POWER_OF_TWO(p2 + p1 + p0 +
282 q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4);
283 *oq5 = ROUND_POWER_OF_TWO(p1 + p0 +
284 q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4);
285 *oq6 = ROUND_POWER_OF_TWO(p0 +
286 q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4);
287 } else {
288 filter8(mask, thresh, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3);
292 static void mb_lpf_horizontal_edge_w(uint8_t *s, int p, const uint8_t *blimit,
293 const uint8_t *limit,
294 const uint8_t *thresh, int count) {
295 int i;
297 // loop filter designed to work using chars so that we can make maximum use
298 // of 8 bit simd instructions.
299 for (i = 0; i < 8 * count; ++i) {
300 const uint8_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
301 const uint8_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
302 const int8_t mask = filter_mask(*limit, *blimit,
303 p3, p2, p1, p0, q0, q1, q2, q3);
304 const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
305 const int8_t flat2 = flat_mask5(1,
306 s[-8 * p], s[-7 * p], s[-6 * p], s[-5 * p], p0,
307 q0, s[4 * p], s[5 * p], s[6 * p], s[7 * p]);
309 filter16(mask, *thresh, flat, flat2,
310 s - 8 * p, s - 7 * p, s - 6 * p, s - 5 * p,
311 s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
312 s, s + 1 * p, s + 2 * p, s + 3 * p,
313 s + 4 * p, s + 5 * p, s + 6 * p, s + 7 * p);
314 ++s;
318 void vpx_lpf_horizontal_edge_8_c(uint8_t *s, int p, const uint8_t *blimit,
319 const uint8_t *limit, const uint8_t *thresh) {
320 mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 1);
323 void vpx_lpf_horizontal_edge_16_c(uint8_t *s, int p, const uint8_t *blimit,
324 const uint8_t *limit, const uint8_t *thresh) {
325 mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 2);
328 static void mb_lpf_vertical_edge_w(uint8_t *s, int p,
329 const uint8_t *blimit,
330 const uint8_t *limit,
331 const uint8_t *thresh,
332 int count) {
333 int i;
335 for (i = 0; i < count; ++i) {
336 const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
337 const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3];
338 const int8_t mask = filter_mask(*limit, *blimit,
339 p3, p2, p1, p0, q0, q1, q2, q3);
340 const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3);
341 const int8_t flat2 = flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0,
342 q0, s[4], s[5], s[6], s[7]);
344 filter16(mask, *thresh, flat, flat2,
345 s - 8, s - 7, s - 6, s - 5, s - 4, s - 3, s - 2, s - 1,
346 s, s + 1, s + 2, s + 3, s + 4, s + 5, s + 6, s + 7);
347 s += p;
351 void vpx_lpf_vertical_16_c(uint8_t *s, int p, const uint8_t *blimit,
352 const uint8_t *limit, const uint8_t *thresh) {
353 mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 8);
356 void vpx_lpf_vertical_16_dual_c(uint8_t *s, int p, const uint8_t *blimit,
357 const uint8_t *limit, const uint8_t *thresh) {
358 mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 16);
361 #if CONFIG_VP9_HIGHBITDEPTH
362 // Should we apply any filter at all: 11111111 yes, 00000000 no ?
363 static INLINE int8_t highbd_filter_mask(uint8_t limit, uint8_t blimit,
364 uint16_t p3, uint16_t p2,
365 uint16_t p1, uint16_t p0,
366 uint16_t q0, uint16_t q1,
367 uint16_t q2, uint16_t q3, int bd) {
368 int8_t mask = 0;
369 int16_t limit16 = (uint16_t)limit << (bd - 8);
370 int16_t blimit16 = (uint16_t)blimit << (bd - 8);
371 mask |= (abs(p3 - p2) > limit16) * -1;
372 mask |= (abs(p2 - p1) > limit16) * -1;
373 mask |= (abs(p1 - p0) > limit16) * -1;
374 mask |= (abs(q1 - q0) > limit16) * -1;
375 mask |= (abs(q2 - q1) > limit16) * -1;
376 mask |= (abs(q3 - q2) > limit16) * -1;
377 mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit16) * -1;
378 return ~mask;
381 static INLINE int8_t highbd_flat_mask4(uint8_t thresh,
382 uint16_t p3, uint16_t p2,
383 uint16_t p1, uint16_t p0,
384 uint16_t q0, uint16_t q1,
385 uint16_t q2, uint16_t q3, int bd) {
386 int8_t mask = 0;
387 int16_t thresh16 = (uint16_t)thresh << (bd - 8);
388 mask |= (abs(p1 - p0) > thresh16) * -1;
389 mask |= (abs(q1 - q0) > thresh16) * -1;
390 mask |= (abs(p2 - p0) > thresh16) * -1;
391 mask |= (abs(q2 - q0) > thresh16) * -1;
392 mask |= (abs(p3 - p0) > thresh16) * -1;
393 mask |= (abs(q3 - q0) > thresh16) * -1;
394 return ~mask;
397 static INLINE int8_t highbd_flat_mask5(uint8_t thresh,
398 uint16_t p4, uint16_t p3,
399 uint16_t p2, uint16_t p1,
400 uint16_t p0, uint16_t q0,
401 uint16_t q1, uint16_t q2,
402 uint16_t q3, uint16_t q4, int bd) {
403 int8_t mask = ~highbd_flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3, bd);
404 int16_t thresh16 = (uint16_t)thresh << (bd - 8);
405 mask |= (abs(p4 - p0) > thresh16) * -1;
406 mask |= (abs(q4 - q0) > thresh16) * -1;
407 return ~mask;
410 // Is there high edge variance internal edge:
411 // 11111111_11111111 yes, 00000000_00000000 no ?
412 static INLINE int16_t highbd_hev_mask(uint8_t thresh, uint16_t p1, uint16_t p0,
413 uint16_t q0, uint16_t q1, int bd) {
414 int16_t hev = 0;
415 int16_t thresh16 = (uint16_t)thresh << (bd - 8);
416 hev |= (abs(p1 - p0) > thresh16) * -1;
417 hev |= (abs(q1 - q0) > thresh16) * -1;
418 return hev;
421 static INLINE void highbd_filter4(int8_t mask, uint8_t thresh, uint16_t *op1,
422 uint16_t *op0, uint16_t *oq0, uint16_t *oq1,
423 int bd) {
424 int16_t filter1, filter2;
425 // ^0x80 equivalent to subtracting 0x80 from the values to turn them
426 // into -128 to +127 instead of 0 to 255.
427 int shift = bd - 8;
428 const int16_t ps1 = (int16_t)*op1 - (0x80 << shift);
429 const int16_t ps0 = (int16_t)*op0 - (0x80 << shift);
430 const int16_t qs0 = (int16_t)*oq0 - (0x80 << shift);
431 const int16_t qs1 = (int16_t)*oq1 - (0x80 << shift);
432 const uint16_t hev = highbd_hev_mask(thresh, *op1, *op0, *oq0, *oq1, bd);
434 // Add outer taps if we have high edge variance.
435 int16_t filter = signed_char_clamp_high(ps1 - qs1, bd) & hev;
437 // Inner taps.
438 filter = signed_char_clamp_high(filter + 3 * (qs0 - ps0), bd) & mask;
440 // Save bottom 3 bits so that we round one side +4 and the other +3
441 // if it equals 4 we'll set to adjust by -1 to account for the fact
442 // we'd round 3 the other way.
443 filter1 = signed_char_clamp_high(filter + 4, bd) >> 3;
444 filter2 = signed_char_clamp_high(filter + 3, bd) >> 3;
446 *oq0 = signed_char_clamp_high(qs0 - filter1, bd) + (0x80 << shift);
447 *op0 = signed_char_clamp_high(ps0 + filter2, bd) + (0x80 << shift);
449 // Outer tap adjustments.
450 filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev;
452 *oq1 = signed_char_clamp_high(qs1 - filter, bd) + (0x80 << shift);
453 *op1 = signed_char_clamp_high(ps1 + filter, bd) + (0x80 << shift);
456 void vpx_highbd_lpf_horizontal_4_c(uint16_t *s, int p /* pitch */,
457 const uint8_t *blimit, const uint8_t *limit,
458 const uint8_t *thresh, int bd) {
459 int i;
461 // loop filter designed to work using chars so that we can make maximum use
462 // of 8 bit simd instructions.
463 for (i = 0; i < 8; ++i) {
464 const uint16_t p3 = s[-4 * p];
465 const uint16_t p2 = s[-3 * p];
466 const uint16_t p1 = s[-2 * p];
467 const uint16_t p0 = s[-p];
468 const uint16_t q0 = s[0 * p];
469 const uint16_t q1 = s[1 * p];
470 const uint16_t q2 = s[2 * p];
471 const uint16_t q3 = s[3 * p];
472 const int8_t mask = highbd_filter_mask(*limit, *blimit,
473 p3, p2, p1, p0, q0, q1, q2, q3, bd);
474 highbd_filter4(mask, *thresh, s - 2 * p, s - 1 * p, s, s + 1 * p, bd);
475 ++s;
479 void vpx_highbd_lpf_horizontal_4_dual_c(uint16_t *s, int p,
480 const uint8_t *blimit0,
481 const uint8_t *limit0,
482 const uint8_t *thresh0,
483 const uint8_t *blimit1,
484 const uint8_t *limit1,
485 const uint8_t *thresh1,
486 int bd) {
487 vpx_highbd_lpf_horizontal_4_c(s, p, blimit0, limit0, thresh0, bd);
488 vpx_highbd_lpf_horizontal_4_c(s + 8, p, blimit1, limit1, thresh1, bd);
491 void vpx_highbd_lpf_vertical_4_c(uint16_t *s, int pitch, const uint8_t *blimit,
492 const uint8_t *limit, const uint8_t *thresh,
493 int bd) {
494 int i;
496 // loop filter designed to work using chars so that we can make maximum use
497 // of 8 bit simd instructions.
498 for (i = 0; i < 8; ++i) {
499 const uint16_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
500 const uint16_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3];
501 const int8_t mask = highbd_filter_mask(*limit, *blimit,
502 p3, p2, p1, p0, q0, q1, q2, q3, bd);
503 highbd_filter4(mask, *thresh, s - 2, s - 1, s, s + 1, bd);
504 s += pitch;
508 void vpx_highbd_lpf_vertical_4_dual_c(uint16_t *s, int pitch,
509 const uint8_t *blimit0,
510 const uint8_t *limit0,
511 const uint8_t *thresh0,
512 const uint8_t *blimit1,
513 const uint8_t *limit1,
514 const uint8_t *thresh1,
515 int bd) {
516 vpx_highbd_lpf_vertical_4_c(s, pitch, blimit0, limit0, thresh0, bd);
517 vpx_highbd_lpf_vertical_4_c(s + 8 * pitch, pitch, blimit1, limit1,
518 thresh1, bd);
521 static INLINE void highbd_filter8(int8_t mask, uint8_t thresh, uint8_t flat,
522 uint16_t *op3, uint16_t *op2,
523 uint16_t *op1, uint16_t *op0,
524 uint16_t *oq0, uint16_t *oq1,
525 uint16_t *oq2, uint16_t *oq3, int bd) {
526 if (flat && mask) {
527 const uint16_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0;
528 const uint16_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3;
530 // 7-tap filter [1, 1, 1, 2, 1, 1, 1]
531 *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3);
532 *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3);
533 *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3);
534 *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3);
535 *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3);
536 *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3);
537 } else {
538 highbd_filter4(mask, thresh, op1, op0, oq0, oq1, bd);
542 void vpx_highbd_lpf_horizontal_8_c(uint16_t *s, int p, const uint8_t *blimit,
543 const uint8_t *limit, const uint8_t *thresh,
544 int bd) {
545 int i;
547 // loop filter designed to work using chars so that we can make maximum use
548 // of 8 bit simd instructions.
549 for (i = 0; i < 8; ++i) {
550 const uint16_t p3 = s[-4 * p], p2 = s[-3 * p], p1 = s[-2 * p], p0 = s[-p];
551 const uint16_t q0 = s[0 * p], q1 = s[1 * p], q2 = s[2 * p], q3 = s[3 * p];
553 const int8_t mask = highbd_filter_mask(*limit, *blimit,
554 p3, p2, p1, p0, q0, q1, q2, q3, bd);
555 const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3,
556 bd);
557 highbd_filter8(mask, *thresh, flat,
558 s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
559 s, s + 1 * p, s + 2 * p, s + 3 * p, bd);
560 ++s;
564 void vpx_highbd_lpf_horizontal_8_dual_c(uint16_t *s, int p,
565 const uint8_t *blimit0,
566 const uint8_t *limit0,
567 const uint8_t *thresh0,
568 const uint8_t *blimit1,
569 const uint8_t *limit1,
570 const uint8_t *thresh1,
571 int bd) {
572 vpx_highbd_lpf_horizontal_8_c(s, p, blimit0, limit0, thresh0, bd);
573 vpx_highbd_lpf_horizontal_8_c(s + 8, p, blimit1, limit1, thresh1, bd);
576 void vpx_highbd_lpf_vertical_8_c(uint16_t *s, int pitch, const uint8_t *blimit,
577 const uint8_t *limit, const uint8_t *thresh,
578 int bd) {
579 int i;
581 for (i = 0; i < 8; ++i) {
582 const uint16_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1];
583 const uint16_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3];
584 const int8_t mask = highbd_filter_mask(*limit, *blimit,
585 p3, p2, p1, p0, q0, q1, q2, q3, bd);
586 const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3,
587 bd);
588 highbd_filter8(mask, *thresh, flat,
589 s - 4, s - 3, s - 2, s - 1,
590 s, s + 1, s + 2, s + 3,
591 bd);
592 s += pitch;
596 void vpx_highbd_lpf_vertical_8_dual_c(uint16_t *s, int pitch,
597 const uint8_t *blimit0,
598 const uint8_t *limit0,
599 const uint8_t *thresh0,
600 const uint8_t *blimit1,
601 const uint8_t *limit1,
602 const uint8_t *thresh1,
603 int bd) {
604 vpx_highbd_lpf_vertical_8_c(s, pitch, blimit0, limit0, thresh0, bd);
605 vpx_highbd_lpf_vertical_8_c(s + 8 * pitch, pitch, blimit1, limit1,
606 thresh1, bd);
609 static INLINE void highbd_filter16(int8_t mask, uint8_t thresh,
610 uint8_t flat, uint8_t flat2,
611 uint16_t *op7, uint16_t *op6,
612 uint16_t *op5, uint16_t *op4,
613 uint16_t *op3, uint16_t *op2,
614 uint16_t *op1, uint16_t *op0,
615 uint16_t *oq0, uint16_t *oq1,
616 uint16_t *oq2, uint16_t *oq3,
617 uint16_t *oq4, uint16_t *oq5,
618 uint16_t *oq6, uint16_t *oq7, int bd) {
619 if (flat2 && flat && mask) {
620 const uint16_t p7 = *op7;
621 const uint16_t p6 = *op6;
622 const uint16_t p5 = *op5;
623 const uint16_t p4 = *op4;
624 const uint16_t p3 = *op3;
625 const uint16_t p2 = *op2;
626 const uint16_t p1 = *op1;
627 const uint16_t p0 = *op0;
628 const uint16_t q0 = *oq0;
629 const uint16_t q1 = *oq1;
630 const uint16_t q2 = *oq2;
631 const uint16_t q3 = *oq3;
632 const uint16_t q4 = *oq4;
633 const uint16_t q5 = *oq5;
634 const uint16_t q6 = *oq6;
635 const uint16_t q7 = *oq7;
637 // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1]
638 *op6 = ROUND_POWER_OF_TWO(p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 +
639 q0, 4);
640 *op5 = ROUND_POWER_OF_TWO(p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 +
641 q0 + q1, 4);
642 *op4 = ROUND_POWER_OF_TWO(p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 +
643 q0 + q1 + q2, 4);
644 *op3 = ROUND_POWER_OF_TWO(p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 +
645 q0 + q1 + q2 + q3, 4);
646 *op2 = ROUND_POWER_OF_TWO(p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 +
647 q0 + q1 + q2 + q3 + q4, 4);
648 *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 +
649 q0 + q1 + q2 + q3 + q4 + q5, 4);
650 *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 +
651 q0 + q1 + q2 + q3 + q4 + q5 + q6, 4);
652 *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 +
653 q0 * 2 + q1 + q2 + q3 + q4 + q5 + q6 + q7, 4);
654 *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 +
655 q0 + q1 * 2 + q2 + q3 + q4 + q5 + q6 + q7 * 2, 4);
656 *oq2 = ROUND_POWER_OF_TWO(p4 + p3 + p2 + p1 + p0 +
657 q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, 4);
658 *oq3 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + p0 +
659 q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4);
660 *oq4 = ROUND_POWER_OF_TWO(p2 + p1 + p0 +
661 q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4);
662 *oq5 = ROUND_POWER_OF_TWO(p1 + p0 +
663 q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4);
664 *oq6 = ROUND_POWER_OF_TWO(p0 +
665 q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4);
666 } else {
667 highbd_filter8(mask, thresh, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3,
668 bd);
672 static void highbd_mb_lpf_horizontal_edge_w(uint16_t *s, int p,
673 const uint8_t *blimit,
674 const uint8_t *limit,
675 const uint8_t *thresh,
676 int count, int bd) {
677 int i;
679 // loop filter designed to work using chars so that we can make maximum use
680 // of 8 bit simd instructions.
681 for (i = 0; i < 8 * count; ++i) {
682 const uint16_t p3 = s[-4 * p];
683 const uint16_t p2 = s[-3 * p];
684 const uint16_t p1 = s[-2 * p];
685 const uint16_t p0 = s[-p];
686 const uint16_t q0 = s[0 * p];
687 const uint16_t q1 = s[1 * p];
688 const uint16_t q2 = s[2 * p];
689 const uint16_t q3 = s[3 * p];
690 const int8_t mask = highbd_filter_mask(*limit, *blimit,
691 p3, p2, p1, p0, q0, q1, q2, q3, bd);
692 const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3,
693 bd);
694 const int8_t flat2 = highbd_flat_mask5(
695 1, s[-8 * p], s[-7 * p], s[-6 * p], s[-5 * p], p0,
696 q0, s[4 * p], s[5 * p], s[6 * p], s[7 * p], bd);
698 highbd_filter16(mask, *thresh, flat, flat2,
699 s - 8 * p, s - 7 * p, s - 6 * p, s - 5 * p,
700 s - 4 * p, s - 3 * p, s - 2 * p, s - 1 * p,
701 s, s + 1 * p, s + 2 * p, s + 3 * p,
702 s + 4 * p, s + 5 * p, s + 6 * p, s + 7 * p,
703 bd);
704 ++s;
708 void vpx_highbd_lpf_horizontal_edge_8_c(uint16_t *s, int p,
709 const uint8_t *blimit,
710 const uint8_t *limit,
711 const uint8_t *thresh, int bd) {
712 highbd_mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 1, bd);
715 void vpx_highbd_lpf_horizontal_edge_16_c(uint16_t *s, int p,
716 const uint8_t *blimit,
717 const uint8_t *limit,
718 const uint8_t *thresh, int bd) {
719 highbd_mb_lpf_horizontal_edge_w(s, p, blimit, limit, thresh, 2, bd);
722 static void highbd_mb_lpf_vertical_edge_w(uint16_t *s, int p,
723 const uint8_t *blimit,
724 const uint8_t *limit,
725 const uint8_t *thresh,
726 int count, int bd) {
727 int i;
729 for (i = 0; i < count; ++i) {
730 const uint16_t p3 = s[-4];
731 const uint16_t p2 = s[-3];
732 const uint16_t p1 = s[-2];
733 const uint16_t p0 = s[-1];
734 const uint16_t q0 = s[0];
735 const uint16_t q1 = s[1];
736 const uint16_t q2 = s[2];
737 const uint16_t q3 = s[3];
738 const int8_t mask = highbd_filter_mask(*limit, *blimit,
739 p3, p2, p1, p0, q0, q1, q2, q3, bd);
740 const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3,
741 bd);
742 const int8_t flat2 = highbd_flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0,
743 q0, s[4], s[5], s[6], s[7], bd);
745 highbd_filter16(mask, *thresh, flat, flat2,
746 s - 8, s - 7, s - 6, s - 5, s - 4, s - 3, s - 2, s - 1,
747 s, s + 1, s + 2, s + 3, s + 4, s + 5, s + 6, s + 7,
748 bd);
749 s += p;
753 void vpx_highbd_lpf_vertical_16_c(uint16_t *s, int p, const uint8_t *blimit,
754 const uint8_t *limit, const uint8_t *thresh,
755 int bd) {
756 highbd_mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 8, bd);
759 void vpx_highbd_lpf_vertical_16_dual_c(uint16_t *s, int p,
760 const uint8_t *blimit,
761 const uint8_t *limit,
762 const uint8_t *thresh,
763 int bd) {
764 highbd_mb_lpf_vertical_edge_w(s, p, blimit, limit, thresh, 16, bd);
766 #endif // CONFIG_VP9_HIGHBITDEPTH