Add dr prediction test
[aom.git] / test / av1_txfm_test.cc
blobd5b0ce3255fae999797487d50ba5d618cc6c31ec
1 /*
2 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
4 * This source code is subject to the terms of the BSD 2 Clause License and
5 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6 * was not distributed with this source code in the LICENSE file, you can
7 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8 * Media Patent License 1.0 was not distributed with this source code in the
9 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
12 #include <stdio.h>
13 #include "test/av1_txfm_test.h"
15 namespace libaom_test {
17 int get_txfm1d_size(TX_SIZE tx_size) { return tx_size_wide[tx_size]; }
19 void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) {
20 switch (txfm2d_type) {
21 case DCT_DCT:
22 *type0 = TYPE_DCT;
23 *type1 = TYPE_DCT;
24 break;
25 case ADST_DCT:
26 *type0 = TYPE_ADST;
27 *type1 = TYPE_DCT;
28 break;
29 case DCT_ADST:
30 *type0 = TYPE_DCT;
31 *type1 = TYPE_ADST;
32 break;
33 case ADST_ADST:
34 *type0 = TYPE_ADST;
35 *type1 = TYPE_ADST;
36 break;
37 case FLIPADST_DCT:
38 *type0 = TYPE_ADST;
39 *type1 = TYPE_DCT;
40 break;
41 case DCT_FLIPADST:
42 *type0 = TYPE_DCT;
43 *type1 = TYPE_ADST;
44 break;
45 case FLIPADST_FLIPADST:
46 *type0 = TYPE_ADST;
47 *type1 = TYPE_ADST;
48 break;
49 case ADST_FLIPADST:
50 *type0 = TYPE_ADST;
51 *type1 = TYPE_ADST;
52 break;
53 case FLIPADST_ADST:
54 *type0 = TYPE_ADST;
55 *type1 = TYPE_ADST;
56 break;
57 case IDTX:
58 *type0 = TYPE_IDTX;
59 *type1 = TYPE_IDTX;
60 break;
61 case H_DCT:
62 *type0 = TYPE_IDTX;
63 *type1 = TYPE_DCT;
64 break;
65 case V_DCT:
66 *type0 = TYPE_DCT;
67 *type1 = TYPE_IDTX;
68 break;
69 case H_ADST:
70 *type0 = TYPE_IDTX;
71 *type1 = TYPE_ADST;
72 break;
73 case V_ADST:
74 *type0 = TYPE_ADST;
75 *type1 = TYPE_IDTX;
76 break;
77 case H_FLIPADST:
78 *type0 = TYPE_IDTX;
79 *type1 = TYPE_ADST;
80 break;
81 case V_FLIPADST:
82 *type0 = TYPE_ADST;
83 *type1 = TYPE_IDTX;
84 break;
85 default:
86 *type0 = TYPE_DCT;
87 *type1 = TYPE_DCT;
88 assert(0);
89 break;
93 double Sqrt2 = pow(2, 0.5);
94 double invSqrt2 = 1 / pow(2, 0.5);
96 double dct_matrix(double n, double k, int size) {
97 return cos(M_PI * (2 * n + 1) * k / (2 * size));
100 void reference_dct_1d(const double *in, double *out, int size) {
101 for (int k = 0; k < size; ++k) {
102 out[k] = 0;
103 for (int n = 0; n < size; ++n) {
104 out[k] += in[n] * dct_matrix(n, k, size);
106 if (k == 0) out[k] = out[k] * invSqrt2;
110 void reference_idct_1d(const double *in, double *out, int size) {
111 for (int k = 0; k < size; ++k) {
112 out[k] = 0;
113 for (int n = 0; n < size; ++n) {
114 if (n == 0)
115 out[k] += invSqrt2 * in[n] * dct_matrix(k, n, size);
116 else
117 out[k] += in[n] * dct_matrix(k, n, size);
122 // TODO(any): Copied from the old 'fadst4' (same as the new 'av1_fadst4_new'
123 // function). Should be replaced by a proper reference function that takes
124 // 'double' input & output.
125 static void fadst4_new(const tran_low_t *input, tran_low_t *output) {
126 tran_high_t x0, x1, x2, x3;
127 tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
129 x0 = input[0];
130 x1 = input[1];
131 x2 = input[2];
132 x3 = input[3];
134 if (!(x0 | x1 | x2 | x3)) {
135 output[0] = output[1] = output[2] = output[3] = 0;
136 return;
139 s0 = sinpi_1_9 * x0;
140 s1 = sinpi_4_9 * x0;
141 s2 = sinpi_2_9 * x1;
142 s3 = sinpi_1_9 * x1;
143 s4 = sinpi_3_9 * x2;
144 s5 = sinpi_4_9 * x3;
145 s6 = sinpi_2_9 * x3;
146 s7 = x0 + x1 - x3;
148 x0 = s0 + s2 + s5;
149 x1 = sinpi_3_9 * s7;
150 x2 = s1 - s3 + s6;
151 x3 = s4;
153 s0 = x0 + x3;
154 s1 = x1;
155 s2 = x2 - x3;
156 s3 = x2 - x0 + x3;
158 // 1-D transform scaling factor is sqrt(2).
159 output[0] = (tran_low_t)fdct_round_shift(s0);
160 output[1] = (tran_low_t)fdct_round_shift(s1);
161 output[2] = (tran_low_t)fdct_round_shift(s2);
162 output[3] = (tran_low_t)fdct_round_shift(s3);
165 void reference_adst_1d(const double *in, double *out, int size) {
166 if (size == 4) { // Special case.
167 tran_low_t int_input[4];
168 for (int i = 0; i < 4; ++i) {
169 int_input[i] = static_cast<tran_low_t>(round(in[i]));
171 tran_low_t int_output[4];
172 fadst4_new(int_input, int_output);
173 for (int i = 0; i < 4; ++i) {
174 out[i] = int_output[i];
176 return;
179 for (int k = 0; k < size; ++k) {
180 out[k] = 0;
181 for (int n = 0; n < size; ++n) {
182 out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (4 * size));
187 void reference_idtx_1d(const double *in, double *out, int size) {
188 double scale = 0;
189 if (size == 4)
190 scale = Sqrt2;
191 else if (size == 8)
192 scale = 2;
193 else if (size == 16)
194 scale = 2 * Sqrt2;
195 else if (size == 32)
196 scale = 4;
197 else if (size == 64)
198 scale = 4 * Sqrt2;
199 for (int k = 0; k < size; ++k) {
200 out[k] = in[k] * scale;
204 void reference_hybrid_1d(double *in, double *out, int size, int type) {
205 if (type == TYPE_DCT)
206 reference_dct_1d(in, out, size);
207 else if (type == TYPE_ADST)
208 reference_adst_1d(in, out, size);
209 else
210 reference_idtx_1d(in, out, size);
213 double get_amplification_factor(TX_TYPE tx_type, TX_SIZE tx_size) {
214 TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
215 av1_get_fwd_txfm_cfg(tx_type, tx_size, &fwd_txfm_flip_cfg);
216 const int tx_width = tx_size_wide[fwd_txfm_flip_cfg.tx_size];
217 const int tx_height = tx_size_high[fwd_txfm_flip_cfg.tx_size];
218 const int8_t *shift = fwd_txfm_flip_cfg.shift;
219 const int amplify_bit = shift[0] + shift[1] + shift[2];
220 double amplify_factor =
221 amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit));
223 // For rectangular transforms, we need to multiply by an extra factor.
224 const int rect_type = get_rect_tx_log_ratio(tx_width, tx_height);
225 if (abs(rect_type) == 1) {
226 amplify_factor *= pow(2, 0.5);
228 return amplify_factor;
231 void reference_hybrid_2d(double *in, double *out, TX_TYPE tx_type,
232 TX_SIZE tx_size) {
233 // Get transform type and size of each dimension.
234 TYPE_TXFM type0;
235 TYPE_TXFM type1;
236 get_txfm1d_type(tx_type, &type0, &type1);
237 const int tx_width = tx_size_wide[tx_size];
238 const int tx_height = tx_size_high[tx_size];
240 double *const temp_in = new double[AOMMAX(tx_width, tx_height)];
241 double *const temp_out = new double[AOMMAX(tx_width, tx_height)];
242 double *const out_interm = new double[tx_width * tx_height];
243 const int stride = tx_width;
245 // Transform columns.
246 for (int c = 0; c < tx_width; ++c) {
247 for (int r = 0; r < tx_height; ++r) {
248 temp_in[r] = in[r * stride + c];
250 reference_hybrid_1d(temp_in, temp_out, tx_height, type0);
251 for (int r = 0; r < tx_height; ++r) {
252 out_interm[r * stride + c] = temp_out[r];
256 // Transform rows.
257 for (int r = 0; r < tx_height; ++r) {
258 reference_hybrid_1d(out_interm + r * stride, out + r * stride, tx_width,
259 type1);
262 delete[] temp_in;
263 delete[] temp_out;
264 delete[] out_interm;
266 // These transforms use an approximate 2D DCT transform, by only keeping the
267 // top-left quarter of the coefficients, and repacking them in the first
268 // quarter indices.
269 // TODO(urvang): Refactor this code.
270 if (tx_width == 64 && tx_height == 64) { // tx_size == TX_64X64
271 // Zero out top-right 32x32 area.
272 for (int row = 0; row < 32; ++row) {
273 memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
275 // Zero out the bottom 64x32 area.
276 memset(out + 32 * 64, 0, 32 * 64 * sizeof(*out));
277 // Re-pack non-zero coeffs in the first 32x32 indices.
278 for (int row = 1; row < 32; ++row) {
279 memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
281 } else if (tx_width == 32 && tx_height == 64) { // tx_size == TX_32X64
282 // Zero out the bottom 32x32 area.
283 memset(out + 32 * 32, 0, 32 * 32 * sizeof(*out));
284 // Note: no repacking needed here.
285 } else if (tx_width == 64 && tx_height == 32) { // tx_size == TX_64X32
286 // Zero out right 32x32 area.
287 for (int row = 0; row < 32; ++row) {
288 memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
290 // Re-pack non-zero coeffs in the first 32x32 indices.
291 for (int row = 1; row < 32; ++row) {
292 memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
294 } else if (tx_width == 16 && tx_height == 64) { // tx_size == TX_16X64
295 // Zero out the bottom 16x32 area.
296 memset(out + 16 * 32, 0, 16 * 32 * sizeof(*out));
297 // Note: no repacking needed here.
298 } else if (tx_width == 64 && tx_height == 16) { // tx_size == TX_64X16
299 // Zero out right 32x16 area.
300 for (int row = 0; row < 16; ++row) {
301 memset(out + row * 64 + 32, 0, 32 * sizeof(*out));
303 // Re-pack non-zero coeffs in the first 32x16 indices.
304 for (int row = 1; row < 16; ++row) {
305 memcpy(out + row * 32, out + row * 64, 32 * sizeof(*out));
309 // Apply appropriate scale.
310 const double amplify_factor = get_amplification_factor(tx_type, tx_size);
311 for (int c = 0; c < tx_width; ++c) {
312 for (int r = 0; r < tx_height; ++r) {
313 out[r * stride + c] *= amplify_factor;
318 template <typename Type>
319 void fliplr(Type *dest, int width, int height, int stride) {
320 for (int r = 0; r < height; ++r) {
321 for (int c = 0; c < width / 2; ++c) {
322 const Type tmp = dest[r * stride + c];
323 dest[r * stride + c] = dest[r * stride + width - 1 - c];
324 dest[r * stride + width - 1 - c] = tmp;
329 template <typename Type>
330 void flipud(Type *dest, int width, int height, int stride) {
331 for (int c = 0; c < width; ++c) {
332 for (int r = 0; r < height / 2; ++r) {
333 const Type tmp = dest[r * stride + c];
334 dest[r * stride + c] = dest[(height - 1 - r) * stride + c];
335 dest[(height - 1 - r) * stride + c] = tmp;
340 template <typename Type>
341 void fliplrud(Type *dest, int width, int height, int stride) {
342 for (int r = 0; r < height / 2; ++r) {
343 for (int c = 0; c < width; ++c) {
344 const Type tmp = dest[r * stride + c];
345 dest[r * stride + c] = dest[(height - 1 - r) * stride + width - 1 - c];
346 dest[(height - 1 - r) * stride + width - 1 - c] = tmp;
351 template void fliplr<double>(double *dest, int width, int height, int stride);
352 template void flipud<double>(double *dest, int width, int height, int stride);
353 template void fliplrud<double>(double *dest, int width, int height, int stride);
355 int bd_arr[BD_NUM] = { 8, 10, 12 };
357 int8_t low_range_arr[BD_NUM] = { 18, 32, 32 };
358 int8_t high_range_arr[BD_NUM] = { 32, 32, 32 };
360 void txfm_stage_range_check(const int8_t *stage_range, int stage_num,
361 int8_t cos_bit, int low_range, int high_range) {
362 for (int i = 0; i < stage_num; ++i) {
363 EXPECT_LE(stage_range[i], low_range);
364 ASSERT_LE(stage_range[i] + cos_bit, high_range) << "stage = " << i;
366 for (int i = 0; i < stage_num - 1; ++i) {
367 // make sure there is no overflow while doing half_btf()
368 ASSERT_LE(stage_range[i + 1] + cos_bit, high_range) << "stage = " << i;
371 } // namespace libaom_test