Add custom memory allocator to MinGW and MacOS builds
[alt-git.git] / compat / nedmalloc / malloc.c.h
blobbb0f482d9fc087a143335e159605cf08b7d51191
1 /*
2 This is a version (aka dlmalloc) of malloc/free/realloc written by
3 Doug Lea and released to the public domain, as explained at
4 http://creativecommons.org/licenses/publicdomain. Send questions,
5 comments, complaints, performance data, etc to dl@cs.oswego.edu
7 * Version pre-2.8.4 Mon Nov 27 11:22:37 2006 (dl at gee)
9 Note: There may be an updated version of this malloc obtainable at
10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c
11 Check before installing!
13 * Quickstart
15 This library is all in one file to simplify the most common usage:
16 ftp it, compile it (-O3), and link it into another program. All of
17 the compile-time options default to reasonable values for use on
18 most platforms. You might later want to step through various
19 compile-time and dynamic tuning options.
21 For convenience, an include file for code using this malloc is at:
22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.4.h
23 You don't really need this .h file unless you call functions not
24 defined in your system include files. The .h file contains only the
25 excerpts from this file needed for using this malloc on ANSI C/C++
26 systems, so long as you haven't changed compile-time options about
27 naming and tuning parameters. If you do, then you can create your
28 own malloc.h that does include all settings by cutting at the point
29 indicated below. Note that you may already by default be using a C
30 library containing a malloc that is based on some version of this
31 malloc (for example in linux). You might still want to use the one
32 in this file to customize settings or to avoid overheads associated
33 with library versions.
35 * Vital statistics:
37 Supported pointer/size_t representation: 4 or 8 bytes
38 size_t MUST be an unsigned type of the same width as
39 pointers. (If you are using an ancient system that declares
40 size_t as a signed type, or need it to be a different width
41 than pointers, you can use a previous release of this malloc
42 (e.g. 2.7.2) supporting these.)
44 Alignment: 8 bytes (default)
45 This suffices for nearly all current machines and C compilers.
46 However, you can define MALLOC_ALIGNMENT to be wider than this
47 if necessary (up to 128bytes), at the expense of using more space.
49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
50 8 or 16 bytes (if 8byte sizes)
51 Each malloced chunk has a hidden word of overhead holding size
52 and status information, and additional cross-check word
53 if FOOTERS is defined.
55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
56 8-byte ptrs: 32 bytes (including overhead)
58 Even a request for zero bytes (i.e., malloc(0)) returns a
59 pointer to something of the minimum allocatable size.
60 The maximum overhead wastage (i.e., number of extra bytes
61 allocated than were requested in malloc) is less than or equal
62 to the minimum size, except for requests >= mmap_threshold that
63 are serviced via mmap(), where the worst case wastage is about
64 32 bytes plus the remainder from a system page (the minimal
65 mmap unit); typically 4096 or 8192 bytes.
67 Security: static-safe; optionally more or less
68 The "security" of malloc refers to the ability of malicious
69 code to accentuate the effects of errors (for example, freeing
70 space that is not currently malloc'ed or overwriting past the
71 ends of chunks) in code that calls malloc. This malloc
72 guarantees not to modify any memory locations below the base of
73 heap, i.e., static variables, even in the presence of usage
74 errors. The routines additionally detect most improper frees
75 and reallocs. All this holds as long as the static bookkeeping
76 for malloc itself is not corrupted by some other means. This
77 is only one aspect of security -- these checks do not, and
78 cannot, detect all possible programming errors.
80 If FOOTERS is defined nonzero, then each allocated chunk
81 carries an additional check word to verify that it was malloced
82 from its space. These check words are the same within each
83 execution of a program using malloc, but differ across
84 executions, so externally crafted fake chunks cannot be
85 freed. This improves security by rejecting frees/reallocs that
86 could corrupt heap memory, in addition to the checks preventing
87 writes to statics that are always on. This may further improve
88 security at the expense of time and space overhead. (Note that
89 FOOTERS may also be worth using with MSPACES.)
91 By default detected errors cause the program to abort (calling
92 "abort()"). You can override this to instead proceed past
93 errors by defining PROCEED_ON_ERROR. In this case, a bad free
94 has no effect, and a malloc that encounters a bad address
95 caused by user overwrites will ignore the bad address by
96 dropping pointers and indices to all known memory. This may
97 be appropriate for programs that should continue if at all
98 possible in the face of programming errors, although they may
99 run out of memory because dropped memory is never reclaimed.
101 If you don't like either of these options, you can define
102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
103 else. And if if you are sure that your program using malloc has
104 no errors or vulnerabilities, you can define INSECURE to 1,
105 which might (or might not) provide a small performance improvement.
107 Thread-safety: NOT thread-safe unless USE_LOCKS defined
108 When USE_LOCKS is defined, each public call to malloc, free,
109 etc is surrounded with either a pthread mutex or a win32
110 spinlock (depending on WIN32). This is not especially fast, and
111 can be a major bottleneck. It is designed only to provide
112 minimal protection in concurrent environments, and to provide a
113 basis for extensions. If you are using malloc in a concurrent
114 program, consider instead using nedmalloc
115 (http://www.nedprod.com/programs/portable/nedmalloc/) or
116 ptmalloc (See http://www.malloc.de), which are derived
117 from versions of this malloc.
119 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
120 This malloc can use unix sbrk or any emulation (invoked using
121 the CALL_MORECORE macro) and/or mmap/munmap or any emulation
122 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
123 memory. On most unix systems, it tends to work best if both
124 MORECORE and MMAP are enabled. On Win32, it uses emulations
125 based on VirtualAlloc. It also uses common C library functions
126 like memset.
128 Compliance: I believe it is compliant with the Single Unix Specification
129 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
130 others as well.
132 * Overview of algorithms
134 This is not the fastest, most space-conserving, most portable, or
135 most tunable malloc ever written. However it is among the fastest
136 while also being among the most space-conserving, portable and
137 tunable. Consistent balance across these factors results in a good
138 general-purpose allocator for malloc-intensive programs.
140 In most ways, this malloc is a best-fit allocator. Generally, it
141 chooses the best-fitting existing chunk for a request, with ties
142 broken in approximately least-recently-used order. (This strategy
143 normally maintains low fragmentation.) However, for requests less
144 than 256bytes, it deviates from best-fit when there is not an
145 exactly fitting available chunk by preferring to use space adjacent
146 to that used for the previous small request, as well as by breaking
147 ties in approximately most-recently-used order. (These enhance
148 locality of series of small allocations.) And for very large requests
149 (>= 256Kb by default), it relies on system memory mapping
150 facilities, if supported. (This helps avoid carrying around and
151 possibly fragmenting memory used only for large chunks.)
153 All operations (except malloc_stats and mallinfo) have execution
154 times that are bounded by a constant factor of the number of bits in
155 a size_t, not counting any clearing in calloc or copying in realloc,
156 or actions surrounding MORECORE and MMAP that have times
157 proportional to the number of non-contiguous regions returned by
158 system allocation routines, which is often just 1. In real-time
159 applications, you can optionally suppress segment traversals using
160 NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
161 system allocators return non-contiguous spaces, at the typical
162 expense of carrying around more memory and increased fragmentation.
164 The implementation is not very modular and seriously overuses
165 macros. Perhaps someday all C compilers will do as good a job
166 inlining modular code as can now be done by brute-force expansion,
167 but now, enough of them seem not to.
169 Some compilers issue a lot of warnings about code that is
170 dead/unreachable only on some platforms, and also about intentional
171 uses of negation on unsigned types. All known cases of each can be
172 ignored.
174 For a longer but out of date high-level description, see
175 http://gee.cs.oswego.edu/dl/html/malloc.html
177 * MSPACES
178 If MSPACES is defined, then in addition to malloc, free, etc.,
179 this file also defines mspace_malloc, mspace_free, etc. These
180 are versions of malloc routines that take an "mspace" argument
181 obtained using create_mspace, to control all internal bookkeeping.
182 If ONLY_MSPACES is defined, only these versions are compiled.
183 So if you would like to use this allocator for only some allocations,
184 and your system malloc for others, you can compile with
185 ONLY_MSPACES and then do something like...
186 static mspace mymspace = create_mspace(0,0); // for example
187 #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
189 (Note: If you only need one instance of an mspace, you can instead
190 use "USE_DL_PREFIX" to relabel the global malloc.)
192 You can similarly create thread-local allocators by storing
193 mspaces as thread-locals. For example:
194 static __thread mspace tlms = 0;
195 void* tlmalloc(size_t bytes) {
196 if (tlms == 0) tlms = create_mspace(0, 0);
197 return mspace_malloc(tlms, bytes);
199 void tlfree(void* mem) { mspace_free(tlms, mem); }
201 Unless FOOTERS is defined, each mspace is completely independent.
202 You cannot allocate from one and free to another (although
203 conformance is only weakly checked, so usage errors are not always
204 caught). If FOOTERS is defined, then each chunk carries around a tag
205 indicating its originating mspace, and frees are directed to their
206 originating spaces.
208 ------------------------- Compile-time options ---------------------------
210 Be careful in setting #define values for numerical constants of type
211 size_t. On some systems, literal values are not automatically extended
212 to size_t precision unless they are explicitly casted. You can also
213 use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
215 WIN32 default: defined if _WIN32 defined
216 Defining WIN32 sets up defaults for MS environment and compilers.
217 Otherwise defaults are for unix. Beware that there seem to be some
218 cases where this malloc might not be a pure drop-in replacement for
219 Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
220 SetDIBits()) may be due to bugs in some video driver implementations
221 when pixel buffers are malloc()ed, and the region spans more than
222 one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
223 default granularity, pixel buffers may straddle virtual allocation
224 regions more often than when using the Microsoft allocator. You can
225 avoid this by using VirtualAlloc() and VirtualFree() for all pixel
226 buffers rather than using malloc(). If this is not possible,
227 recompile this malloc with a larger DEFAULT_GRANULARITY.
229 MALLOC_ALIGNMENT default: (size_t)8
230 Controls the minimum alignment for malloc'ed chunks. It must be a
231 power of two and at least 8, even on machines for which smaller
232 alignments would suffice. It may be defined as larger than this
233 though. Note however that code and data structures are optimized for
234 the case of 8-byte alignment.
236 MSPACES default: 0 (false)
237 If true, compile in support for independent allocation spaces.
238 This is only supported if HAVE_MMAP is true.
240 ONLY_MSPACES default: 0 (false)
241 If true, only compile in mspace versions, not regular versions.
243 USE_LOCKS default: 0 (false)
244 Causes each call to each public routine to be surrounded with
245 pthread or WIN32 mutex lock/unlock. (If set true, this can be
246 overridden on a per-mspace basis for mspace versions.) If set to a
247 non-zero value other than 1, locks are used, but their
248 implementation is left out, so lock functions must be supplied manually.
250 USE_SPIN_LOCKS default: 1 iff USE_LOCKS and on x86 using gcc or MSC
251 If true, uses custom spin locks for locking. This is currently
252 supported only for x86 platforms using gcc or recent MS compilers.
253 Otherwise, posix locks or win32 critical sections are used.
255 FOOTERS default: 0
256 If true, provide extra checking and dispatching by placing
257 information in the footers of allocated chunks. This adds
258 space and time overhead.
260 INSECURE default: 0
261 If true, omit checks for usage errors and heap space overwrites.
263 USE_DL_PREFIX default: NOT defined
264 Causes compiler to prefix all public routines with the string 'dl'.
265 This can be useful when you only want to use this malloc in one part
266 of a program, using your regular system malloc elsewhere.
268 ABORT default: defined as abort()
269 Defines how to abort on failed checks. On most systems, a failed
270 check cannot die with an "assert" or even print an informative
271 message, because the underlying print routines in turn call malloc,
272 which will fail again. Generally, the best policy is to simply call
273 abort(). It's not very useful to do more than this because many
274 errors due to overwriting will show up as address faults (null, odd
275 addresses etc) rather than malloc-triggered checks, so will also
276 abort. Also, most compilers know that abort() does not return, so
277 can better optimize code conditionally calling it.
279 PROCEED_ON_ERROR default: defined as 0 (false)
280 Controls whether detected bad addresses cause them to bypassed
281 rather than aborting. If set, detected bad arguments to free and
282 realloc are ignored. And all bookkeeping information is zeroed out
283 upon a detected overwrite of freed heap space, thus losing the
284 ability to ever return it from malloc again, but enabling the
285 application to proceed. If PROCEED_ON_ERROR is defined, the
286 static variable malloc_corruption_error_count is compiled in
287 and can be examined to see if errors have occurred. This option
288 generates slower code than the default abort policy.
290 DEBUG default: NOT defined
291 The DEBUG setting is mainly intended for people trying to modify
292 this code or diagnose problems when porting to new platforms.
293 However, it may also be able to better isolate user errors than just
294 using runtime checks. The assertions in the check routines spell
295 out in more detail the assumptions and invariants underlying the
296 algorithms. The checking is fairly extensive, and will slow down
297 execution noticeably. Calling malloc_stats or mallinfo with DEBUG
298 set will attempt to check every non-mmapped allocated and free chunk
299 in the course of computing the summaries.
301 ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
302 Debugging assertion failures can be nearly impossible if your
303 version of the assert macro causes malloc to be called, which will
304 lead to a cascade of further failures, blowing the runtime stack.
305 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
306 which will usually make debugging easier.
308 MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
309 The action to take before "return 0" when malloc fails to be able to
310 return memory because there is none available.
312 HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
313 True if this system supports sbrk or an emulation of it.
315 MORECORE default: sbrk
316 The name of the sbrk-style system routine to call to obtain more
317 memory. See below for guidance on writing custom MORECORE
318 functions. The type of the argument to sbrk/MORECORE varies across
319 systems. It cannot be size_t, because it supports negative
320 arguments, so it is normally the signed type of the same width as
321 size_t (sometimes declared as "intptr_t"). It doesn't much matter
322 though. Internally, we only call it with arguments less than half
323 the max value of a size_t, which should work across all reasonable
324 possibilities, although sometimes generating compiler warnings.
326 MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
327 If true, take advantage of fact that consecutive calls to MORECORE
328 with positive arguments always return contiguous increasing
329 addresses. This is true of unix sbrk. It does not hurt too much to
330 set it true anyway, since malloc copes with non-contiguities.
331 Setting it false when definitely non-contiguous saves time
332 and possibly wasted space it would take to discover this though.
334 MORECORE_CANNOT_TRIM default: NOT defined
335 True if MORECORE cannot release space back to the system when given
336 negative arguments. This is generally necessary only if you are
337 using a hand-crafted MORECORE function that cannot handle negative
338 arguments.
340 NO_SEGMENT_TRAVERSAL default: 0
341 If non-zero, suppresses traversals of memory segments
342 returned by either MORECORE or CALL_MMAP. This disables
343 merging of segments that are contiguous, and selectively
344 releasing them to the OS if unused, but bounds execution times.
346 HAVE_MMAP default: 1 (true)
347 True if this system supports mmap or an emulation of it. If so, and
348 HAVE_MORECORE is not true, MMAP is used for all system
349 allocation. If set and HAVE_MORECORE is true as well, MMAP is
350 primarily used to directly allocate very large blocks. It is also
351 used as a backup strategy in cases where MORECORE fails to provide
352 space from system. Note: A single call to MUNMAP is assumed to be
353 able to unmap memory that may have be allocated using multiple calls
354 to MMAP, so long as they are adjacent.
356 HAVE_MREMAP default: 1 on linux, else 0
357 If true realloc() uses mremap() to re-allocate large blocks and
358 extend or shrink allocation spaces.
360 MMAP_CLEARS default: 1 except on WINCE.
361 True if mmap clears memory so calloc doesn't need to. This is true
362 for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
364 USE_BUILTIN_FFS default: 0 (i.e., not used)
365 Causes malloc to use the builtin ffs() function to compute indices.
366 Some compilers may recognize and intrinsify ffs to be faster than the
367 supplied C version. Also, the case of x86 using gcc is special-cased
368 to an asm instruction, so is already as fast as it can be, and so
369 this setting has no effect. Similarly for Win32 under recent MS compilers.
370 (On most x86s, the asm version is only slightly faster than the C version.)
372 malloc_getpagesize default: derive from system includes, or 4096.
373 The system page size. To the extent possible, this malloc manages
374 memory from the system in page-size units. This may be (and
375 usually is) a function rather than a constant. This is ignored
376 if WIN32, where page size is determined using getSystemInfo during
377 initialization.
379 USE_DEV_RANDOM default: 0 (i.e., not used)
380 Causes malloc to use /dev/random to initialize secure magic seed for
381 stamping footers. Otherwise, the current time is used.
383 NO_MALLINFO default: 0
384 If defined, don't compile "mallinfo". This can be a simple way
385 of dealing with mismatches between system declarations and
386 those in this file.
388 MALLINFO_FIELD_TYPE default: size_t
389 The type of the fields in the mallinfo struct. This was originally
390 defined as "int" in SVID etc, but is more usefully defined as
391 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
393 REALLOC_ZERO_BYTES_FREES default: not defined
394 This should be set if a call to realloc with zero bytes should
395 be the same as a call to free. Some people think it should. Otherwise,
396 since this malloc returns a unique pointer for malloc(0), so does
397 realloc(p, 0).
399 LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
400 LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
401 LACKS_STDLIB_H default: NOT defined unless on WIN32
402 Define these if your system does not have these header files.
403 You might need to manually insert some of the declarations they provide.
405 DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
406 system_info.dwAllocationGranularity in WIN32,
407 otherwise 64K.
408 Also settable using mallopt(M_GRANULARITY, x)
409 The unit for allocating and deallocating memory from the system. On
410 most systems with contiguous MORECORE, there is no reason to
411 make this more than a page. However, systems with MMAP tend to
412 either require or encourage larger granularities. You can increase
413 this value to prevent system allocation functions to be called so
414 often, especially if they are slow. The value must be at least one
415 page and must be a power of two. Setting to 0 causes initialization
416 to either page size or win32 region size. (Note: In previous
417 versions of malloc, the equivalent of this option was called
418 "TOP_PAD")
420 DEFAULT_TRIM_THRESHOLD default: 2MB
421 Also settable using mallopt(M_TRIM_THRESHOLD, x)
422 The maximum amount of unused top-most memory to keep before
423 releasing via malloc_trim in free(). Automatic trimming is mainly
424 useful in long-lived programs using contiguous MORECORE. Because
425 trimming via sbrk can be slow on some systems, and can sometimes be
426 wasteful (in cases where programs immediately afterward allocate
427 more large chunks) the value should be high enough so that your
428 overall system performance would improve by releasing this much
429 memory. As a rough guide, you might set to a value close to the
430 average size of a process (program) running on your system.
431 Releasing this much memory would allow such a process to run in
432 memory. Generally, it is worth tuning trim thresholds when a
433 program undergoes phases where several large chunks are allocated
434 and released in ways that can reuse each other's storage, perhaps
435 mixed with phases where there are no such chunks at all. The trim
436 value must be greater than page size to have any useful effect. To
437 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
438 some people use of mallocing a huge space and then freeing it at
439 program startup, in an attempt to reserve system memory, doesn't
440 have the intended effect under automatic trimming, since that memory
441 will immediately be returned to the system.
443 DEFAULT_MMAP_THRESHOLD default: 256K
444 Also settable using mallopt(M_MMAP_THRESHOLD, x)
445 The request size threshold for using MMAP to directly service a
446 request. Requests of at least this size that cannot be allocated
447 using already-existing space will be serviced via mmap. (If enough
448 normal freed space already exists it is used instead.) Using mmap
449 segregates relatively large chunks of memory so that they can be
450 individually obtained and released from the host system. A request
451 serviced through mmap is never reused by any other request (at least
452 not directly; the system may just so happen to remap successive
453 requests to the same locations). Segregating space in this way has
454 the benefits that: Mmapped space can always be individually released
455 back to the system, which helps keep the system level memory demands
456 of a long-lived program low. Also, mapped memory doesn't become
457 `locked' between other chunks, as can happen with normally allocated
458 chunks, which means that even trimming via malloc_trim would not
459 release them. However, it has the disadvantage that the space
460 cannot be reclaimed, consolidated, and then used to service later
461 requests, as happens with normal chunks. The advantages of mmap
462 nearly always outweigh disadvantages for "large" chunks, but the
463 value of "large" may vary across systems. The default is an
464 empirically derived value that works well in most systems. You can
465 disable mmap by setting to MAX_SIZE_T.
467 MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
468 The number of consolidated frees between checks to release
469 unused segments when freeing. When using non-contiguous segments,
470 especially with multiple mspaces, checking only for topmost space
471 doesn't always suffice to trigger trimming. To compensate for this,
472 free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
473 current number of segments, if greater) try to release unused
474 segments to the OS when freeing chunks that result in
475 consolidation. The best value for this parameter is a compromise
476 between slowing down frees with relatively costly checks that
477 rarely trigger versus holding on to unused memory. To effectively
478 disable, set to MAX_SIZE_T. This may lead to a very slight speed
479 improvement at the expense of carrying around more memory.
482 /* Version identifier to allow people to support multiple versions */
483 #ifndef DLMALLOC_VERSION
484 #define DLMALLOC_VERSION 20804
485 #endif /* DLMALLOC_VERSION */
487 #ifndef WIN32
488 #ifdef _WIN32
489 #define WIN32 1
490 #endif /* _WIN32 */
491 #ifdef _WIN32_WCE
492 #define LACKS_FCNTL_H
493 #define WIN32 1
494 #endif /* _WIN32_WCE */
495 #endif /* WIN32 */
496 #ifdef WIN32
497 #define WIN32_LEAN_AND_MEAN
498 #define _WIN32_WINNT 0x403
499 #include <windows.h>
500 #define HAVE_MMAP 1
501 #define HAVE_MORECORE 0
502 #define LACKS_UNISTD_H
503 #define LACKS_SYS_PARAM_H
504 #define LACKS_SYS_MMAN_H
505 #define LACKS_STRING_H
506 #define LACKS_STRINGS_H
507 #define LACKS_SYS_TYPES_H
508 #define LACKS_ERRNO_H
509 #ifndef MALLOC_FAILURE_ACTION
510 #define MALLOC_FAILURE_ACTION
511 #endif /* MALLOC_FAILURE_ACTION */
512 #ifdef _WIN32_WCE /* WINCE reportedly does not clear */
513 #define MMAP_CLEARS 0
514 #else
515 #define MMAP_CLEARS 1
516 #endif /* _WIN32_WCE */
517 #endif /* WIN32 */
519 #if defined(DARWIN) || defined(_DARWIN)
520 /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
521 #ifndef HAVE_MORECORE
522 #define HAVE_MORECORE 0
523 #define HAVE_MMAP 1
524 /* OSX allocators provide 16 byte alignment */
525 #ifndef MALLOC_ALIGNMENT
526 #define MALLOC_ALIGNMENT ((size_t)16U)
527 #endif
528 #endif /* HAVE_MORECORE */
529 #endif /* DARWIN */
531 #ifndef LACKS_SYS_TYPES_H
532 #include <sys/types.h> /* For size_t */
533 #endif /* LACKS_SYS_TYPES_H */
535 /* The maximum possible size_t value has all bits set */
536 #define MAX_SIZE_T (~(size_t)0)
538 #ifndef ONLY_MSPACES
539 #define ONLY_MSPACES 0 /* define to a value */
540 #else
541 #define ONLY_MSPACES 1
542 #endif /* ONLY_MSPACES */
543 #ifndef MSPACES
544 #if ONLY_MSPACES
545 #define MSPACES 1
546 #else /* ONLY_MSPACES */
547 #define MSPACES 0
548 #endif /* ONLY_MSPACES */
549 #endif /* MSPACES */
550 #ifndef MALLOC_ALIGNMENT
551 #define MALLOC_ALIGNMENT ((size_t)8U)
552 #endif /* MALLOC_ALIGNMENT */
553 #ifndef FOOTERS
554 #define FOOTERS 0
555 #endif /* FOOTERS */
556 #ifndef ABORT
557 #define ABORT abort()
558 #endif /* ABORT */
559 #ifndef ABORT_ON_ASSERT_FAILURE
560 #define ABORT_ON_ASSERT_FAILURE 1
561 #endif /* ABORT_ON_ASSERT_FAILURE */
562 #ifndef PROCEED_ON_ERROR
563 #define PROCEED_ON_ERROR 0
564 #endif /* PROCEED_ON_ERROR */
565 #ifndef USE_LOCKS
566 #define USE_LOCKS 0
567 #endif /* USE_LOCKS */
568 #ifndef USE_SPIN_LOCKS
569 #if USE_LOCKS && (defined(__GNUC__) && ((defined(__i386__) || defined(__x86_64__)))) || (defined(_MSC_VER) && _MSC_VER>=1310)
570 #define USE_SPIN_LOCKS 1
571 #else
572 #define USE_SPIN_LOCKS 0
573 #endif /* USE_LOCKS && ... */
574 #endif /* USE_SPIN_LOCKS */
575 #ifndef INSECURE
576 #define INSECURE 0
577 #endif /* INSECURE */
578 #ifndef HAVE_MMAP
579 #define HAVE_MMAP 1
580 #endif /* HAVE_MMAP */
581 #ifndef MMAP_CLEARS
582 #define MMAP_CLEARS 1
583 #endif /* MMAP_CLEARS */
584 #ifndef HAVE_MREMAP
585 #ifdef linux
586 #define HAVE_MREMAP 1
587 #else /* linux */
588 #define HAVE_MREMAP 0
589 #endif /* linux */
590 #endif /* HAVE_MREMAP */
591 #ifndef MALLOC_FAILURE_ACTION
592 #define MALLOC_FAILURE_ACTION errno = ENOMEM;
593 #endif /* MALLOC_FAILURE_ACTION */
594 #ifndef HAVE_MORECORE
595 #if ONLY_MSPACES
596 #define HAVE_MORECORE 0
597 #else /* ONLY_MSPACES */
598 #define HAVE_MORECORE 1
599 #endif /* ONLY_MSPACES */
600 #endif /* HAVE_MORECORE */
601 #if !HAVE_MORECORE
602 #define MORECORE_CONTIGUOUS 0
603 #else /* !HAVE_MORECORE */
604 #define MORECORE_DEFAULT sbrk
605 #ifndef MORECORE_CONTIGUOUS
606 #define MORECORE_CONTIGUOUS 1
607 #endif /* MORECORE_CONTIGUOUS */
608 #endif /* HAVE_MORECORE */
609 #ifndef DEFAULT_GRANULARITY
610 #if (MORECORE_CONTIGUOUS || defined(WIN32))
611 #define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
612 #else /* MORECORE_CONTIGUOUS */
613 #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
614 #endif /* MORECORE_CONTIGUOUS */
615 #endif /* DEFAULT_GRANULARITY */
616 #ifndef DEFAULT_TRIM_THRESHOLD
617 #ifndef MORECORE_CANNOT_TRIM
618 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
619 #else /* MORECORE_CANNOT_TRIM */
620 #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
621 #endif /* MORECORE_CANNOT_TRIM */
622 #endif /* DEFAULT_TRIM_THRESHOLD */
623 #ifndef DEFAULT_MMAP_THRESHOLD
624 #if HAVE_MMAP
625 #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
626 #else /* HAVE_MMAP */
627 #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
628 #endif /* HAVE_MMAP */
629 #endif /* DEFAULT_MMAP_THRESHOLD */
630 #ifndef MAX_RELEASE_CHECK_RATE
631 #if HAVE_MMAP
632 #define MAX_RELEASE_CHECK_RATE 4095
633 #else
634 #define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
635 #endif /* HAVE_MMAP */
636 #endif /* MAX_RELEASE_CHECK_RATE */
637 #ifndef USE_BUILTIN_FFS
638 #define USE_BUILTIN_FFS 0
639 #endif /* USE_BUILTIN_FFS */
640 #ifndef USE_DEV_RANDOM
641 #define USE_DEV_RANDOM 0
642 #endif /* USE_DEV_RANDOM */
643 #ifndef NO_MALLINFO
644 #define NO_MALLINFO 0
645 #endif /* NO_MALLINFO */
646 #ifndef MALLINFO_FIELD_TYPE
647 #define MALLINFO_FIELD_TYPE size_t
648 #endif /* MALLINFO_FIELD_TYPE */
649 #ifndef NO_SEGMENT_TRAVERSAL
650 #define NO_SEGMENT_TRAVERSAL 0
651 #endif /* NO_SEGMENT_TRAVERSAL */
654 mallopt tuning options. SVID/XPG defines four standard parameter
655 numbers for mallopt, normally defined in malloc.h. None of these
656 are used in this malloc, so setting them has no effect. But this
657 malloc does support the following options.
660 #define M_TRIM_THRESHOLD (-1)
661 #define M_GRANULARITY (-2)
662 #define M_MMAP_THRESHOLD (-3)
664 /* ------------------------ Mallinfo declarations ------------------------ */
666 #if !NO_MALLINFO
668 This version of malloc supports the standard SVID/XPG mallinfo
669 routine that returns a struct containing usage properties and
670 statistics. It should work on any system that has a
671 /usr/include/malloc.h defining struct mallinfo. The main
672 declaration needed is the mallinfo struct that is returned (by-copy)
673 by mallinfo(). The malloinfo struct contains a bunch of fields that
674 are not even meaningful in this version of malloc. These fields are
675 are instead filled by mallinfo() with other numbers that might be of
676 interest.
678 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
679 /usr/include/malloc.h file that includes a declaration of struct
680 mallinfo. If so, it is included; else a compliant version is
681 declared below. These must be precisely the same for mallinfo() to
682 work. The original SVID version of this struct, defined on most
683 systems with mallinfo, declares all fields as ints. But some others
684 define as unsigned long. If your system defines the fields using a
685 type of different width than listed here, you MUST #include your
686 system version and #define HAVE_USR_INCLUDE_MALLOC_H.
689 /* #define HAVE_USR_INCLUDE_MALLOC_H */
691 #ifdef HAVE_USR_INCLUDE_MALLOC_H
692 #include "/usr/include/malloc.h"
693 #else /* HAVE_USR_INCLUDE_MALLOC_H */
694 #ifndef STRUCT_MALLINFO_DECLARED
695 #define STRUCT_MALLINFO_DECLARED 1
696 struct mallinfo {
697 MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
698 MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
699 MALLINFO_FIELD_TYPE smblks; /* always 0 */
700 MALLINFO_FIELD_TYPE hblks; /* always 0 */
701 MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
702 MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
703 MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
704 MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
705 MALLINFO_FIELD_TYPE fordblks; /* total free space */
706 MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
708 #endif /* STRUCT_MALLINFO_DECLARED */
709 #endif /* HAVE_USR_INCLUDE_MALLOC_H */
710 #endif /* NO_MALLINFO */
713 Try to persuade compilers to inline. The most critical functions for
714 inlining are defined as macros, so these aren't used for them.
717 #ifndef FORCEINLINE
718 #if defined(__GNUC__)
719 #define FORCEINLINE __inline __attribute__ ((always_inline))
720 #elif defined(_MSC_VER)
721 #define FORCEINLINE __forceinline
722 #endif
723 #endif
724 #ifndef NOINLINE
725 #if defined(__GNUC__)
726 #define NOINLINE __attribute__ ((noinline))
727 #elif defined(_MSC_VER)
728 #define NOINLINE __declspec(noinline)
729 #else
730 #define NOINLINE
731 #endif
732 #endif
734 #ifdef __cplusplus
735 extern "C" {
736 #ifndef FORCEINLINE
737 #define FORCEINLINE inline
738 #endif
739 #endif /* __cplusplus */
740 #ifndef FORCEINLINE
741 #define FORCEINLINE
742 #endif
744 #if !ONLY_MSPACES
746 /* ------------------- Declarations of public routines ------------------- */
748 #ifndef USE_DL_PREFIX
749 #define dlcalloc calloc
750 #define dlfree free
751 #define dlmalloc malloc
752 #define dlmemalign memalign
753 #define dlrealloc realloc
754 #define dlvalloc valloc
755 #define dlpvalloc pvalloc
756 #define dlmallinfo mallinfo
757 #define dlmallopt mallopt
758 #define dlmalloc_trim malloc_trim
759 #define dlmalloc_stats malloc_stats
760 #define dlmalloc_usable_size malloc_usable_size
761 #define dlmalloc_footprint malloc_footprint
762 #define dlmalloc_max_footprint malloc_max_footprint
763 #define dlindependent_calloc independent_calloc
764 #define dlindependent_comalloc independent_comalloc
765 #endif /* USE_DL_PREFIX */
769 malloc(size_t n)
770 Returns a pointer to a newly allocated chunk of at least n bytes, or
771 null if no space is available, in which case errno is set to ENOMEM
772 on ANSI C systems.
774 If n is zero, malloc returns a minimum-sized chunk. (The minimum
775 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
776 systems.) Note that size_t is an unsigned type, so calls with
777 arguments that would be negative if signed are interpreted as
778 requests for huge amounts of space, which will often fail. The
779 maximum supported value of n differs across systems, but is in all
780 cases less than the maximum representable value of a size_t.
782 void* dlmalloc(size_t);
785 free(void* p)
786 Releases the chunk of memory pointed to by p, that had been previously
787 allocated using malloc or a related routine such as realloc.
788 It has no effect if p is null. If p was not malloced or already
789 freed, free(p) will by default cause the current program to abort.
791 void dlfree(void*);
794 calloc(size_t n_elements, size_t element_size);
795 Returns a pointer to n_elements * element_size bytes, with all locations
796 set to zero.
798 void* dlcalloc(size_t, size_t);
801 realloc(void* p, size_t n)
802 Returns a pointer to a chunk of size n that contains the same data
803 as does chunk p up to the minimum of (n, p's size) bytes, or null
804 if no space is available.
806 The returned pointer may or may not be the same as p. The algorithm
807 prefers extending p in most cases when possible, otherwise it
808 employs the equivalent of a malloc-copy-free sequence.
810 If p is null, realloc is equivalent to malloc.
812 If space is not available, realloc returns null, errno is set (if on
813 ANSI) and p is NOT freed.
815 if n is for fewer bytes than already held by p, the newly unused
816 space is lopped off and freed if possible. realloc with a size
817 argument of zero (re)allocates a minimum-sized chunk.
819 The old unix realloc convention of allowing the last-free'd chunk
820 to be used as an argument to realloc is not supported.
823 void* dlrealloc(void*, size_t);
826 memalign(size_t alignment, size_t n);
827 Returns a pointer to a newly allocated chunk of n bytes, aligned
828 in accord with the alignment argument.
830 The alignment argument should be a power of two. If the argument is
831 not a power of two, the nearest greater power is used.
832 8-byte alignment is guaranteed by normal malloc calls, so don't
833 bother calling memalign with an argument of 8 or less.
835 Overreliance on memalign is a sure way to fragment space.
837 void* dlmemalign(size_t, size_t);
840 valloc(size_t n);
841 Equivalent to memalign(pagesize, n), where pagesize is the page
842 size of the system. If the pagesize is unknown, 4096 is used.
844 void* dlvalloc(size_t);
847 mallopt(int parameter_number, int parameter_value)
848 Sets tunable parameters The format is to provide a
849 (parameter-number, parameter-value) pair. mallopt then sets the
850 corresponding parameter to the argument value if it can (i.e., so
851 long as the value is meaningful), and returns 1 if successful else
852 0. To workaround the fact that mallopt is specified to use int,
853 not size_t parameters, the value -1 is specially treated as the
854 maximum unsigned size_t value.
856 SVID/XPG/ANSI defines four standard param numbers for mallopt,
857 normally defined in malloc.h. None of these are use in this malloc,
858 so setting them has no effect. But this malloc also supports other
859 options in mallopt. See below for details. Briefly, supported
860 parameters are as follows (listed defaults are for "typical"
861 configurations).
863 Symbol param # default allowed param values
864 M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
865 M_GRANULARITY -2 page size any power of 2 >= page size
866 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
868 int dlmallopt(int, int);
871 malloc_footprint();
872 Returns the number of bytes obtained from the system. The total
873 number of bytes allocated by malloc, realloc etc., is less than this
874 value. Unlike mallinfo, this function returns only a precomputed
875 result, so can be called frequently to monitor memory consumption.
876 Even if locks are otherwise defined, this function does not use them,
877 so results might not be up to date.
879 size_t dlmalloc_footprint(void);
882 malloc_max_footprint();
883 Returns the maximum number of bytes obtained from the system. This
884 value will be greater than current footprint if deallocated space
885 has been reclaimed by the system. The peak number of bytes allocated
886 by malloc, realloc etc., is less than this value. Unlike mallinfo,
887 this function returns only a precomputed result, so can be called
888 frequently to monitor memory consumption. Even if locks are
889 otherwise defined, this function does not use them, so results might
890 not be up to date.
892 size_t dlmalloc_max_footprint(void);
894 #if !NO_MALLINFO
896 mallinfo()
897 Returns (by copy) a struct containing various summary statistics:
899 arena: current total non-mmapped bytes allocated from system
900 ordblks: the number of free chunks
901 smblks: always zero.
902 hblks: current number of mmapped regions
903 hblkhd: total bytes held in mmapped regions
904 usmblks: the maximum total allocated space. This will be greater
905 than current total if trimming has occurred.
906 fsmblks: always zero
907 uordblks: current total allocated space (normal or mmapped)
908 fordblks: total free space
909 keepcost: the maximum number of bytes that could ideally be released
910 back to system via malloc_trim. ("ideally" means that
911 it ignores page restrictions etc.)
913 Because these fields are ints, but internal bookkeeping may
914 be kept as longs, the reported values may wrap around zero and
915 thus be inaccurate.
917 struct mallinfo dlmallinfo(void);
918 #endif /* NO_MALLINFO */
921 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
923 independent_calloc is similar to calloc, but instead of returning a
924 single cleared space, it returns an array of pointers to n_elements
925 independent elements that can hold contents of size elem_size, each
926 of which starts out cleared, and can be independently freed,
927 realloc'ed etc. The elements are guaranteed to be adjacently
928 allocated (this is not guaranteed to occur with multiple callocs or
929 mallocs), which may also improve cache locality in some
930 applications.
932 The "chunks" argument is optional (i.e., may be null, which is
933 probably the most typical usage). If it is null, the returned array
934 is itself dynamically allocated and should also be freed when it is
935 no longer needed. Otherwise, the chunks array must be of at least
936 n_elements in length. It is filled in with the pointers to the
937 chunks.
939 In either case, independent_calloc returns this pointer array, or
940 null if the allocation failed. If n_elements is zero and "chunks"
941 is null, it returns a chunk representing an array with zero elements
942 (which should be freed if not wanted).
944 Each element must be individually freed when it is no longer
945 needed. If you'd like to instead be able to free all at once, you
946 should instead use regular calloc and assign pointers into this
947 space to represent elements. (In this case though, you cannot
948 independently free elements.)
950 independent_calloc simplifies and speeds up implementations of many
951 kinds of pools. It may also be useful when constructing large data
952 structures that initially have a fixed number of fixed-sized nodes,
953 but the number is not known at compile time, and some of the nodes
954 may later need to be freed. For example:
956 struct Node { int item; struct Node* next; };
958 struct Node* build_list() {
959 struct Node** pool;
960 int n = read_number_of_nodes_needed();
961 if (n <= 0) return 0;
962 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
963 if (pool == 0) die();
964 // organize into a linked list...
965 struct Node* first = pool[0];
966 for (i = 0; i < n-1; ++i)
967 pool[i]->next = pool[i+1];
968 free(pool); // Can now free the array (or not, if it is needed later)
969 return first;
972 void** dlindependent_calloc(size_t, size_t, void**);
975 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
977 independent_comalloc allocates, all at once, a set of n_elements
978 chunks with sizes indicated in the "sizes" array. It returns
979 an array of pointers to these elements, each of which can be
980 independently freed, realloc'ed etc. The elements are guaranteed to
981 be adjacently allocated (this is not guaranteed to occur with
982 multiple callocs or mallocs), which may also improve cache locality
983 in some applications.
985 The "chunks" argument is optional (i.e., may be null). If it is null
986 the returned array is itself dynamically allocated and should also
987 be freed when it is no longer needed. Otherwise, the chunks array
988 must be of at least n_elements in length. It is filled in with the
989 pointers to the chunks.
991 In either case, independent_comalloc returns this pointer array, or
992 null if the allocation failed. If n_elements is zero and chunks is
993 null, it returns a chunk representing an array with zero elements
994 (which should be freed if not wanted).
996 Each element must be individually freed when it is no longer
997 needed. If you'd like to instead be able to free all at once, you
998 should instead use a single regular malloc, and assign pointers at
999 particular offsets in the aggregate space. (In this case though, you
1000 cannot independently free elements.)
1002 independent_comallac differs from independent_calloc in that each
1003 element may have a different size, and also that it does not
1004 automatically clear elements.
1006 independent_comalloc can be used to speed up allocation in cases
1007 where several structs or objects must always be allocated at the
1008 same time. For example:
1010 struct Head { ... }
1011 struct Foot { ... }
1013 void send_message(char* msg) {
1014 int msglen = strlen(msg);
1015 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1016 void* chunks[3];
1017 if (independent_comalloc(3, sizes, chunks) == 0)
1018 die();
1019 struct Head* head = (struct Head*)(chunks[0]);
1020 char* body = (char*)(chunks[1]);
1021 struct Foot* foot = (struct Foot*)(chunks[2]);
1022 // ...
1025 In general though, independent_comalloc is worth using only for
1026 larger values of n_elements. For small values, you probably won't
1027 detect enough difference from series of malloc calls to bother.
1029 Overuse of independent_comalloc can increase overall memory usage,
1030 since it cannot reuse existing noncontiguous small chunks that
1031 might be available for some of the elements.
1033 void** dlindependent_comalloc(size_t, size_t*, void**);
1037 pvalloc(size_t n);
1038 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1039 round up n to nearest pagesize.
1041 void* dlpvalloc(size_t);
1044 malloc_trim(size_t pad);
1046 If possible, gives memory back to the system (via negative arguments
1047 to sbrk) if there is unused memory at the `high' end of the malloc
1048 pool or in unused MMAP segments. You can call this after freeing
1049 large blocks of memory to potentially reduce the system-level memory
1050 requirements of a program. However, it cannot guarantee to reduce
1051 memory. Under some allocation patterns, some large free blocks of
1052 memory will be locked between two used chunks, so they cannot be
1053 given back to the system.
1055 The `pad' argument to malloc_trim represents the amount of free
1056 trailing space to leave untrimmed. If this argument is zero, only
1057 the minimum amount of memory to maintain internal data structures
1058 will be left. Non-zero arguments can be supplied to maintain enough
1059 trailing space to service future expected allocations without having
1060 to re-obtain memory from the system.
1062 Malloc_trim returns 1 if it actually released any memory, else 0.
1064 int dlmalloc_trim(size_t);
1067 malloc_stats();
1068 Prints on stderr the amount of space obtained from the system (both
1069 via sbrk and mmap), the maximum amount (which may be more than
1070 current if malloc_trim and/or munmap got called), and the current
1071 number of bytes allocated via malloc (or realloc, etc) but not yet
1072 freed. Note that this is the number of bytes allocated, not the
1073 number requested. It will be larger than the number requested
1074 because of alignment and bookkeeping overhead. Because it includes
1075 alignment wastage as being in use, this figure may be greater than
1076 zero even when no user-level chunks are allocated.
1078 The reported current and maximum system memory can be inaccurate if
1079 a program makes other calls to system memory allocation functions
1080 (normally sbrk) outside of malloc.
1082 malloc_stats prints only the most commonly interesting statistics.
1083 More information can be obtained by calling mallinfo.
1085 void dlmalloc_stats(void);
1087 #endif /* ONLY_MSPACES */
1090 malloc_usable_size(void* p);
1092 Returns the number of bytes you can actually use in
1093 an allocated chunk, which may be more than you requested (although
1094 often not) due to alignment and minimum size constraints.
1095 You can use this many bytes without worrying about
1096 overwriting other allocated objects. This is not a particularly great
1097 programming practice. malloc_usable_size can be more useful in
1098 debugging and assertions, for example:
1100 p = malloc(n);
1101 assert(malloc_usable_size(p) >= 256);
1103 size_t dlmalloc_usable_size(void*);
1106 #if MSPACES
1109 mspace is an opaque type representing an independent
1110 region of space that supports mspace_malloc, etc.
1112 typedef void* mspace;
1115 create_mspace creates and returns a new independent space with the
1116 given initial capacity, or, if 0, the default granularity size. It
1117 returns null if there is no system memory available to create the
1118 space. If argument locked is non-zero, the space uses a separate
1119 lock to control access. The capacity of the space will grow
1120 dynamically as needed to service mspace_malloc requests. You can
1121 control the sizes of incremental increases of this space by
1122 compiling with a different DEFAULT_GRANULARITY or dynamically
1123 setting with mallopt(M_GRANULARITY, value).
1125 mspace create_mspace(size_t capacity, int locked);
1128 destroy_mspace destroys the given space, and attempts to return all
1129 of its memory back to the system, returning the total number of
1130 bytes freed. After destruction, the results of access to all memory
1131 used by the space become undefined.
1133 size_t destroy_mspace(mspace msp);
1136 create_mspace_with_base uses the memory supplied as the initial base
1137 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
1138 space is used for bookkeeping, so the capacity must be at least this
1139 large. (Otherwise 0 is returned.) When this initial space is
1140 exhausted, additional memory will be obtained from the system.
1141 Destroying this space will deallocate all additionally allocated
1142 space (if possible) but not the initial base.
1144 mspace create_mspace_with_base(void* base, size_t capacity, int locked);
1147 mspace_mmap_large_chunks controls whether requests for large chunks
1148 are allocated in their own mmapped regions, separate from others in
1149 this mspace. By default this is enabled, which reduces
1150 fragmentation. However, such chunks are not necessarily released to
1151 the system upon destroy_mspace. Disabling by setting to false may
1152 increase fragmentation, but avoids leakage when relying on
1153 destroy_mspace to release all memory allocated using this space.
1155 int mspace_mmap_large_chunks(mspace msp, int enable);
1159 mspace_malloc behaves as malloc, but operates within
1160 the given space.
1162 void* mspace_malloc(mspace msp, size_t bytes);
1165 mspace_free behaves as free, but operates within
1166 the given space.
1168 If compiled with FOOTERS==1, mspace_free is not actually needed.
1169 free may be called instead of mspace_free because freed chunks from
1170 any space are handled by their originating spaces.
1172 void mspace_free(mspace msp, void* mem);
1175 mspace_realloc behaves as realloc, but operates within
1176 the given space.
1178 If compiled with FOOTERS==1, mspace_realloc is not actually
1179 needed. realloc may be called instead of mspace_realloc because
1180 realloced chunks from any space are handled by their originating
1181 spaces.
1183 void* mspace_realloc(mspace msp, void* mem, size_t newsize);
1186 mspace_calloc behaves as calloc, but operates within
1187 the given space.
1189 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
1192 mspace_memalign behaves as memalign, but operates within
1193 the given space.
1195 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
1198 mspace_independent_calloc behaves as independent_calloc, but
1199 operates within the given space.
1201 void** mspace_independent_calloc(mspace msp, size_t n_elements,
1202 size_t elem_size, void* chunks[]);
1205 mspace_independent_comalloc behaves as independent_comalloc, but
1206 operates within the given space.
1208 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
1209 size_t sizes[], void* chunks[]);
1212 mspace_footprint() returns the number of bytes obtained from the
1213 system for this space.
1215 size_t mspace_footprint(mspace msp);
1218 mspace_max_footprint() returns the peak number of bytes obtained from the
1219 system for this space.
1221 size_t mspace_max_footprint(mspace msp);
1224 #if !NO_MALLINFO
1226 mspace_mallinfo behaves as mallinfo, but reports properties of
1227 the given space.
1229 struct mallinfo mspace_mallinfo(mspace msp);
1230 #endif /* NO_MALLINFO */
1233 malloc_usable_size(void* p) behaves the same as malloc_usable_size;
1235 size_t mspace_usable_size(void* mem);
1238 mspace_malloc_stats behaves as malloc_stats, but reports
1239 properties of the given space.
1241 void mspace_malloc_stats(mspace msp);
1244 mspace_trim behaves as malloc_trim, but
1245 operates within the given space.
1247 int mspace_trim(mspace msp, size_t pad);
1250 An alias for mallopt.
1252 int mspace_mallopt(int, int);
1254 #endif /* MSPACES */
1256 #ifdef __cplusplus
1257 }; /* end of extern "C" */
1258 #endif /* __cplusplus */
1261 ========================================================================
1262 To make a fully customizable malloc.h header file, cut everything
1263 above this line, put into file malloc.h, edit to suit, and #include it
1264 on the next line, as well as in programs that use this malloc.
1265 ========================================================================
1268 /* #include "malloc.h" */
1270 /*------------------------------ internal #includes ---------------------- */
1272 #ifdef WIN32
1273 #pragma warning( disable : 4146 ) /* no "unsigned" warnings */
1274 #endif /* WIN32 */
1276 #include <stdio.h> /* for printing in malloc_stats */
1278 #ifndef LACKS_ERRNO_H
1279 #include <errno.h> /* for MALLOC_FAILURE_ACTION */
1280 #endif /* LACKS_ERRNO_H */
1281 #if FOOTERS
1282 #include <time.h> /* for magic initialization */
1283 #endif /* FOOTERS */
1284 #ifndef LACKS_STDLIB_H
1285 #include <stdlib.h> /* for abort() */
1286 #endif /* LACKS_STDLIB_H */
1287 #ifdef DEBUG
1288 #if ABORT_ON_ASSERT_FAILURE
1289 #define assert(x) if(!(x)) ABORT
1290 #else /* ABORT_ON_ASSERT_FAILURE */
1291 #include <assert.h>
1292 #endif /* ABORT_ON_ASSERT_FAILURE */
1293 #else /* DEBUG */
1294 #ifndef assert
1295 #define assert(x)
1296 #endif
1297 #define DEBUG 0
1298 #endif /* DEBUG */
1299 #ifndef LACKS_STRING_H
1300 #include <string.h> /* for memset etc */
1301 #endif /* LACKS_STRING_H */
1302 #if USE_BUILTIN_FFS
1303 #ifndef LACKS_STRINGS_H
1304 #include <strings.h> /* for ffs */
1305 #endif /* LACKS_STRINGS_H */
1306 #endif /* USE_BUILTIN_FFS */
1307 #if HAVE_MMAP
1308 #ifndef LACKS_SYS_MMAN_H
1309 #include <sys/mman.h> /* for mmap */
1310 #endif /* LACKS_SYS_MMAN_H */
1311 #ifndef LACKS_FCNTL_H
1312 #include <fcntl.h>
1313 #endif /* LACKS_FCNTL_H */
1314 #endif /* HAVE_MMAP */
1315 #ifndef LACKS_UNISTD_H
1316 #include <unistd.h> /* for sbrk, sysconf */
1317 #else /* LACKS_UNISTD_H */
1318 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
1319 extern void* sbrk(ptrdiff_t);
1320 #endif /* FreeBSD etc */
1321 #endif /* LACKS_UNISTD_H */
1323 /* Declarations for locking */
1324 #if USE_LOCKS
1325 #ifndef WIN32
1326 #include <pthread.h>
1327 #if defined (__SVR4) && defined (__sun) /* solaris */
1328 #include <thread.h>
1329 #endif /* solaris */
1330 #else
1331 #ifndef _M_AMD64
1332 /* These are already defined on AMD64 builds */
1333 #ifdef __cplusplus
1334 extern "C" {
1335 #endif /* __cplusplus */
1336 #ifndef __MINGW32__
1337 LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
1338 LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
1339 #endif
1340 #ifdef __cplusplus
1342 #endif /* __cplusplus */
1343 #endif /* _M_AMD64 */
1344 #ifndef __MINGW32__
1345 #pragma intrinsic (_InterlockedCompareExchange)
1346 #pragma intrinsic (_InterlockedExchange)
1347 #else
1348 /* --[ start GCC compatibility ]----------------------------------------------
1349 * Compatibility <intrin_x86.h> header for GCC -- GCC equivalents of intrinsic
1350 * Microsoft Visual C++ functions. Originally developed for the ReactOS
1351 * (<http://www.reactos.org/>) and TinyKrnl (<http://www.tinykrnl.org/>)
1352 * projects.
1354 * Copyright (c) 2006 KJK::Hyperion <hackbunny@reactos.com>
1356 * Permission is hereby granted, free of charge, to any person obtaining a
1357 * copy of this software and associated documentation files (the "Software"),
1358 * to deal in the Software without restriction, including without limitation
1359 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
1360 * and/or sell copies of the Software, and to permit persons to whom the
1361 * Software is furnished to do so, subject to the following conditions:
1363 * The above copyright notice and this permission notice shall be included in
1364 * all copies or substantial portions of the Software.
1366 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1367 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1368 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
1369 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1370 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
1371 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
1372 * DEALINGS IN THE SOFTWARE.
1375 /*** Atomic operations ***/
1376 #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) > 40100
1377 #define _ReadWriteBarrier() __sync_synchronize()
1378 #else
1379 static __inline__ __attribute__((always_inline)) long __sync_lock_test_and_set(volatile long * const Target, const long Value)
1381 long res;
1382 __asm__ __volatile__("xchg%z0 %2, %0" : "=g" (*(Target)), "=r" (res) : "1" (Value));
1383 return res;
1385 static void __inline__ __attribute__((always_inline)) _MemoryBarrier(void)
1387 __asm__ __volatile__("" : : : "memory");
1389 #define _ReadWriteBarrier() _MemoryBarrier()
1390 #endif
1391 /* BUGBUG: GCC only supports full barriers */
1392 static __inline__ __attribute__((always_inline)) long _InterlockedExchange(volatile long * const Target, const long Value)
1394 /* NOTE: __sync_lock_test_and_set would be an acquire barrier, so we force a full barrier */
1395 _ReadWriteBarrier();
1396 return __sync_lock_test_and_set(Target, Value);
1398 /* --[ end GCC compatibility ]---------------------------------------------- */
1399 #endif
1400 #define interlockedcompareexchange _InterlockedCompareExchange
1401 #define interlockedexchange _InterlockedExchange
1402 #endif /* Win32 */
1403 #endif /* USE_LOCKS */
1405 /* Declarations for bit scanning on win32 */
1406 #if defined(_MSC_VER) && _MSC_VER>=1300
1407 #ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
1408 #ifdef __cplusplus
1409 extern "C" {
1410 #endif /* __cplusplus */
1411 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
1412 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
1413 #ifdef __cplusplus
1415 #endif /* __cplusplus */
1417 #define BitScanForward _BitScanForward
1418 #define BitScanReverse _BitScanReverse
1419 #pragma intrinsic(_BitScanForward)
1420 #pragma intrinsic(_BitScanReverse)
1421 #endif /* BitScanForward */
1422 #endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
1424 #ifndef WIN32
1425 #ifndef malloc_getpagesize
1426 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
1427 # ifndef _SC_PAGE_SIZE
1428 # define _SC_PAGE_SIZE _SC_PAGESIZE
1429 # endif
1430 # endif
1431 # ifdef _SC_PAGE_SIZE
1432 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
1433 # else
1434 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
1435 extern size_t getpagesize();
1436 # define malloc_getpagesize getpagesize()
1437 # else
1438 # ifdef WIN32 /* use supplied emulation of getpagesize */
1439 # define malloc_getpagesize getpagesize()
1440 # else
1441 # ifndef LACKS_SYS_PARAM_H
1442 # include <sys/param.h>
1443 # endif
1444 # ifdef EXEC_PAGESIZE
1445 # define malloc_getpagesize EXEC_PAGESIZE
1446 # else
1447 # ifdef NBPG
1448 # ifndef CLSIZE
1449 # define malloc_getpagesize NBPG
1450 # else
1451 # define malloc_getpagesize (NBPG * CLSIZE)
1452 # endif
1453 # else
1454 # ifdef NBPC
1455 # define malloc_getpagesize NBPC
1456 # else
1457 # ifdef PAGESIZE
1458 # define malloc_getpagesize PAGESIZE
1459 # else /* just guess */
1460 # define malloc_getpagesize ((size_t)4096U)
1461 # endif
1462 # endif
1463 # endif
1464 # endif
1465 # endif
1466 # endif
1467 # endif
1468 #endif
1469 #endif
1473 /* ------------------- size_t and alignment properties -------------------- */
1475 /* The byte and bit size of a size_t */
1476 #define SIZE_T_SIZE (sizeof(size_t))
1477 #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
1479 /* Some constants coerced to size_t */
1480 /* Annoying but necessary to avoid errors on some platforms */
1481 #define SIZE_T_ZERO ((size_t)0)
1482 #define SIZE_T_ONE ((size_t)1)
1483 #define SIZE_T_TWO ((size_t)2)
1484 #define SIZE_T_FOUR ((size_t)4)
1485 #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
1486 #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
1487 #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
1488 #define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
1490 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
1491 #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
1493 /* True if address a has acceptable alignment */
1494 #define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
1496 /* the number of bytes to offset an address to align it */
1497 #define align_offset(A)\
1498 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
1499 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
1501 /* -------------------------- MMAP preliminaries ------------------------- */
1504 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
1505 checks to fail so compiler optimizer can delete code rather than
1506 using so many "#if"s.
1510 /* MORECORE and MMAP must return MFAIL on failure */
1511 #define MFAIL ((void*)(MAX_SIZE_T))
1512 #define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
1514 #if HAVE_MMAP
1516 #ifndef WIN32
1517 #define MUNMAP_DEFAULT(a, s) munmap((a), (s))
1518 #define MMAP_PROT (PROT_READ|PROT_WRITE)
1519 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1520 #define MAP_ANONYMOUS MAP_ANON
1521 #endif /* MAP_ANON */
1522 #ifdef MAP_ANONYMOUS
1523 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
1524 #define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
1525 #else /* MAP_ANONYMOUS */
1527 Nearly all versions of mmap support MAP_ANONYMOUS, so the following
1528 is unlikely to be needed, but is supplied just in case.
1530 #define MMAP_FLAGS (MAP_PRIVATE)
1531 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1532 #define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
1533 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1534 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
1535 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
1536 #endif /* MAP_ANONYMOUS */
1538 #define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
1540 #else /* WIN32 */
1542 /* Win32 MMAP via VirtualAlloc */
1543 static FORCEINLINE void* win32mmap(size_t size) {
1544 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
1545 return (ptr != 0)? ptr: MFAIL;
1548 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
1549 static FORCEINLINE void* win32direct_mmap(size_t size) {
1550 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
1551 PAGE_READWRITE);
1552 return (ptr != 0)? ptr: MFAIL;
1555 /* This function supports releasing coalesed segments */
1556 static FORCEINLINE int win32munmap(void* ptr, size_t size) {
1557 MEMORY_BASIC_INFORMATION minfo;
1558 char* cptr = (char*)ptr;
1559 while (size) {
1560 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
1561 return -1;
1562 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
1563 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
1564 return -1;
1565 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
1566 return -1;
1567 cptr += minfo.RegionSize;
1568 size -= minfo.RegionSize;
1570 return 0;
1573 #define MMAP_DEFAULT(s) win32mmap(s)
1574 #define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
1575 #define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
1576 #endif /* WIN32 */
1577 #endif /* HAVE_MMAP */
1579 #if HAVE_MREMAP
1580 #ifndef WIN32
1581 #define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
1582 #endif /* WIN32 */
1583 #endif /* HAVE_MREMAP */
1587 * Define CALL_MORECORE
1589 #if HAVE_MORECORE
1590 #ifdef MORECORE
1591 #define CALL_MORECORE(S) MORECORE(S)
1592 #else /* MORECORE */
1593 #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
1594 #endif /* MORECORE */
1595 #else /* HAVE_MORECORE */
1596 #define CALL_MORECORE(S) MFAIL
1597 #endif /* HAVE_MORECORE */
1600 * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
1602 #if HAVE_MMAP
1603 #define IS_MMAPPED_BIT (SIZE_T_ONE)
1604 #define USE_MMAP_BIT (SIZE_T_ONE)
1606 #ifdef MMAP
1607 #define CALL_MMAP(s) MMAP(s)
1608 #else /* MMAP */
1609 #define CALL_MMAP(s) MMAP_DEFAULT(s)
1610 #endif /* MMAP */
1611 #ifdef MUNMAP
1612 #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1613 #else /* MUNMAP */
1614 #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
1615 #endif /* MUNMAP */
1616 #ifdef DIRECT_MMAP
1617 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1618 #else /* DIRECT_MMAP */
1619 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
1620 #endif /* DIRECT_MMAP */
1621 #else /* HAVE_MMAP */
1622 #define IS_MMAPPED_BIT (SIZE_T_ZERO)
1623 #define USE_MMAP_BIT (SIZE_T_ZERO)
1625 #define MMAP(s) MFAIL
1626 #define MUNMAP(a, s) (-1)
1627 #define DIRECT_MMAP(s) MFAIL
1628 #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
1629 #define CALL_MMAP(s) MMAP(s)
1630 #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
1631 #endif /* HAVE_MMAP */
1634 * Define CALL_MREMAP
1636 #if HAVE_MMAP && HAVE_MREMAP
1637 #ifdef MREMAP
1638 #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
1639 #else /* MREMAP */
1640 #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
1641 #endif /* MREMAP */
1642 #else /* HAVE_MMAP && HAVE_MREMAP */
1643 #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
1644 #endif /* HAVE_MMAP && HAVE_MREMAP */
1646 /* mstate bit set if continguous morecore disabled or failed */
1647 #define USE_NONCONTIGUOUS_BIT (4U)
1649 /* segment bit set in create_mspace_with_base */
1650 #define EXTERN_BIT (8U)
1653 /* --------------------------- Lock preliminaries ------------------------ */
1656 When locks are defined, there is one global lock, plus
1657 one per-mspace lock.
1659 The global lock_ensures that mparams.magic and other unique
1660 mparams values are initialized only once. It also protects
1661 sequences of calls to MORECORE. In many cases sys_alloc requires
1662 two calls, that should not be interleaved with calls by other
1663 threads. This does not protect against direct calls to MORECORE
1664 by other threads not using this lock, so there is still code to
1665 cope the best we can on interference.
1667 Per-mspace locks surround calls to malloc, free, etc. To enable use
1668 in layered extensions, per-mspace locks are reentrant.
1670 Because lock-protected regions generally have bounded times, it is
1671 OK to use the supplied simple spinlocks in the custom versions for
1672 x86.
1674 If USE_LOCKS is > 1, the definitions of lock routines here are
1675 bypassed, in which case you will need to define at least
1676 INITIAL_LOCK, ACQUIRE_LOCK, RELEASE_LOCK and possibly TRY_LOCK
1677 (which is not used in this malloc, but commonly needed in
1678 extensions.)
1681 #if USE_LOCKS == 1
1683 #if USE_SPIN_LOCKS
1684 #ifndef WIN32
1686 /* Custom pthread-style spin locks on x86 and x64 for gcc */
1687 struct pthread_mlock_t {
1688 volatile unsigned int l;
1689 volatile unsigned int c;
1690 volatile pthread_t threadid;
1692 #define MLOCK_T struct pthread_mlock_t
1693 #define CURRENT_THREAD pthread_self()
1694 #define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), 0)
1695 #define ACQUIRE_LOCK(sl) pthread_acquire_lock(sl)
1696 #define RELEASE_LOCK(sl) pthread_release_lock(sl)
1697 #define TRY_LOCK(sl) pthread_try_lock(sl)
1698 #define SPINS_PER_YIELD 63
1700 static MLOCK_T malloc_global_mutex = { 0, 0, 0};
1702 static FORCEINLINE int pthread_acquire_lock (MLOCK_T *sl) {
1703 int spins = 0;
1704 volatile unsigned int* lp = &sl->l;
1705 for (;;) {
1706 if (*lp != 0) {
1707 if (sl->threadid == CURRENT_THREAD) {
1708 ++sl->c;
1709 return 0;
1712 else {
1713 /* place args to cmpxchgl in locals to evade oddities in some gccs */
1714 int cmp = 0;
1715 int val = 1;
1716 int ret;
1717 __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
1718 : "=a" (ret)
1719 : "r" (val), "m" (*(lp)), "0"(cmp)
1720 : "memory", "cc");
1721 if (!ret) {
1722 assert(!sl->threadid);
1723 sl->c = 1;
1724 sl->threadid = CURRENT_THREAD;
1725 return 0;
1727 if ((++spins & SPINS_PER_YIELD) == 0) {
1728 #if defined (__SVR4) && defined (__sun) /* solaris */
1729 thr_yield();
1730 #else
1731 #if defined(__linux__) || defined(__FreeBSD__) || defined(__APPLE__)
1732 sched_yield();
1733 #else /* no-op yield on unknown systems */
1735 #endif /* __linux__ || __FreeBSD__ || __APPLE__ */
1736 #endif /* solaris */
1742 static FORCEINLINE void pthread_release_lock (MLOCK_T *sl) {
1743 assert(sl->l != 0);
1744 assert(sl->threadid == CURRENT_THREAD);
1745 if (--sl->c == 0) {
1746 sl->threadid = 0;
1747 volatile unsigned int* lp = &sl->l;
1748 int prev = 0;
1749 int ret;
1750 __asm__ __volatile__ ("lock; xchgl %0, %1"
1751 : "=r" (ret)
1752 : "m" (*(lp)), "0"(prev)
1753 : "memory");
1757 static FORCEINLINE int pthread_try_lock (MLOCK_T *sl) {
1758 volatile unsigned int* lp = &sl->l;
1759 if (*lp != 0) {
1760 if (sl->threadid == CURRENT_THREAD) {
1761 ++sl->c;
1762 return 1;
1765 else {
1766 int cmp = 0;
1767 int val = 1;
1768 int ret;
1769 __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
1770 : "=a" (ret)
1771 : "r" (val), "m" (*(lp)), "0"(cmp)
1772 : "memory", "cc");
1773 if (!ret) {
1774 assert(!sl->threadid);
1775 sl->c = 1;
1776 sl->threadid = CURRENT_THREAD;
1777 return 1;
1780 return 0;
1784 #else /* WIN32 */
1785 /* Custom win32-style spin locks on x86 and x64 for MSC */
1786 struct win32_mlock_t
1788 volatile long l;
1789 volatile unsigned int c;
1790 volatile long threadid;
1793 #define MLOCK_T struct win32_mlock_t
1794 #define CURRENT_THREAD win32_getcurrentthreadid()
1795 #define INITIAL_LOCK(sl) (memset(sl, 0, sizeof(MLOCK_T)), 0)
1796 #define ACQUIRE_LOCK(sl) win32_acquire_lock(sl)
1797 #define RELEASE_LOCK(sl) win32_release_lock(sl)
1798 #define TRY_LOCK(sl) win32_try_lock(sl)
1799 #define SPINS_PER_YIELD 63
1801 static MLOCK_T malloc_global_mutex = { 0, 0, 0};
1803 static FORCEINLINE long win32_getcurrentthreadid() {
1804 #ifdef _MSC_VER
1805 #if defined(_M_IX86)
1806 long *threadstruct=(long *)__readfsdword(0x18);
1807 long threadid=threadstruct[0x24/sizeof(long)];
1808 return threadid;
1809 #elif defined(_M_X64)
1810 /* todo */
1811 return GetCurrentThreadId();
1812 #else
1813 return GetCurrentThreadId();
1814 #endif
1815 #else
1816 return GetCurrentThreadId();
1817 #endif
1820 static FORCEINLINE int win32_acquire_lock (MLOCK_T *sl) {
1821 int spins = 0;
1822 for (;;) {
1823 if (sl->l != 0) {
1824 if (sl->threadid == CURRENT_THREAD) {
1825 ++sl->c;
1826 return 0;
1829 else {
1830 if (!interlockedexchange(&sl->l, 1)) {
1831 assert(!sl->threadid);
1832 sl->c=CURRENT_THREAD;
1833 sl->threadid = CURRENT_THREAD;
1834 sl->c = 1;
1835 return 0;
1838 if ((++spins & SPINS_PER_YIELD) == 0)
1839 SleepEx(0, FALSE);
1843 static FORCEINLINE void win32_release_lock (MLOCK_T *sl) {
1844 assert(sl->threadid == CURRENT_THREAD);
1845 assert(sl->l != 0);
1846 if (--sl->c == 0) {
1847 sl->threadid = 0;
1848 interlockedexchange (&sl->l, 0);
1852 static FORCEINLINE int win32_try_lock (MLOCK_T *sl) {
1853 if(sl->l != 0) {
1854 if (sl->threadid == CURRENT_THREAD) {
1855 ++sl->c;
1856 return 1;
1859 else {
1860 if (!interlockedexchange(&sl->l, 1)){
1861 assert(!sl->threadid);
1862 sl->threadid = CURRENT_THREAD;
1863 sl->c = 1;
1864 return 1;
1867 return 0;
1870 #endif /* WIN32 */
1871 #else /* USE_SPIN_LOCKS */
1873 #ifndef WIN32
1874 /* pthreads-based locks */
1876 #define MLOCK_T pthread_mutex_t
1877 #define CURRENT_THREAD pthread_self()
1878 #define INITIAL_LOCK(sl) pthread_init_lock(sl)
1879 #define ACQUIRE_LOCK(sl) pthread_mutex_lock(sl)
1880 #define RELEASE_LOCK(sl) pthread_mutex_unlock(sl)
1881 #define TRY_LOCK(sl) (!pthread_mutex_trylock(sl))
1883 static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
1885 /* Cope with old-style linux recursive lock initialization by adding */
1886 /* skipped internal declaration from pthread.h */
1887 #ifdef linux
1888 #ifndef PTHREAD_MUTEX_RECURSIVE
1889 extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
1890 int __kind));
1891 #define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
1892 #define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
1893 #endif
1894 #endif
1896 static int pthread_init_lock (MLOCK_T *sl) {
1897 pthread_mutexattr_t attr;
1898 if (pthread_mutexattr_init(&attr)) return 1;
1899 if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
1900 if (pthread_mutex_init(sl, &attr)) return 1;
1901 if (pthread_mutexattr_destroy(&attr)) return 1;
1902 return 0;
1905 #else /* WIN32 */
1906 /* Win32 critical sections */
1907 #define MLOCK_T CRITICAL_SECTION
1908 #define CURRENT_THREAD GetCurrentThreadId()
1909 #define INITIAL_LOCK(s) (!InitializeCriticalSectionAndSpinCount((s), 0x80000000|4000))
1910 #define ACQUIRE_LOCK(s) (EnterCriticalSection(s), 0)
1911 #define RELEASE_LOCK(s) LeaveCriticalSection(s)
1912 #define TRY_LOCK(s) TryEnterCriticalSection(s)
1913 #define NEED_GLOBAL_LOCK_INIT
1915 static MLOCK_T malloc_global_mutex;
1916 static volatile long malloc_global_mutex_status;
1918 /* Use spin loop to initialize global lock */
1919 static void init_malloc_global_mutex() {
1920 for (;;) {
1921 long stat = malloc_global_mutex_status;
1922 if (stat > 0)
1923 return;
1924 /* transition to < 0 while initializing, then to > 0) */
1925 if (stat == 0 &&
1926 interlockedcompareexchange(&malloc_global_mutex_status, -1, 0) == 0) {
1927 InitializeCriticalSection(&malloc_global_mutex);
1928 interlockedexchange(&malloc_global_mutex_status,1);
1929 return;
1931 SleepEx(0, FALSE);
1935 #endif /* WIN32 */
1936 #endif /* USE_SPIN_LOCKS */
1937 #endif /* USE_LOCKS == 1 */
1939 /* ----------------------- User-defined locks ------------------------ */
1941 #if USE_LOCKS > 1
1942 /* Define your own lock implementation here */
1943 /* #define INITIAL_LOCK(sl) ... */
1944 /* #define ACQUIRE_LOCK(sl) ... */
1945 /* #define RELEASE_LOCK(sl) ... */
1946 /* #define TRY_LOCK(sl) ... */
1947 /* static MLOCK_T malloc_global_mutex = ... */
1948 #endif /* USE_LOCKS > 1 */
1950 /* ----------------------- Lock-based state ------------------------ */
1952 #if USE_LOCKS
1953 #define USE_LOCK_BIT (2U)
1954 #else /* USE_LOCKS */
1955 #define USE_LOCK_BIT (0U)
1956 #define INITIAL_LOCK(l)
1957 #endif /* USE_LOCKS */
1959 #if USE_LOCKS
1960 #define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
1961 #define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
1962 #else /* USE_LOCKS */
1963 #define ACQUIRE_MALLOC_GLOBAL_LOCK()
1964 #define RELEASE_MALLOC_GLOBAL_LOCK()
1965 #endif /* USE_LOCKS */
1968 /* ----------------------- Chunk representations ------------------------ */
1971 (The following includes lightly edited explanations by Colin Plumb.)
1973 The malloc_chunk declaration below is misleading (but accurate and
1974 necessary). It declares a "view" into memory allowing access to
1975 necessary fields at known offsets from a given base.
1977 Chunks of memory are maintained using a `boundary tag' method as
1978 originally described by Knuth. (See the paper by Paul Wilson
1979 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
1980 techniques.) Sizes of free chunks are stored both in the front of
1981 each chunk and at the end. This makes consolidating fragmented
1982 chunks into bigger chunks fast. The head fields also hold bits
1983 representing whether chunks are free or in use.
1985 Here are some pictures to make it clearer. They are "exploded" to
1986 show that the state of a chunk can be thought of as extending from
1987 the high 31 bits of the head field of its header through the
1988 prev_foot and PINUSE_BIT bit of the following chunk header.
1990 A chunk that's in use looks like:
1992 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1993 | Size of previous chunk (if P = 0) |
1994 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
1996 | Size of this chunk 1| +-+
1997 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1999 +- -+
2001 +- -+
2003 +- size - sizeof(size_t) available payload bytes -+
2005 chunk-> +- -+
2007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2008 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
2009 | Size of next chunk (may or may not be in use) | +-+
2010 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2012 And if it's free, it looks like this:
2014 chunk-> +- -+
2015 | User payload (must be in use, or we would have merged!) |
2016 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2017 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
2018 | Size of this chunk 0| +-+
2019 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2020 | Next pointer |
2021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2022 | Prev pointer |
2023 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2025 +- size - sizeof(struct chunk) unused bytes -+
2027 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2028 | Size of this chunk |
2029 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
2031 | Size of next chunk (must be in use, or we would have merged)| +-+
2032 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2034 +- User payload -+
2036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2039 Note that since we always merge adjacent free chunks, the chunks
2040 adjacent to a free chunk must be in use.
2042 Given a pointer to a chunk (which can be derived trivially from the
2043 payload pointer) we can, in O(1) time, find out whether the adjacent
2044 chunks are free, and if so, unlink them from the lists that they
2045 are on and merge them with the current chunk.
2047 Chunks always begin on even word boundaries, so the mem portion
2048 (which is returned to the user) is also on an even word boundary, and
2049 thus at least double-word aligned.
2051 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
2052 chunk size (which is always a multiple of two words), is an in-use
2053 bit for the *previous* chunk. If that bit is *clear*, then the
2054 word before the current chunk size contains the previous chunk
2055 size, and can be used to find the front of the previous chunk.
2056 The very first chunk allocated always has this bit set, preventing
2057 access to non-existent (or non-owned) memory. If pinuse is set for
2058 any given chunk, then you CANNOT determine the size of the
2059 previous chunk, and might even get a memory addressing fault when
2060 trying to do so.
2062 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
2063 the chunk size redundantly records whether the current chunk is
2064 inuse. This redundancy enables usage checks within free and realloc,
2065 and reduces indirection when freeing and consolidating chunks.
2067 Each freshly allocated chunk must have both cinuse and pinuse set.
2068 That is, each allocated chunk borders either a previously allocated
2069 and still in-use chunk, or the base of its memory arena. This is
2070 ensured by making all allocations from the the `lowest' part of any
2071 found chunk. Further, no free chunk physically borders another one,
2072 so each free chunk is known to be preceded and followed by either
2073 inuse chunks or the ends of memory.
2075 Note that the `foot' of the current chunk is actually represented
2076 as the prev_foot of the NEXT chunk. This makes it easier to
2077 deal with alignments etc but can be very confusing when trying
2078 to extend or adapt this code.
2080 The exceptions to all this are
2082 1. The special chunk `top' is the top-most available chunk (i.e.,
2083 the one bordering the end of available memory). It is treated
2084 specially. Top is never included in any bin, is used only if
2085 no other chunk is available, and is released back to the
2086 system if it is very large (see M_TRIM_THRESHOLD). In effect,
2087 the top chunk is treated as larger (and thus less well
2088 fitting) than any other available chunk. The top chunk
2089 doesn't update its trailing size field since there is no next
2090 contiguous chunk that would have to index off it. However,
2091 space is still allocated for it (TOP_FOOT_SIZE) to enable
2092 separation or merging when space is extended.
2094 3. Chunks allocated via mmap, which have the lowest-order bit
2095 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
2096 PINUSE_BIT in their head fields. Because they are allocated
2097 one-by-one, each must carry its own prev_foot field, which is
2098 also used to hold the offset this chunk has within its mmapped
2099 region, which is needed to preserve alignment. Each mmapped
2100 chunk is trailed by the first two fields of a fake next-chunk
2101 for sake of usage checks.
2105 struct malloc_chunk {
2106 size_t prev_foot; /* Size of previous chunk (if free). */
2107 size_t head; /* Size and inuse bits. */
2108 struct malloc_chunk* fd; /* double links -- used only if free. */
2109 struct malloc_chunk* bk;
2112 typedef struct malloc_chunk mchunk;
2113 typedef struct malloc_chunk* mchunkptr;
2114 typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
2115 typedef unsigned int bindex_t; /* Described below */
2116 typedef unsigned int binmap_t; /* Described below */
2117 typedef unsigned int flag_t; /* The type of various bit flag sets */
2119 /* ------------------- Chunks sizes and alignments ----------------------- */
2121 #define MCHUNK_SIZE (sizeof(mchunk))
2123 #if FOOTERS
2124 #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2125 #else /* FOOTERS */
2126 #define CHUNK_OVERHEAD (SIZE_T_SIZE)
2127 #endif /* FOOTERS */
2129 /* MMapped chunks need a second word of overhead ... */
2130 #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
2131 /* ... and additional padding for fake next-chunk at foot */
2132 #define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
2134 /* The smallest size we can malloc is an aligned minimal chunk */
2135 #define MIN_CHUNK_SIZE\
2136 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2138 /* conversion from malloc headers to user pointers, and back */
2139 #define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
2140 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
2141 /* chunk associated with aligned address A */
2142 #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
2144 /* Bounds on request (not chunk) sizes. */
2145 #define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
2146 #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
2148 /* pad request bytes into a usable size */
2149 #define pad_request(req) \
2150 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
2152 /* pad request, checking for minimum (but not maximum) */
2153 #define request2size(req) \
2154 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
2157 /* ------------------ Operations on head and foot fields ----------------- */
2160 The head field of a chunk is or'ed with PINUSE_BIT when previous
2161 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
2162 use. If the chunk was obtained with mmap, the prev_foot field has
2163 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
2164 mmapped region to the base of the chunk.
2166 FLAG4_BIT is not used by this malloc, but might be useful in extensions.
2169 #define PINUSE_BIT (SIZE_T_ONE)
2170 #define CINUSE_BIT (SIZE_T_TWO)
2171 #define FLAG4_BIT (SIZE_T_FOUR)
2172 #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
2173 #define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
2175 /* Head value for fenceposts */
2176 #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
2178 /* extraction of fields from head words */
2179 #define cinuse(p) ((p)->head & CINUSE_BIT)
2180 #define pinuse(p) ((p)->head & PINUSE_BIT)
2181 #define chunksize(p) ((p)->head & ~(FLAG_BITS))
2183 #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
2184 #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
2186 /* Treat space at ptr +/- offset as a chunk */
2187 #define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
2188 #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
2190 /* Ptr to next or previous physical malloc_chunk. */
2191 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
2192 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
2194 /* extract next chunk's pinuse bit */
2195 #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
2197 /* Get/set size at footer */
2198 #define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
2199 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
2201 /* Set size, pinuse bit, and foot */
2202 #define set_size_and_pinuse_of_free_chunk(p, s)\
2203 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
2205 /* Set size, pinuse bit, foot, and clear next pinuse */
2206 #define set_free_with_pinuse(p, s, n)\
2207 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
2209 #define is_mmapped(p)\
2210 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
2212 /* Get the internal overhead associated with chunk p */
2213 #define overhead_for(p)\
2214 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
2216 /* Return true if malloced space is not necessarily cleared */
2217 #if MMAP_CLEARS
2218 #define calloc_must_clear(p) (!is_mmapped(p))
2219 #else /* MMAP_CLEARS */
2220 #define calloc_must_clear(p) (1)
2221 #endif /* MMAP_CLEARS */
2223 /* ---------------------- Overlaid data structures ----------------------- */
2226 When chunks are not in use, they are treated as nodes of either
2227 lists or trees.
2229 "Small" chunks are stored in circular doubly-linked lists, and look
2230 like this:
2232 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2233 | Size of previous chunk |
2234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2235 `head:' | Size of chunk, in bytes |P|
2236 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2237 | Forward pointer to next chunk in list |
2238 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2239 | Back pointer to previous chunk in list |
2240 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2241 | Unused space (may be 0 bytes long) .
2244 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2245 `foot:' | Size of chunk, in bytes |
2246 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2248 Larger chunks are kept in a form of bitwise digital trees (aka
2249 tries) keyed on chunksizes. Because malloc_tree_chunks are only for
2250 free chunks greater than 256 bytes, their size doesn't impose any
2251 constraints on user chunk sizes. Each node looks like:
2253 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2254 | Size of previous chunk |
2255 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2256 `head:' | Size of chunk, in bytes |P|
2257 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2258 | Forward pointer to next chunk of same size |
2259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2260 | Back pointer to previous chunk of same size |
2261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2262 | Pointer to left child (child[0]) |
2263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2264 | Pointer to right child (child[1]) |
2265 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2266 | Pointer to parent |
2267 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2268 | bin index of this chunk |
2269 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2270 | Unused space .
2272 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2273 `foot:' | Size of chunk, in bytes |
2274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
2276 Each tree holding treenodes is a tree of unique chunk sizes. Chunks
2277 of the same size are arranged in a circularly-linked list, with only
2278 the oldest chunk (the next to be used, in our FIFO ordering)
2279 actually in the tree. (Tree members are distinguished by a non-null
2280 parent pointer.) If a chunk with the same size an an existing node
2281 is inserted, it is linked off the existing node using pointers that
2282 work in the same way as fd/bk pointers of small chunks.
2284 Each tree contains a power of 2 sized range of chunk sizes (the
2285 smallest is 0x100 <= x < 0x180), which is is divided in half at each
2286 tree level, with the chunks in the smaller half of the range (0x100
2287 <= x < 0x140 for the top nose) in the left subtree and the larger
2288 half (0x140 <= x < 0x180) in the right subtree. This is, of course,
2289 done by inspecting individual bits.
2291 Using these rules, each node's left subtree contains all smaller
2292 sizes than its right subtree. However, the node at the root of each
2293 subtree has no particular ordering relationship to either. (The
2294 dividing line between the subtree sizes is based on trie relation.)
2295 If we remove the last chunk of a given size from the interior of the
2296 tree, we need to replace it with a leaf node. The tree ordering
2297 rules permit a node to be replaced by any leaf below it.
2299 The smallest chunk in a tree (a common operation in a best-fit
2300 allocator) can be found by walking a path to the leftmost leaf in
2301 the tree. Unlike a usual binary tree, where we follow left child
2302 pointers until we reach a null, here we follow the right child
2303 pointer any time the left one is null, until we reach a leaf with
2304 both child pointers null. The smallest chunk in the tree will be
2305 somewhere along that path.
2307 The worst case number of steps to add, find, or remove a node is
2308 bounded by the number of bits differentiating chunks within
2309 bins. Under current bin calculations, this ranges from 6 up to 21
2310 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
2311 is of course much better.
2314 struct malloc_tree_chunk {
2315 /* The first four fields must be compatible with malloc_chunk */
2316 size_t prev_foot;
2317 size_t head;
2318 struct malloc_tree_chunk* fd;
2319 struct malloc_tree_chunk* bk;
2321 struct malloc_tree_chunk* child[2];
2322 struct malloc_tree_chunk* parent;
2323 bindex_t index;
2326 typedef struct malloc_tree_chunk tchunk;
2327 typedef struct malloc_tree_chunk* tchunkptr;
2328 typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
2330 /* A little helper macro for trees */
2331 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
2333 /* ----------------------------- Segments -------------------------------- */
2336 Each malloc space may include non-contiguous segments, held in a
2337 list headed by an embedded malloc_segment record representing the
2338 top-most space. Segments also include flags holding properties of
2339 the space. Large chunks that are directly allocated by mmap are not
2340 included in this list. They are instead independently created and
2341 destroyed without otherwise keeping track of them.
2343 Segment management mainly comes into play for spaces allocated by
2344 MMAP. Any call to MMAP might or might not return memory that is
2345 adjacent to an existing segment. MORECORE normally contiguously
2346 extends the current space, so this space is almost always adjacent,
2347 which is simpler and faster to deal with. (This is why MORECORE is
2348 used preferentially to MMAP when both are available -- see
2349 sys_alloc.) When allocating using MMAP, we don't use any of the
2350 hinting mechanisms (inconsistently) supported in various
2351 implementations of unix mmap, or distinguish reserving from
2352 committing memory. Instead, we just ask for space, and exploit
2353 contiguity when we get it. It is probably possible to do
2354 better than this on some systems, but no general scheme seems
2355 to be significantly better.
2357 Management entails a simpler variant of the consolidation scheme
2358 used for chunks to reduce fragmentation -- new adjacent memory is
2359 normally prepended or appended to an existing segment. However,
2360 there are limitations compared to chunk consolidation that mostly
2361 reflect the fact that segment processing is relatively infrequent
2362 (occurring only when getting memory from system) and that we
2363 don't expect to have huge numbers of segments:
2365 * Segments are not indexed, so traversal requires linear scans. (It
2366 would be possible to index these, but is not worth the extra
2367 overhead and complexity for most programs on most platforms.)
2368 * New segments are only appended to old ones when holding top-most
2369 memory; if they cannot be prepended to others, they are held in
2370 different segments.
2372 Except for the top-most segment of an mstate, each segment record
2373 is kept at the tail of its segment. Segments are added by pushing
2374 segment records onto the list headed by &mstate.seg for the
2375 containing mstate.
2377 Segment flags control allocation/merge/deallocation policies:
2378 * If EXTERN_BIT set, then we did not allocate this segment,
2379 and so should not try to deallocate or merge with others.
2380 (This currently holds only for the initial segment passed
2381 into create_mspace_with_base.)
2382 * If IS_MMAPPED_BIT set, the segment may be merged with
2383 other surrounding mmapped segments and trimmed/de-allocated
2384 using munmap.
2385 * If neither bit is set, then the segment was obtained using
2386 MORECORE so can be merged with surrounding MORECORE'd segments
2387 and deallocated/trimmed using MORECORE with negative arguments.
2390 struct malloc_segment {
2391 char* base; /* base address */
2392 size_t size; /* allocated size */
2393 struct malloc_segment* next; /* ptr to next segment */
2394 flag_t sflags; /* mmap and extern flag */
2397 #define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
2398 #define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
2400 typedef struct malloc_segment msegment;
2401 typedef struct malloc_segment* msegmentptr;
2403 /* ---------------------------- malloc_state ----------------------------- */
2406 A malloc_state holds all of the bookkeeping for a space.
2407 The main fields are:
2410 The topmost chunk of the currently active segment. Its size is
2411 cached in topsize. The actual size of topmost space is
2412 topsize+TOP_FOOT_SIZE, which includes space reserved for adding
2413 fenceposts and segment records if necessary when getting more
2414 space from the system. The size at which to autotrim top is
2415 cached from mparams in trim_check, except that it is disabled if
2416 an autotrim fails.
2418 Designated victim (dv)
2419 This is the preferred chunk for servicing small requests that
2420 don't have exact fits. It is normally the chunk split off most
2421 recently to service another small request. Its size is cached in
2422 dvsize. The link fields of this chunk are not maintained since it
2423 is not kept in a bin.
2425 SmallBins
2426 An array of bin headers for free chunks. These bins hold chunks
2427 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
2428 chunks of all the same size, spaced 8 bytes apart. To simplify
2429 use in double-linked lists, each bin header acts as a malloc_chunk
2430 pointing to the real first node, if it exists (else pointing to
2431 itself). This avoids special-casing for headers. But to avoid
2432 waste, we allocate only the fd/bk pointers of bins, and then use
2433 repositioning tricks to treat these as the fields of a chunk.
2435 TreeBins
2436 Treebins are pointers to the roots of trees holding a range of
2437 sizes. There are 2 equally spaced treebins for each power of two
2438 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
2439 larger.
2441 Bin maps
2442 There is one bit map for small bins ("smallmap") and one for
2443 treebins ("treemap). Each bin sets its bit when non-empty, and
2444 clears the bit when empty. Bit operations are then used to avoid
2445 bin-by-bin searching -- nearly all "search" is done without ever
2446 looking at bins that won't be selected. The bit maps
2447 conservatively use 32 bits per map word, even if on 64bit system.
2448 For a good description of some of the bit-based techniques used
2449 here, see Henry S. Warren Jr's book "Hacker's Delight" (and
2450 supplement at http://hackersdelight.org/). Many of these are
2451 intended to reduce the branchiness of paths through malloc etc, as
2452 well as to reduce the number of memory locations read or written.
2454 Segments
2455 A list of segments headed by an embedded malloc_segment record
2456 representing the initial space.
2458 Address check support
2459 The least_addr field is the least address ever obtained from
2460 MORECORE or MMAP. Attempted frees and reallocs of any address less
2461 than this are trapped (unless INSECURE is defined).
2463 Magic tag
2464 A cross-check field that should always hold same value as mparams.magic.
2466 Flags
2467 Bits recording whether to use MMAP, locks, or contiguous MORECORE
2469 Statistics
2470 Each space keeps track of current and maximum system memory
2471 obtained via MORECORE or MMAP.
2473 Trim support
2474 Fields holding the amount of unused topmost memory that should trigger
2475 timming, and a counter to force periodic scanning to release unused
2476 non-topmost segments.
2478 Locking
2479 If USE_LOCKS is defined, the "mutex" lock is acquired and released
2480 around every public call using this mspace.
2482 Extension support
2483 A void* pointer and a size_t field that can be used to help implement
2484 extensions to this malloc.
2487 /* Bin types, widths and sizes */
2488 #define NSMALLBINS (32U)
2489 #define NTREEBINS (32U)
2490 #define SMALLBIN_SHIFT (3U)
2491 #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
2492 #define TREEBIN_SHIFT (8U)
2493 #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
2494 #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
2495 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
2497 struct malloc_state {
2498 binmap_t smallmap;
2499 binmap_t treemap;
2500 size_t dvsize;
2501 size_t topsize;
2502 char* least_addr;
2503 mchunkptr dv;
2504 mchunkptr top;
2505 size_t trim_check;
2506 size_t release_checks;
2507 size_t magic;
2508 mchunkptr smallbins[(NSMALLBINS+1)*2];
2509 tbinptr treebins[NTREEBINS];
2510 size_t footprint;
2511 size_t max_footprint;
2512 flag_t mflags;
2513 #if USE_LOCKS
2514 MLOCK_T mutex; /* locate lock among fields that rarely change */
2515 #endif /* USE_LOCKS */
2516 msegment seg;
2517 void* extp; /* Unused but available for extensions */
2518 size_t exts;
2521 typedef struct malloc_state* mstate;
2523 /* ------------- Global malloc_state and malloc_params ------------------- */
2526 malloc_params holds global properties, including those that can be
2527 dynamically set using mallopt. There is a single instance, mparams,
2528 initialized in init_mparams. Note that the non-zeroness of "magic"
2529 also serves as an initialization flag.
2532 struct malloc_params {
2533 volatile size_t magic;
2534 size_t page_size;
2535 size_t granularity;
2536 size_t mmap_threshold;
2537 size_t trim_threshold;
2538 flag_t default_mflags;
2541 static struct malloc_params mparams;
2543 /* Ensure mparams initialized */
2544 #define ensure_initialization() (mparams.magic != 0 || init_mparams())
2546 #if !ONLY_MSPACES
2548 /* The global malloc_state used for all non-"mspace" calls */
2549 static struct malloc_state _gm_;
2550 #define gm (&_gm_)
2551 #define is_global(M) ((M) == &_gm_)
2553 #endif /* !ONLY_MSPACES */
2555 #define is_initialized(M) ((M)->top != 0)
2557 /* -------------------------- system alloc setup ------------------------- */
2559 /* Operations on mflags */
2561 #define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
2562 #define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
2563 #define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
2565 #define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
2566 #define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
2567 #define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
2569 #define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
2570 #define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
2572 #define set_lock(M,L)\
2573 ((M)->mflags = (L)?\
2574 ((M)->mflags | USE_LOCK_BIT) :\
2575 ((M)->mflags & ~USE_LOCK_BIT))
2577 /* page-align a size */
2578 #define page_align(S)\
2579 (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
2581 /* granularity-align a size */
2582 #define granularity_align(S)\
2583 (((S) + (mparams.granularity - SIZE_T_ONE))\
2584 & ~(mparams.granularity - SIZE_T_ONE))
2587 /* For mmap, use granularity alignment on windows, else page-align */
2588 #ifdef WIN32
2589 #define mmap_align(S) granularity_align(S)
2590 #else
2591 #define mmap_align(S) page_align(S)
2592 #endif
2594 /* For sys_alloc, enough padding to ensure can malloc request on success */
2595 #define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
2597 #define is_page_aligned(S)\
2598 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
2599 #define is_granularity_aligned(S)\
2600 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
2602 /* True if segment S holds address A */
2603 #define segment_holds(S, A)\
2604 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
2606 /* Return segment holding given address */
2607 static msegmentptr segment_holding(mstate m, char* addr) {
2608 msegmentptr sp = &m->seg;
2609 for (;;) {
2610 if (addr >= sp->base && addr < sp->base + sp->size)
2611 return sp;
2612 if ((sp = sp->next) == 0)
2613 return 0;
2617 /* Return true if segment contains a segment link */
2618 static int has_segment_link(mstate m, msegmentptr ss) {
2619 msegmentptr sp = &m->seg;
2620 for (;;) {
2621 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
2622 return 1;
2623 if ((sp = sp->next) == 0)
2624 return 0;
2628 #ifndef MORECORE_CANNOT_TRIM
2629 #define should_trim(M,s) ((s) > (M)->trim_check)
2630 #else /* MORECORE_CANNOT_TRIM */
2631 #define should_trim(M,s) (0)
2632 #endif /* MORECORE_CANNOT_TRIM */
2635 TOP_FOOT_SIZE is padding at the end of a segment, including space
2636 that may be needed to place segment records and fenceposts when new
2637 noncontiguous segments are added.
2639 #define TOP_FOOT_SIZE\
2640 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
2643 /* ------------------------------- Hooks -------------------------------- */
2646 PREACTION should be defined to return 0 on success, and nonzero on
2647 failure. If you are not using locking, you can redefine these to do
2648 anything you like.
2651 #if USE_LOCKS
2653 #define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
2654 #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
2655 #else /* USE_LOCKS */
2657 #ifndef PREACTION
2658 #define PREACTION(M) (0)
2659 #endif /* PREACTION */
2661 #ifndef POSTACTION
2662 #define POSTACTION(M)
2663 #endif /* POSTACTION */
2665 #endif /* USE_LOCKS */
2668 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
2669 USAGE_ERROR_ACTION is triggered on detected bad frees and
2670 reallocs. The argument p is an address that might have triggered the
2671 fault. It is ignored by the two predefined actions, but might be
2672 useful in custom actions that try to help diagnose errors.
2675 #if PROCEED_ON_ERROR
2677 /* A count of the number of corruption errors causing resets */
2678 int malloc_corruption_error_count;
2680 /* default corruption action */
2681 static void reset_on_error(mstate m);
2683 #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
2684 #define USAGE_ERROR_ACTION(m, p)
2686 #else /* PROCEED_ON_ERROR */
2688 #ifndef CORRUPTION_ERROR_ACTION
2689 #define CORRUPTION_ERROR_ACTION(m) ABORT
2690 #endif /* CORRUPTION_ERROR_ACTION */
2692 #ifndef USAGE_ERROR_ACTION
2693 #define USAGE_ERROR_ACTION(m,p) ABORT
2694 #endif /* USAGE_ERROR_ACTION */
2696 #endif /* PROCEED_ON_ERROR */
2698 /* -------------------------- Debugging setup ---------------------------- */
2700 #if ! DEBUG
2702 #define check_free_chunk(M,P)
2703 #define check_inuse_chunk(M,P)
2704 #define check_malloced_chunk(M,P,N)
2705 #define check_mmapped_chunk(M,P)
2706 #define check_malloc_state(M)
2707 #define check_top_chunk(M,P)
2709 #else /* DEBUG */
2710 #define check_free_chunk(M,P) do_check_free_chunk(M,P)
2711 #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
2712 #define check_top_chunk(M,P) do_check_top_chunk(M,P)
2713 #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
2714 #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
2715 #define check_malloc_state(M) do_check_malloc_state(M)
2717 static void do_check_any_chunk(mstate m, mchunkptr p);
2718 static void do_check_top_chunk(mstate m, mchunkptr p);
2719 static void do_check_mmapped_chunk(mstate m, mchunkptr p);
2720 static void do_check_inuse_chunk(mstate m, mchunkptr p);
2721 static void do_check_free_chunk(mstate m, mchunkptr p);
2722 static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
2723 static void do_check_tree(mstate m, tchunkptr t);
2724 static void do_check_treebin(mstate m, bindex_t i);
2725 static void do_check_smallbin(mstate m, bindex_t i);
2726 static void do_check_malloc_state(mstate m);
2727 static int bin_find(mstate m, mchunkptr x);
2728 static size_t traverse_and_check(mstate m);
2729 #endif /* DEBUG */
2731 /* ---------------------------- Indexing Bins ---------------------------- */
2733 #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
2734 #define small_index(s) ((s) >> SMALLBIN_SHIFT)
2735 #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
2736 #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
2738 /* addressing by index. See above about smallbin repositioning */
2739 #define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
2740 #define treebin_at(M,i) (&((M)->treebins[i]))
2742 /* assign tree index for size S to variable I. Use x86 asm if possible */
2743 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2744 #define compute_tree_index(S, I)\
2746 unsigned int X = S >> TREEBIN_SHIFT;\
2747 if (X == 0)\
2748 I = 0;\
2749 else if (X > 0xFFFF)\
2750 I = NTREEBINS-1;\
2751 else {\
2752 unsigned int K;\
2753 __asm__("bsrl\t%1, %0\n\t" : "=r" (K) : "rm" (X));\
2754 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2758 #elif defined (__INTEL_COMPILER)
2759 #define compute_tree_index(S, I)\
2761 size_t X = S >> TREEBIN_SHIFT;\
2762 if (X == 0)\
2763 I = 0;\
2764 else if (X > 0xFFFF)\
2765 I = NTREEBINS-1;\
2766 else {\
2767 unsigned int K = _bit_scan_reverse (X); \
2768 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2772 #elif defined(_MSC_VER) && _MSC_VER>=1300
2773 #define compute_tree_index(S, I)\
2775 size_t X = S >> TREEBIN_SHIFT;\
2776 if (X == 0)\
2777 I = 0;\
2778 else if (X > 0xFFFF)\
2779 I = NTREEBINS-1;\
2780 else {\
2781 unsigned int K;\
2782 _BitScanReverse((DWORD *) &K, X);\
2783 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
2787 #else /* GNUC */
2788 #define compute_tree_index(S, I)\
2790 size_t X = S >> TREEBIN_SHIFT;\
2791 if (X == 0)\
2792 I = 0;\
2793 else if (X > 0xFFFF)\
2794 I = NTREEBINS-1;\
2795 else {\
2796 unsigned int Y = (unsigned int)X;\
2797 unsigned int N = ((Y - 0x100) >> 16) & 8;\
2798 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
2799 N += K;\
2800 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
2801 K = 14 - N + ((Y <<= K) >> 15);\
2802 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
2805 #endif /* GNUC */
2807 /* Bit representing maximum resolved size in a treebin at i */
2808 #define bit_for_tree_index(i) \
2809 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
2811 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
2812 #define leftshift_for_tree_index(i) \
2813 ((i == NTREEBINS-1)? 0 : \
2814 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
2816 /* The size of the smallest chunk held in bin with index i */
2817 #define minsize_for_tree_index(i) \
2818 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
2819 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
2822 /* ------------------------ Operations on bin maps ----------------------- */
2824 /* bit corresponding to given index */
2825 #define idx2bit(i) ((binmap_t)(1) << (i))
2827 /* Mark/Clear bits with given index */
2828 #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
2829 #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
2830 #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
2832 #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
2833 #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
2834 #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
2836 /* isolate the least set bit of a bitmap */
2837 #define least_bit(x) ((x) & -(x))
2839 /* mask with all bits to left of least bit of x on */
2840 #define left_bits(x) ((x<<1) | -(x<<1))
2842 /* mask with all bits to left of or equal to least bit of x on */
2843 #define same_or_left_bits(x) ((x) | -(x))
2845 /* index corresponding to given bit. Use x86 asm if possible */
2847 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
2848 #define compute_bit2idx(X, I)\
2850 unsigned int J;\
2851 __asm__("bsfl\t%1, %0\n\t" : "=r" (J) : "rm" (X));\
2852 I = (bindex_t)J;\
2855 #elif defined (__INTEL_COMPILER)
2856 #define compute_bit2idx(X, I)\
2858 unsigned int J;\
2859 J = _bit_scan_forward (X); \
2860 I = (bindex_t)J;\
2863 #elif defined(_MSC_VER) && _MSC_VER>=1300
2864 #define compute_bit2idx(X, I)\
2866 unsigned int J;\
2867 _BitScanForward((DWORD *) &J, X);\
2868 I = (bindex_t)J;\
2871 #elif USE_BUILTIN_FFS
2872 #define compute_bit2idx(X, I) I = ffs(X)-1
2874 #else
2875 #define compute_bit2idx(X, I)\
2877 unsigned int Y = X - 1;\
2878 unsigned int K = Y >> (16-4) & 16;\
2879 unsigned int N = K; Y >>= K;\
2880 N += K = Y >> (8-3) & 8; Y >>= K;\
2881 N += K = Y >> (4-2) & 4; Y >>= K;\
2882 N += K = Y >> (2-1) & 2; Y >>= K;\
2883 N += K = Y >> (1-0) & 1; Y >>= K;\
2884 I = (bindex_t)(N + Y);\
2886 #endif /* GNUC */
2889 /* ----------------------- Runtime Check Support ------------------------- */
2892 For security, the main invariant is that malloc/free/etc never
2893 writes to a static address other than malloc_state, unless static
2894 malloc_state itself has been corrupted, which cannot occur via
2895 malloc (because of these checks). In essence this means that we
2896 believe all pointers, sizes, maps etc held in malloc_state, but
2897 check all of those linked or offsetted from other embedded data
2898 structures. These checks are interspersed with main code in a way
2899 that tends to minimize their run-time cost.
2901 When FOOTERS is defined, in addition to range checking, we also
2902 verify footer fields of inuse chunks, which can be used guarantee
2903 that the mstate controlling malloc/free is intact. This is a
2904 streamlined version of the approach described by William Robertson
2905 et al in "Run-time Detection of Heap-based Overflows" LISA'03
2906 http://www.usenix.org/events/lisa03/tech/robertson.html The footer
2907 of an inuse chunk holds the xor of its mstate and a random seed,
2908 that is checked upon calls to free() and realloc(). This is
2909 (probablistically) unguessable from outside the program, but can be
2910 computed by any code successfully malloc'ing any chunk, so does not
2911 itself provide protection against code that has already broken
2912 security through some other means. Unlike Robertson et al, we
2913 always dynamically check addresses of all offset chunks (previous,
2914 next, etc). This turns out to be cheaper than relying on hashes.
2917 #if !INSECURE
2918 /* Check if address a is at least as high as any from MORECORE or MMAP */
2919 #define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
2920 /* Check if address of next chunk n is higher than base chunk p */
2921 #define ok_next(p, n) ((char*)(p) < (char*)(n))
2922 /* Check if p has its cinuse bit on */
2923 #define ok_cinuse(p) cinuse(p)
2924 /* Check if p has its pinuse bit on */
2925 #define ok_pinuse(p) pinuse(p)
2927 #else /* !INSECURE */
2928 #define ok_address(M, a) (1)
2929 #define ok_next(b, n) (1)
2930 #define ok_cinuse(p) (1)
2931 #define ok_pinuse(p) (1)
2932 #endif /* !INSECURE */
2934 #if (FOOTERS && !INSECURE)
2935 /* Check if (alleged) mstate m has expected magic field */
2936 #define ok_magic(M) ((M)->magic == mparams.magic)
2937 #else /* (FOOTERS && !INSECURE) */
2938 #define ok_magic(M) (1)
2939 #endif /* (FOOTERS && !INSECURE) */
2942 /* In gcc, use __builtin_expect to minimize impact of checks */
2943 #if !INSECURE
2944 #if defined(__GNUC__) && __GNUC__ >= 3
2945 #define RTCHECK(e) __builtin_expect(e, 1)
2946 #else /* GNUC */
2947 #define RTCHECK(e) (e)
2948 #endif /* GNUC */
2949 #else /* !INSECURE */
2950 #define RTCHECK(e) (1)
2951 #endif /* !INSECURE */
2953 /* macros to set up inuse chunks with or without footers */
2955 #if !FOOTERS
2957 #define mark_inuse_foot(M,p,s)
2959 /* Set cinuse bit and pinuse bit of next chunk */
2960 #define set_inuse(M,p,s)\
2961 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2962 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2964 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
2965 #define set_inuse_and_pinuse(M,p,s)\
2966 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2967 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
2969 /* Set size, cinuse and pinuse bit of this chunk */
2970 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2971 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
2973 #else /* FOOTERS */
2975 /* Set foot of inuse chunk to be xor of mstate and seed */
2976 #define mark_inuse_foot(M,p,s)\
2977 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
2979 #define get_mstate_for(p)\
2980 ((mstate)(((mchunkptr)((char*)(p) +\
2981 (chunksize(p))))->prev_foot ^ mparams.magic))
2983 #define set_inuse(M,p,s)\
2984 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
2985 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
2986 mark_inuse_foot(M,p,s))
2988 #define set_inuse_and_pinuse(M,p,s)\
2989 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2990 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
2991 mark_inuse_foot(M,p,s))
2993 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
2994 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
2995 mark_inuse_foot(M, p, s))
2997 #endif /* !FOOTERS */
2999 /* ---------------------------- setting mparams -------------------------- */
3001 /* Initialize mparams */
3002 static int init_mparams(void) {
3003 #ifdef NEED_GLOBAL_LOCK_INIT
3004 if (malloc_global_mutex_status <= 0)
3005 init_malloc_global_mutex();
3006 #endif
3008 ACQUIRE_MALLOC_GLOBAL_LOCK();
3009 if (mparams.magic == 0) {
3010 size_t magic;
3011 size_t psize;
3012 size_t gsize;
3014 #ifndef WIN32
3015 psize = malloc_getpagesize;
3016 gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
3017 #else /* WIN32 */
3019 SYSTEM_INFO system_info;
3020 GetSystemInfo(&system_info);
3021 psize = system_info.dwPageSize;
3022 gsize = ((DEFAULT_GRANULARITY != 0)?
3023 DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
3025 #endif /* WIN32 */
3027 /* Sanity-check configuration:
3028 size_t must be unsigned and as wide as pointer type.
3029 ints must be at least 4 bytes.
3030 alignment must be at least 8.
3031 Alignment, min chunk size, and page size must all be powers of 2.
3033 if ((sizeof(size_t) != sizeof(char*)) ||
3034 (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
3035 (sizeof(int) < 4) ||
3036 (MALLOC_ALIGNMENT < (size_t)8U) ||
3037 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
3038 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
3039 ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
3040 ((psize & (psize-SIZE_T_ONE)) != 0))
3041 ABORT;
3043 mparams.granularity = gsize;
3044 mparams.page_size = psize;
3045 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
3046 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
3047 #if MORECORE_CONTIGUOUS
3048 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
3049 #else /* MORECORE_CONTIGUOUS */
3050 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
3051 #endif /* MORECORE_CONTIGUOUS */
3053 #if !ONLY_MSPACES
3054 /* Set up lock for main malloc area */
3055 gm->mflags = mparams.default_mflags;
3056 INITIAL_LOCK(&gm->mutex);
3057 #endif
3059 #if (FOOTERS && !INSECURE)
3061 #if USE_DEV_RANDOM
3062 int fd;
3063 unsigned char buf[sizeof(size_t)];
3064 /* Try to use /dev/urandom, else fall back on using time */
3065 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
3066 read(fd, buf, sizeof(buf)) == sizeof(buf)) {
3067 magic = *((size_t *) buf);
3068 close(fd);
3070 else
3071 #endif /* USE_DEV_RANDOM */
3072 #ifdef WIN32
3073 magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
3074 #else
3075 magic = (size_t)(time(0) ^ (size_t)0x55555555U);
3076 #endif
3077 magic |= (size_t)8U; /* ensure nonzero */
3078 magic &= ~(size_t)7U; /* improve chances of fault for bad values */
3080 #else /* (FOOTERS && !INSECURE) */
3081 magic = (size_t)0x58585858U;
3082 #endif /* (FOOTERS && !INSECURE) */
3084 mparams.magic = magic;
3087 RELEASE_MALLOC_GLOBAL_LOCK();
3088 return 1;
3091 /* support for mallopt */
3092 static int change_mparam(int param_number, int value) {
3093 size_t val = (value == -1)? MAX_SIZE_T : (size_t)value;
3094 ensure_initialization();
3095 switch(param_number) {
3096 case M_TRIM_THRESHOLD:
3097 mparams.trim_threshold = val;
3098 return 1;
3099 case M_GRANULARITY:
3100 if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
3101 mparams.granularity = val;
3102 return 1;
3104 else
3105 return 0;
3106 case M_MMAP_THRESHOLD:
3107 mparams.mmap_threshold = val;
3108 return 1;
3109 default:
3110 return 0;
3114 #if DEBUG
3115 /* ------------------------- Debugging Support --------------------------- */
3117 /* Check properties of any chunk, whether free, inuse, mmapped etc */
3118 static void do_check_any_chunk(mstate m, mchunkptr p) {
3119 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3120 assert(ok_address(m, p));
3123 /* Check properties of top chunk */
3124 static void do_check_top_chunk(mstate m, mchunkptr p) {
3125 msegmentptr sp = segment_holding(m, (char*)p);
3126 size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
3127 assert(sp != 0);
3128 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3129 assert(ok_address(m, p));
3130 assert(sz == m->topsize);
3131 assert(sz > 0);
3132 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
3133 assert(pinuse(p));
3134 assert(!pinuse(chunk_plus_offset(p, sz)));
3137 /* Check properties of (inuse) mmapped chunks */
3138 static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
3139 size_t sz = chunksize(p);
3140 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD);
3141 assert(is_mmapped(p));
3142 assert(use_mmap(m));
3143 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
3144 assert(ok_address(m, p));
3145 assert(!is_small(sz));
3146 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
3147 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
3148 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
3151 /* Check properties of inuse chunks */
3152 static void do_check_inuse_chunk(mstate m, mchunkptr p) {
3153 do_check_any_chunk(m, p);
3154 assert(cinuse(p));
3155 assert(next_pinuse(p));
3156 /* If not pinuse and not mmapped, previous chunk has OK offset */
3157 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
3158 if (is_mmapped(p))
3159 do_check_mmapped_chunk(m, p);
3162 /* Check properties of free chunks */
3163 static void do_check_free_chunk(mstate m, mchunkptr p) {
3164 size_t sz = chunksize(p);
3165 mchunkptr next = chunk_plus_offset(p, sz);
3166 do_check_any_chunk(m, p);
3167 assert(!cinuse(p));
3168 assert(!next_pinuse(p));
3169 assert (!is_mmapped(p));
3170 if (p != m->dv && p != m->top) {
3171 if (sz >= MIN_CHUNK_SIZE) {
3172 assert((sz & CHUNK_ALIGN_MASK) == 0);
3173 assert(is_aligned(chunk2mem(p)));
3174 assert(next->prev_foot == sz);
3175 assert(pinuse(p));
3176 assert (next == m->top || cinuse(next));
3177 assert(p->fd->bk == p);
3178 assert(p->bk->fd == p);
3180 else /* markers are always of size SIZE_T_SIZE */
3181 assert(sz == SIZE_T_SIZE);
3185 /* Check properties of malloced chunks at the point they are malloced */
3186 static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
3187 if (mem != 0) {
3188 mchunkptr p = mem2chunk(mem);
3189 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT);
3190 do_check_inuse_chunk(m, p);
3191 assert((sz & CHUNK_ALIGN_MASK) == 0);
3192 assert(sz >= MIN_CHUNK_SIZE);
3193 assert(sz >= s);
3194 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
3195 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
3199 /* Check a tree and its subtrees. */
3200 static void do_check_tree(mstate m, tchunkptr t) {
3201 tchunkptr head = 0;
3202 tchunkptr u = t;
3203 bindex_t tindex = t->index;
3204 size_t tsize = chunksize(t);
3205 bindex_t idx;
3206 compute_tree_index(tsize, idx);
3207 assert(tindex == idx);
3208 assert(tsize >= MIN_LARGE_SIZE);
3209 assert(tsize >= minsize_for_tree_index(idx));
3210 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
3212 do { /* traverse through chain of same-sized nodes */
3213 do_check_any_chunk(m, ((mchunkptr)u));
3214 assert(u->index == tindex);
3215 assert(chunksize(u) == tsize);
3216 assert(!cinuse(u));
3217 assert(!next_pinuse(u));
3218 assert(u->fd->bk == u);
3219 assert(u->bk->fd == u);
3220 if (u->parent == 0) {
3221 assert(u->child[0] == 0);
3222 assert(u->child[1] == 0);
3224 else {
3225 assert(head == 0); /* only one node on chain has parent */
3226 head = u;
3227 assert(u->parent != u);
3228 assert (u->parent->child[0] == u ||
3229 u->parent->child[1] == u ||
3230 *((tbinptr*)(u->parent)) == u);
3231 if (u->child[0] != 0) {
3232 assert(u->child[0]->parent == u);
3233 assert(u->child[0] != u);
3234 do_check_tree(m, u->child[0]);
3236 if (u->child[1] != 0) {
3237 assert(u->child[1]->parent == u);
3238 assert(u->child[1] != u);
3239 do_check_tree(m, u->child[1]);
3241 if (u->child[0] != 0 && u->child[1] != 0) {
3242 assert(chunksize(u->child[0]) < chunksize(u->child[1]));
3245 u = u->fd;
3246 } while (u != t);
3247 assert(head != 0);
3250 /* Check all the chunks in a treebin. */
3251 static void do_check_treebin(mstate m, bindex_t i) {
3252 tbinptr* tb = treebin_at(m, i);
3253 tchunkptr t = *tb;
3254 int empty = (m->treemap & (1U << i)) == 0;
3255 if (t == 0)
3256 assert(empty);
3257 if (!empty)
3258 do_check_tree(m, t);
3261 /* Check all the chunks in a smallbin. */
3262 static void do_check_smallbin(mstate m, bindex_t i) {
3263 sbinptr b = smallbin_at(m, i);
3264 mchunkptr p = b->bk;
3265 unsigned int empty = (m->smallmap & (1U << i)) == 0;
3266 if (p == b)
3267 assert(empty);
3268 if (!empty) {
3269 for (; p != b; p = p->bk) {
3270 size_t size = chunksize(p);
3271 mchunkptr q;
3272 /* each chunk claims to be free */
3273 do_check_free_chunk(m, p);
3274 /* chunk belongs in bin */
3275 assert(small_index(size) == i);
3276 assert(p->bk == b || chunksize(p->bk) == chunksize(p));
3277 /* chunk is followed by an inuse chunk */
3278 q = next_chunk(p);
3279 if (q->head != FENCEPOST_HEAD)
3280 do_check_inuse_chunk(m, q);
3285 /* Find x in a bin. Used in other check functions. */
3286 static int bin_find(mstate m, mchunkptr x) {
3287 size_t size = chunksize(x);
3288 if (is_small(size)) {
3289 bindex_t sidx = small_index(size);
3290 sbinptr b = smallbin_at(m, sidx);
3291 if (smallmap_is_marked(m, sidx)) {
3292 mchunkptr p = b;
3293 do {
3294 if (p == x)
3295 return 1;
3296 } while ((p = p->fd) != b);
3299 else {
3300 bindex_t tidx;
3301 compute_tree_index(size, tidx);
3302 if (treemap_is_marked(m, tidx)) {
3303 tchunkptr t = *treebin_at(m, tidx);
3304 size_t sizebits = size << leftshift_for_tree_index(tidx);
3305 while (t != 0 && chunksize(t) != size) {
3306 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
3307 sizebits <<= 1;
3309 if (t != 0) {
3310 tchunkptr u = t;
3311 do {
3312 if (u == (tchunkptr)x)
3313 return 1;
3314 } while ((u = u->fd) != t);
3318 return 0;
3321 /* Traverse each chunk and check it; return total */
3322 static size_t traverse_and_check(mstate m) {
3323 size_t sum = 0;
3324 if (is_initialized(m)) {
3325 msegmentptr s = &m->seg;
3326 sum += m->topsize + TOP_FOOT_SIZE;
3327 while (s != 0) {
3328 mchunkptr q = align_as_chunk(s->base);
3329 mchunkptr lastq = 0;
3330 assert(pinuse(q));
3331 while (segment_holds(s, q) &&
3332 q != m->top && q->head != FENCEPOST_HEAD) {
3333 sum += chunksize(q);
3334 if (cinuse(q)) {
3335 assert(!bin_find(m, q));
3336 do_check_inuse_chunk(m, q);
3338 else {
3339 assert(q == m->dv || bin_find(m, q));
3340 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */
3341 do_check_free_chunk(m, q);
3343 lastq = q;
3344 q = next_chunk(q);
3346 s = s->next;
3349 return sum;
3352 /* Check all properties of malloc_state. */
3353 static void do_check_malloc_state(mstate m) {
3354 bindex_t i;
3355 size_t total;
3356 /* check bins */
3357 for (i = 0; i < NSMALLBINS; ++i)
3358 do_check_smallbin(m, i);
3359 for (i = 0; i < NTREEBINS; ++i)
3360 do_check_treebin(m, i);
3362 if (m->dvsize != 0) { /* check dv chunk */
3363 do_check_any_chunk(m, m->dv);
3364 assert(m->dvsize == chunksize(m->dv));
3365 assert(m->dvsize >= MIN_CHUNK_SIZE);
3366 assert(bin_find(m, m->dv) == 0);
3369 if (m->top != 0) { /* check top chunk */
3370 do_check_top_chunk(m, m->top);
3371 /*assert(m->topsize == chunksize(m->top)); redundant */
3372 assert(m->topsize > 0);
3373 assert(bin_find(m, m->top) == 0);
3376 total = traverse_and_check(m);
3377 assert(total <= m->footprint);
3378 assert(m->footprint <= m->max_footprint);
3380 #endif /* DEBUG */
3382 /* ----------------------------- statistics ------------------------------ */
3384 #if !NO_MALLINFO
3385 static struct mallinfo internal_mallinfo(mstate m) {
3386 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
3387 ensure_initialization();
3388 if (!PREACTION(m)) {
3389 check_malloc_state(m);
3390 if (is_initialized(m)) {
3391 size_t nfree = SIZE_T_ONE; /* top always free */
3392 size_t mfree = m->topsize + TOP_FOOT_SIZE;
3393 size_t sum = mfree;
3394 msegmentptr s = &m->seg;
3395 while (s != 0) {
3396 mchunkptr q = align_as_chunk(s->base);
3397 while (segment_holds(s, q) &&
3398 q != m->top && q->head != FENCEPOST_HEAD) {
3399 size_t sz = chunksize(q);
3400 sum += sz;
3401 if (!cinuse(q)) {
3402 mfree += sz;
3403 ++nfree;
3405 q = next_chunk(q);
3407 s = s->next;
3410 nm.arena = sum;
3411 nm.ordblks = nfree;
3412 nm.hblkhd = m->footprint - sum;
3413 nm.usmblks = m->max_footprint;
3414 nm.uordblks = m->footprint - mfree;
3415 nm.fordblks = mfree;
3416 nm.keepcost = m->topsize;
3419 POSTACTION(m);
3421 return nm;
3423 #endif /* !NO_MALLINFO */
3425 static void internal_malloc_stats(mstate m) {
3426 ensure_initialization();
3427 if (!PREACTION(m)) {
3428 size_t maxfp = 0;
3429 size_t fp = 0;
3430 size_t used = 0;
3431 check_malloc_state(m);
3432 if (is_initialized(m)) {
3433 msegmentptr s = &m->seg;
3434 maxfp = m->max_footprint;
3435 fp = m->footprint;
3436 used = fp - (m->topsize + TOP_FOOT_SIZE);
3438 while (s != 0) {
3439 mchunkptr q = align_as_chunk(s->base);
3440 while (segment_holds(s, q) &&
3441 q != m->top && q->head != FENCEPOST_HEAD) {
3442 if (!cinuse(q))
3443 used -= chunksize(q);
3444 q = next_chunk(q);
3446 s = s->next;
3450 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
3451 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
3452 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
3454 POSTACTION(m);
3458 /* ----------------------- Operations on smallbins ----------------------- */
3461 Various forms of linking and unlinking are defined as macros. Even
3462 the ones for trees, which are very long but have very short typical
3463 paths. This is ugly but reduces reliance on inlining support of
3464 compilers.
3467 /* Link a free chunk into a smallbin */
3468 #define insert_small_chunk(M, P, S) {\
3469 bindex_t I = small_index(S);\
3470 mchunkptr B = smallbin_at(M, I);\
3471 mchunkptr F = B;\
3472 assert(S >= MIN_CHUNK_SIZE);\
3473 if (!smallmap_is_marked(M, I))\
3474 mark_smallmap(M, I);\
3475 else if (RTCHECK(ok_address(M, B->fd)))\
3476 F = B->fd;\
3477 else {\
3478 CORRUPTION_ERROR_ACTION(M);\
3480 B->fd = P;\
3481 F->bk = P;\
3482 P->fd = F;\
3483 P->bk = B;\
3486 /* Unlink a chunk from a smallbin */
3487 #define unlink_small_chunk(M, P, S) {\
3488 mchunkptr F = P->fd;\
3489 mchunkptr B = P->bk;\
3490 bindex_t I = small_index(S);\
3491 assert(P != B);\
3492 assert(P != F);\
3493 assert(chunksize(P) == small_index2size(I));\
3494 if (F == B)\
3495 clear_smallmap(M, I);\
3496 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
3497 (B == smallbin_at(M,I) || ok_address(M, B)))) {\
3498 F->bk = B;\
3499 B->fd = F;\
3501 else {\
3502 CORRUPTION_ERROR_ACTION(M);\
3506 /* Unlink the first chunk from a smallbin */
3507 #define unlink_first_small_chunk(M, B, P, I) {\
3508 mchunkptr F = P->fd;\
3509 assert(P != B);\
3510 assert(P != F);\
3511 assert(chunksize(P) == small_index2size(I));\
3512 if (B == F)\
3513 clear_smallmap(M, I);\
3514 else if (RTCHECK(ok_address(M, F))) {\
3515 B->fd = F;\
3516 F->bk = B;\
3518 else {\
3519 CORRUPTION_ERROR_ACTION(M);\
3525 /* Replace dv node, binning the old one */
3526 /* Used only when dvsize known to be small */
3527 #define replace_dv(M, P, S) {\
3528 size_t DVS = M->dvsize;\
3529 if (DVS != 0) {\
3530 mchunkptr DV = M->dv;\
3531 assert(is_small(DVS));\
3532 insert_small_chunk(M, DV, DVS);\
3534 M->dvsize = S;\
3535 M->dv = P;\
3538 /* ------------------------- Operations on trees ------------------------- */
3540 /* Insert chunk into tree */
3541 #define insert_large_chunk(M, X, S) {\
3542 tbinptr* H;\
3543 bindex_t I;\
3544 compute_tree_index(S, I);\
3545 H = treebin_at(M, I);\
3546 X->index = I;\
3547 X->child[0] = X->child[1] = 0;\
3548 if (!treemap_is_marked(M, I)) {\
3549 mark_treemap(M, I);\
3550 *H = X;\
3551 X->parent = (tchunkptr)H;\
3552 X->fd = X->bk = X;\
3554 else {\
3555 tchunkptr T = *H;\
3556 size_t K = S << leftshift_for_tree_index(I);\
3557 for (;;) {\
3558 if (chunksize(T) != S) {\
3559 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
3560 K <<= 1;\
3561 if (*C != 0)\
3562 T = *C;\
3563 else if (RTCHECK(ok_address(M, C))) {\
3564 *C = X;\
3565 X->parent = T;\
3566 X->fd = X->bk = X;\
3567 break;\
3569 else {\
3570 CORRUPTION_ERROR_ACTION(M);\
3571 break;\
3574 else {\
3575 tchunkptr F = T->fd;\
3576 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
3577 T->fd = F->bk = X;\
3578 X->fd = F;\
3579 X->bk = T;\
3580 X->parent = 0;\
3581 break;\
3583 else {\
3584 CORRUPTION_ERROR_ACTION(M);\
3585 break;\
3593 Unlink steps:
3595 1. If x is a chained node, unlink it from its same-sized fd/bk links
3596 and choose its bk node as its replacement.
3597 2. If x was the last node of its size, but not a leaf node, it must
3598 be replaced with a leaf node (not merely one with an open left or
3599 right), to make sure that lefts and rights of descendents
3600 correspond properly to bit masks. We use the rightmost descendent
3601 of x. We could use any other leaf, but this is easy to locate and
3602 tends to counteract removal of leftmosts elsewhere, and so keeps
3603 paths shorter than minimally guaranteed. This doesn't loop much
3604 because on average a node in a tree is near the bottom.
3605 3. If x is the base of a chain (i.e., has parent links) relink
3606 x's parent and children to x's replacement (or null if none).
3609 #define unlink_large_chunk(M, X) {\
3610 tchunkptr XP = X->parent;\
3611 tchunkptr R;\
3612 if (X->bk != X) {\
3613 tchunkptr F = X->fd;\
3614 R = X->bk;\
3615 if (RTCHECK(ok_address(M, F))) {\
3616 F->bk = R;\
3617 R->fd = F;\
3619 else {\
3620 CORRUPTION_ERROR_ACTION(M);\
3623 else {\
3624 tchunkptr* RP;\
3625 if (((R = *(RP = &(X->child[1]))) != 0) ||\
3626 ((R = *(RP = &(X->child[0]))) != 0)) {\
3627 tchunkptr* CP;\
3628 while ((*(CP = &(R->child[1])) != 0) ||\
3629 (*(CP = &(R->child[0])) != 0)) {\
3630 R = *(RP = CP);\
3632 if (RTCHECK(ok_address(M, RP)))\
3633 *RP = 0;\
3634 else {\
3635 CORRUPTION_ERROR_ACTION(M);\
3639 if (XP != 0) {\
3640 tbinptr* H = treebin_at(M, X->index);\
3641 if (X == *H) {\
3642 if ((*H = R) == 0) \
3643 clear_treemap(M, X->index);\
3645 else if (RTCHECK(ok_address(M, XP))) {\
3646 if (XP->child[0] == X) \
3647 XP->child[0] = R;\
3648 else \
3649 XP->child[1] = R;\
3651 else\
3652 CORRUPTION_ERROR_ACTION(M);\
3653 if (R != 0) {\
3654 if (RTCHECK(ok_address(M, R))) {\
3655 tchunkptr C0, C1;\
3656 R->parent = XP;\
3657 if ((C0 = X->child[0]) != 0) {\
3658 if (RTCHECK(ok_address(M, C0))) {\
3659 R->child[0] = C0;\
3660 C0->parent = R;\
3662 else\
3663 CORRUPTION_ERROR_ACTION(M);\
3665 if ((C1 = X->child[1]) != 0) {\
3666 if (RTCHECK(ok_address(M, C1))) {\
3667 R->child[1] = C1;\
3668 C1->parent = R;\
3670 else\
3671 CORRUPTION_ERROR_ACTION(M);\
3674 else\
3675 CORRUPTION_ERROR_ACTION(M);\
3680 /* Relays to large vs small bin operations */
3682 #define insert_chunk(M, P, S)\
3683 if (is_small(S)) insert_small_chunk(M, P, S)\
3684 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
3686 #define unlink_chunk(M, P, S)\
3687 if (is_small(S)) unlink_small_chunk(M, P, S)\
3688 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
3691 /* Relays to internal calls to malloc/free from realloc, memalign etc */
3693 #if ONLY_MSPACES
3694 #define internal_malloc(m, b) mspace_malloc(m, b)
3695 #define internal_free(m, mem) mspace_free(m,mem);
3696 #else /* ONLY_MSPACES */
3697 #if MSPACES
3698 #define internal_malloc(m, b)\
3699 (m == gm)? dlmalloc(b) : mspace_malloc(m, b)
3700 #define internal_free(m, mem)\
3701 if (m == gm) dlfree(mem); else mspace_free(m,mem);
3702 #else /* MSPACES */
3703 #define internal_malloc(m, b) dlmalloc(b)
3704 #define internal_free(m, mem) dlfree(mem)
3705 #endif /* MSPACES */
3706 #endif /* ONLY_MSPACES */
3708 /* ----------------------- Direct-mmapping chunks ----------------------- */
3711 Directly mmapped chunks are set up with an offset to the start of
3712 the mmapped region stored in the prev_foot field of the chunk. This
3713 allows reconstruction of the required argument to MUNMAP when freed,
3714 and also allows adjustment of the returned chunk to meet alignment
3715 requirements (especially in memalign). There is also enough space
3716 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
3717 the PINUSE bit so frees can be checked.
3720 /* Malloc using mmap */
3721 static void* mmap_alloc(mstate m, size_t nb) {
3722 size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3723 if (mmsize > nb) { /* Check for wrap around 0 */
3724 char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
3725 if (mm != CMFAIL) {
3726 size_t offset = align_offset(chunk2mem(mm));
3727 size_t psize = mmsize - offset - MMAP_FOOT_PAD;
3728 mchunkptr p = (mchunkptr)(mm + offset);
3729 p->prev_foot = offset | IS_MMAPPED_BIT;
3730 (p)->head = (psize|CINUSE_BIT);
3731 mark_inuse_foot(m, p, psize);
3732 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
3733 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
3735 if (mm < m->least_addr)
3736 m->least_addr = mm;
3737 if ((m->footprint += mmsize) > m->max_footprint)
3738 m->max_footprint = m->footprint;
3739 assert(is_aligned(chunk2mem(p)));
3740 check_mmapped_chunk(m, p);
3741 return chunk2mem(p);
3744 return 0;
3747 /* Realloc using mmap */
3748 static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
3749 size_t oldsize = chunksize(oldp);
3750 if (is_small(nb)) /* Can't shrink mmap regions below small size */
3751 return 0;
3752 /* Keep old chunk if big enough but not too big */
3753 if (oldsize >= nb + SIZE_T_SIZE &&
3754 (oldsize - nb) <= (mparams.granularity << 1))
3755 return oldp;
3756 else {
3757 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
3758 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
3759 size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3760 char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
3761 oldmmsize, newmmsize, 1);
3762 if (cp != CMFAIL) {
3763 mchunkptr newp = (mchunkptr)(cp + offset);
3764 size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
3765 newp->head = (psize|CINUSE_BIT);
3766 mark_inuse_foot(m, newp, psize);
3767 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
3768 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
3770 if (cp < m->least_addr)
3771 m->least_addr = cp;
3772 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
3773 m->max_footprint = m->footprint;
3774 check_mmapped_chunk(m, newp);
3775 return newp;
3778 return 0;
3781 /* -------------------------- mspace management -------------------------- */
3783 /* Initialize top chunk and its size */
3784 static void init_top(mstate m, mchunkptr p, size_t psize) {
3785 /* Ensure alignment */
3786 size_t offset = align_offset(chunk2mem(p));
3787 p = (mchunkptr)((char*)p + offset);
3788 psize -= offset;
3790 m->top = p;
3791 m->topsize = psize;
3792 p->head = psize | PINUSE_BIT;
3793 /* set size of fake trailing chunk holding overhead space only once */
3794 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
3795 m->trim_check = mparams.trim_threshold; /* reset on each update */
3798 /* Initialize bins for a new mstate that is otherwise zeroed out */
3799 static void init_bins(mstate m) {
3800 /* Establish circular links for smallbins */
3801 bindex_t i;
3802 for (i = 0; i < NSMALLBINS; ++i) {
3803 sbinptr bin = smallbin_at(m,i);
3804 bin->fd = bin->bk = bin;
3808 #if PROCEED_ON_ERROR
3810 /* default corruption action */
3811 static void reset_on_error(mstate m) {
3812 int i;
3813 ++malloc_corruption_error_count;
3814 /* Reinitialize fields to forget about all memory */
3815 m->smallbins = m->treebins = 0;
3816 m->dvsize = m->topsize = 0;
3817 m->seg.base = 0;
3818 m->seg.size = 0;
3819 m->seg.next = 0;
3820 m->top = m->dv = 0;
3821 for (i = 0; i < NTREEBINS; ++i)
3822 *treebin_at(m, i) = 0;
3823 init_bins(m);
3825 #endif /* PROCEED_ON_ERROR */
3827 /* Allocate chunk and prepend remainder with chunk in successor base. */
3828 static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
3829 size_t nb) {
3830 mchunkptr p = align_as_chunk(newbase);
3831 mchunkptr oldfirst = align_as_chunk(oldbase);
3832 size_t psize = (char*)oldfirst - (char*)p;
3833 mchunkptr q = chunk_plus_offset(p, nb);
3834 size_t qsize = psize - nb;
3835 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
3837 assert((char*)oldfirst > (char*)q);
3838 assert(pinuse(oldfirst));
3839 assert(qsize >= MIN_CHUNK_SIZE);
3841 /* consolidate remainder with first chunk of old base */
3842 if (oldfirst == m->top) {
3843 size_t tsize = m->topsize += qsize;
3844 m->top = q;
3845 q->head = tsize | PINUSE_BIT;
3846 check_top_chunk(m, q);
3848 else if (oldfirst == m->dv) {
3849 size_t dsize = m->dvsize += qsize;
3850 m->dv = q;
3851 set_size_and_pinuse_of_free_chunk(q, dsize);
3853 else {
3854 if (!cinuse(oldfirst)) {
3855 size_t nsize = chunksize(oldfirst);
3856 unlink_chunk(m, oldfirst, nsize);
3857 oldfirst = chunk_plus_offset(oldfirst, nsize);
3858 qsize += nsize;
3860 set_free_with_pinuse(q, qsize, oldfirst);
3861 insert_chunk(m, q, qsize);
3862 check_free_chunk(m, q);
3865 check_malloced_chunk(m, chunk2mem(p), nb);
3866 return chunk2mem(p);
3869 /* Add a segment to hold a new noncontiguous region */
3870 static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
3871 /* Determine locations and sizes of segment, fenceposts, old top */
3872 char* old_top = (char*)m->top;
3873 msegmentptr oldsp = segment_holding(m, old_top);
3874 char* old_end = oldsp->base + oldsp->size;
3875 size_t ssize = pad_request(sizeof(struct malloc_segment));
3876 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
3877 size_t offset = align_offset(chunk2mem(rawsp));
3878 char* asp = rawsp + offset;
3879 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
3880 mchunkptr sp = (mchunkptr)csp;
3881 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
3882 mchunkptr tnext = chunk_plus_offset(sp, ssize);
3883 mchunkptr p = tnext;
3884 int nfences = 0;
3886 /* reset top to new space */
3887 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
3889 /* Set up segment record */
3890 assert(is_aligned(ss));
3891 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
3892 *ss = m->seg; /* Push current record */
3893 m->seg.base = tbase;
3894 m->seg.size = tsize;
3895 m->seg.sflags = mmapped;
3896 m->seg.next = ss;
3898 /* Insert trailing fenceposts */
3899 for (;;) {
3900 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
3901 p->head = FENCEPOST_HEAD;
3902 ++nfences;
3903 if ((char*)(&(nextp->head)) < old_end)
3904 p = nextp;
3905 else
3906 break;
3908 assert(nfences >= 2);
3910 /* Insert the rest of old top into a bin as an ordinary free chunk */
3911 if (csp != old_top) {
3912 mchunkptr q = (mchunkptr)old_top;
3913 size_t psize = csp - old_top;
3914 mchunkptr tn = chunk_plus_offset(q, psize);
3915 set_free_with_pinuse(q, psize, tn);
3916 insert_chunk(m, q, psize);
3919 check_top_chunk(m, m->top);
3922 /* -------------------------- System allocation -------------------------- */
3924 /* Get memory from system using MORECORE or MMAP */
3925 static void* sys_alloc(mstate m, size_t nb) {
3926 char* tbase = CMFAIL;
3927 size_t tsize = 0;
3928 flag_t mmap_flag = 0;
3930 ensure_initialization();
3932 /* Directly map large chunks */
3933 if (use_mmap(m) && nb >= mparams.mmap_threshold) {
3934 void* mem = mmap_alloc(m, nb);
3935 if (mem != 0)
3936 return mem;
3940 Try getting memory in any of three ways (in most-preferred to
3941 least-preferred order):
3942 1. A call to MORECORE that can normally contiguously extend memory.
3943 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
3944 or main space is mmapped or a previous contiguous call failed)
3945 2. A call to MMAP new space (disabled if not HAVE_MMAP).
3946 Note that under the default settings, if MORECORE is unable to
3947 fulfill a request, and HAVE_MMAP is true, then mmap is
3948 used as a noncontiguous system allocator. This is a useful backup
3949 strategy for systems with holes in address spaces -- in this case
3950 sbrk cannot contiguously expand the heap, but mmap may be able to
3951 find space.
3952 3. A call to MORECORE that cannot usually contiguously extend memory.
3953 (disabled if not HAVE_MORECORE)
3955 In all cases, we need to request enough bytes from system to ensure
3956 we can malloc nb bytes upon success, so pad with enough space for
3957 top_foot, plus alignment-pad to make sure we don't lose bytes if
3958 not on boundary, and round this up to a granularity unit.
3961 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
3962 char* br = CMFAIL;
3963 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
3964 size_t asize = 0;
3965 ACQUIRE_MALLOC_GLOBAL_LOCK();
3967 if (ss == 0) { /* First time through or recovery */
3968 char* base = (char*)CALL_MORECORE(0);
3969 if (base != CMFAIL) {
3970 asize = granularity_align(nb + SYS_ALLOC_PADDING);
3971 /* Adjust to end on a page boundary */
3972 if (!is_page_aligned(base))
3973 asize += (page_align((size_t)base) - (size_t)base);
3974 /* Can't call MORECORE if size is negative when treated as signed */
3975 if (asize < HALF_MAX_SIZE_T &&
3976 (br = (char*)(CALL_MORECORE(asize))) == base) {
3977 tbase = base;
3978 tsize = asize;
3982 else {
3983 /* Subtract out existing available top space from MORECORE request. */
3984 asize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
3985 /* Use mem here only if it did continuously extend old space */
3986 if (asize < HALF_MAX_SIZE_T &&
3987 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
3988 tbase = br;
3989 tsize = asize;
3993 if (tbase == CMFAIL) { /* Cope with partial failure */
3994 if (br != CMFAIL) { /* Try to use/extend the space we did get */
3995 if (asize < HALF_MAX_SIZE_T &&
3996 asize < nb + SYS_ALLOC_PADDING) {
3997 size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - asize);
3998 if (esize < HALF_MAX_SIZE_T) {
3999 char* end = (char*)CALL_MORECORE(esize);
4000 if (end != CMFAIL)
4001 asize += esize;
4002 else { /* Can't use; try to release */
4003 (void) CALL_MORECORE(-asize);
4004 br = CMFAIL;
4009 if (br != CMFAIL) { /* Use the space we did get */
4010 tbase = br;
4011 tsize = asize;
4013 else
4014 disable_contiguous(m); /* Don't try contiguous path in the future */
4017 RELEASE_MALLOC_GLOBAL_LOCK();
4020 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
4021 size_t rsize = granularity_align(nb + SYS_ALLOC_PADDING);
4022 if (rsize > nb) { /* Fail if wraps around zero */
4023 char* mp = (char*)(CALL_MMAP(rsize));
4024 if (mp != CMFAIL) {
4025 tbase = mp;
4026 tsize = rsize;
4027 mmap_flag = IS_MMAPPED_BIT;
4032 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
4033 size_t asize = granularity_align(nb + SYS_ALLOC_PADDING);
4034 if (asize < HALF_MAX_SIZE_T) {
4035 char* br = CMFAIL;
4036 char* end = CMFAIL;
4037 ACQUIRE_MALLOC_GLOBAL_LOCK();
4038 br = (char*)(CALL_MORECORE(asize));
4039 end = (char*)(CALL_MORECORE(0));
4040 RELEASE_MALLOC_GLOBAL_LOCK();
4041 if (br != CMFAIL && end != CMFAIL && br < end) {
4042 size_t ssize = end - br;
4043 if (ssize > nb + TOP_FOOT_SIZE) {
4044 tbase = br;
4045 tsize = ssize;
4051 if (tbase != CMFAIL) {
4053 if ((m->footprint += tsize) > m->max_footprint)
4054 m->max_footprint = m->footprint;
4056 if (!is_initialized(m)) { /* first-time initialization */
4057 m->seg.base = m->least_addr = tbase;
4058 m->seg.size = tsize;
4059 m->seg.sflags = mmap_flag;
4060 m->magic = mparams.magic;
4061 m->release_checks = MAX_RELEASE_CHECK_RATE;
4062 init_bins(m);
4063 #if !ONLY_MSPACES
4064 if (is_global(m))
4065 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
4066 else
4067 #endif
4069 /* Offset top by embedded malloc_state */
4070 mchunkptr mn = next_chunk(mem2chunk(m));
4071 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
4075 else {
4076 /* Try to merge with an existing segment */
4077 msegmentptr sp = &m->seg;
4078 /* Only consider most recent segment if traversal suppressed */
4079 while (sp != 0 && tbase != sp->base + sp->size)
4080 sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4081 if (sp != 0 &&
4082 !is_extern_segment(sp) &&
4083 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
4084 segment_holds(sp, m->top)) { /* append */
4085 sp->size += tsize;
4086 init_top(m, m->top, m->topsize + tsize);
4088 else {
4089 if (tbase < m->least_addr)
4090 m->least_addr = tbase;
4091 sp = &m->seg;
4092 while (sp != 0 && sp->base != tbase + tsize)
4093 sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
4094 if (sp != 0 &&
4095 !is_extern_segment(sp) &&
4096 (sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
4097 char* oldbase = sp->base;
4098 sp->base = tbase;
4099 sp->size += tsize;
4100 return prepend_alloc(m, tbase, oldbase, nb);
4102 else
4103 add_segment(m, tbase, tsize, mmap_flag);
4107 if (nb < m->topsize) { /* Allocate from new or extended top space */
4108 size_t rsize = m->topsize -= nb;
4109 mchunkptr p = m->top;
4110 mchunkptr r = m->top = chunk_plus_offset(p, nb);
4111 r->head = rsize | PINUSE_BIT;
4112 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
4113 check_top_chunk(m, m->top);
4114 check_malloced_chunk(m, chunk2mem(p), nb);
4115 return chunk2mem(p);
4119 MALLOC_FAILURE_ACTION;
4120 return 0;
4123 /* ----------------------- system deallocation -------------------------- */
4125 /* Unmap and unlink any mmapped segments that don't contain used chunks */
4126 static size_t release_unused_segments(mstate m) {
4127 size_t released = 0;
4128 int nsegs = 0;
4129 msegmentptr pred = &m->seg;
4130 msegmentptr sp = pred->next;
4131 while (sp != 0) {
4132 char* base = sp->base;
4133 size_t size = sp->size;
4134 msegmentptr next = sp->next;
4135 ++nsegs;
4136 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
4137 mchunkptr p = align_as_chunk(base);
4138 size_t psize = chunksize(p);
4139 /* Can unmap if first chunk holds entire segment and not pinned */
4140 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
4141 tchunkptr tp = (tchunkptr)p;
4142 assert(segment_holds(sp, (char*)sp));
4143 if (p == m->dv) {
4144 m->dv = 0;
4145 m->dvsize = 0;
4147 else {
4148 unlink_large_chunk(m, tp);
4150 if (CALL_MUNMAP(base, size) == 0) {
4151 released += size;
4152 m->footprint -= size;
4153 /* unlink obsoleted record */
4154 sp = pred;
4155 sp->next = next;
4157 else { /* back out if cannot unmap */
4158 insert_large_chunk(m, tp, psize);
4162 if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
4163 break;
4164 pred = sp;
4165 sp = next;
4167 /* Reset check counter */
4168 m->release_checks = ((nsegs > MAX_RELEASE_CHECK_RATE)?
4169 nsegs : MAX_RELEASE_CHECK_RATE);
4170 return released;
4173 static int sys_trim(mstate m, size_t pad) {
4174 size_t released = 0;
4175 ensure_initialization();
4176 if (pad < MAX_REQUEST && is_initialized(m)) {
4177 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
4179 if (m->topsize > pad) {
4180 /* Shrink top space in granularity-size units, keeping at least one */
4181 size_t unit = mparams.granularity;
4182 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
4183 SIZE_T_ONE) * unit;
4184 msegmentptr sp = segment_holding(m, (char*)m->top);
4186 if (!is_extern_segment(sp)) {
4187 if (is_mmapped_segment(sp)) {
4188 if (HAVE_MMAP &&
4189 sp->size >= extra &&
4190 !has_segment_link(m, sp)) { /* can't shrink if pinned */
4191 size_t newsize = sp->size - extra;
4192 /* Prefer mremap, fall back to munmap */
4193 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
4194 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
4195 released = extra;
4199 else if (HAVE_MORECORE) {
4200 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
4201 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
4202 ACQUIRE_MALLOC_GLOBAL_LOCK();
4204 /* Make sure end of memory is where we last set it. */
4205 char* old_br = (char*)(CALL_MORECORE(0));
4206 if (old_br == sp->base + sp->size) {
4207 char* rel_br = (char*)(CALL_MORECORE(-extra));
4208 char* new_br = (char*)(CALL_MORECORE(0));
4209 if (rel_br != CMFAIL && new_br < old_br)
4210 released = old_br - new_br;
4213 RELEASE_MALLOC_GLOBAL_LOCK();
4217 if (released != 0) {
4218 sp->size -= released;
4219 m->footprint -= released;
4220 init_top(m, m->top, m->topsize - released);
4221 check_top_chunk(m, m->top);
4225 /* Unmap any unused mmapped segments */
4226 if (HAVE_MMAP)
4227 released += release_unused_segments(m);
4229 /* On failure, disable autotrim to avoid repeated failed future calls */
4230 if (released == 0 && m->topsize > m->trim_check)
4231 m->trim_check = MAX_SIZE_T;
4234 return (released != 0)? 1 : 0;
4238 /* ---------------------------- malloc support --------------------------- */
4240 /* allocate a large request from the best fitting chunk in a treebin */
4241 static void* tmalloc_large(mstate m, size_t nb) {
4242 tchunkptr v = 0;
4243 size_t rsize = -nb; /* Unsigned negation */
4244 tchunkptr t;
4245 bindex_t idx;
4246 compute_tree_index(nb, idx);
4247 if ((t = *treebin_at(m, idx)) != 0) {
4248 /* Traverse tree for this bin looking for node with size == nb */
4249 size_t sizebits = nb << leftshift_for_tree_index(idx);
4250 tchunkptr rst = 0; /* The deepest untaken right subtree */
4251 for (;;) {
4252 tchunkptr rt;
4253 size_t trem = chunksize(t) - nb;
4254 if (trem < rsize) {
4255 v = t;
4256 if ((rsize = trem) == 0)
4257 break;
4259 rt = t->child[1];
4260 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
4261 if (rt != 0 && rt != t)
4262 rst = rt;
4263 if (t == 0) {
4264 t = rst; /* set t to least subtree holding sizes > nb */
4265 break;
4267 sizebits <<= 1;
4270 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
4271 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
4272 if (leftbits != 0) {
4273 bindex_t i;
4274 binmap_t leastbit = least_bit(leftbits);
4275 compute_bit2idx(leastbit, i);
4276 t = *treebin_at(m, i);
4280 while (t != 0) { /* find smallest of tree or subtree */
4281 size_t trem = chunksize(t) - nb;
4282 if (trem < rsize) {
4283 rsize = trem;
4284 v = t;
4286 t = leftmost_child(t);
4289 /* If dv is a better fit, return 0 so malloc will use it */
4290 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
4291 if (RTCHECK(ok_address(m, v))) { /* split */
4292 mchunkptr r = chunk_plus_offset(v, nb);
4293 assert(chunksize(v) == rsize + nb);
4294 if (RTCHECK(ok_next(v, r))) {
4295 unlink_large_chunk(m, v);
4296 if (rsize < MIN_CHUNK_SIZE)
4297 set_inuse_and_pinuse(m, v, (rsize + nb));
4298 else {
4299 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4300 set_size_and_pinuse_of_free_chunk(r, rsize);
4301 insert_chunk(m, r, rsize);
4303 return chunk2mem(v);
4306 CORRUPTION_ERROR_ACTION(m);
4308 return 0;
4311 /* allocate a small request from the best fitting chunk in a treebin */
4312 static void* tmalloc_small(mstate m, size_t nb) {
4313 tchunkptr t, v;
4314 size_t rsize;
4315 bindex_t i;
4316 binmap_t leastbit = least_bit(m->treemap);
4317 compute_bit2idx(leastbit, i);
4318 v = t = *treebin_at(m, i);
4319 rsize = chunksize(t) - nb;
4321 while ((t = leftmost_child(t)) != 0) {
4322 size_t trem = chunksize(t) - nb;
4323 if (trem < rsize) {
4324 rsize = trem;
4325 v = t;
4329 if (RTCHECK(ok_address(m, v))) {
4330 mchunkptr r = chunk_plus_offset(v, nb);
4331 assert(chunksize(v) == rsize + nb);
4332 if (RTCHECK(ok_next(v, r))) {
4333 unlink_large_chunk(m, v);
4334 if (rsize < MIN_CHUNK_SIZE)
4335 set_inuse_and_pinuse(m, v, (rsize + nb));
4336 else {
4337 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
4338 set_size_and_pinuse_of_free_chunk(r, rsize);
4339 replace_dv(m, r, rsize);
4341 return chunk2mem(v);
4345 CORRUPTION_ERROR_ACTION(m);
4346 return 0;
4349 /* --------------------------- realloc support --------------------------- */
4351 static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
4352 if (bytes >= MAX_REQUEST) {
4353 MALLOC_FAILURE_ACTION;
4354 return 0;
4356 if (!PREACTION(m)) {
4357 mchunkptr oldp = mem2chunk(oldmem);
4358 size_t oldsize = chunksize(oldp);
4359 mchunkptr next = chunk_plus_offset(oldp, oldsize);
4360 mchunkptr newp = 0;
4361 void* extra = 0;
4363 /* Try to either shrink or extend into top. Else malloc-copy-free */
4365 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
4366 ok_next(oldp, next) && ok_pinuse(next))) {
4367 size_t nb = request2size(bytes);
4368 if (is_mmapped(oldp))
4369 newp = mmap_resize(m, oldp, nb);
4370 else if (oldsize >= nb) { /* already big enough */
4371 size_t rsize = oldsize - nb;
4372 newp = oldp;
4373 if (rsize >= MIN_CHUNK_SIZE) {
4374 mchunkptr remainder = chunk_plus_offset(newp, nb);
4375 set_inuse(m, newp, nb);
4376 set_inuse(m, remainder, rsize);
4377 extra = chunk2mem(remainder);
4380 else if (next == m->top && oldsize + m->topsize > nb) {
4381 /* Expand into top */
4382 size_t newsize = oldsize + m->topsize;
4383 size_t newtopsize = newsize - nb;
4384 mchunkptr newtop = chunk_plus_offset(oldp, nb);
4385 set_inuse(m, oldp, nb);
4386 newtop->head = newtopsize |PINUSE_BIT;
4387 m->top = newtop;
4388 m->topsize = newtopsize;
4389 newp = oldp;
4392 else {
4393 USAGE_ERROR_ACTION(m, oldmem);
4394 POSTACTION(m);
4395 return 0;
4398 POSTACTION(m);
4400 if (newp != 0) {
4401 if (extra != 0) {
4402 internal_free(m, extra);
4404 check_inuse_chunk(m, newp);
4405 return chunk2mem(newp);
4407 else {
4408 void* newmem = internal_malloc(m, bytes);
4409 if (newmem != 0) {
4410 size_t oc = oldsize - overhead_for(oldp);
4411 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
4412 internal_free(m, oldmem);
4414 return newmem;
4417 return 0;
4420 /* --------------------------- memalign support -------------------------- */
4422 static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
4423 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
4424 return internal_malloc(m, bytes);
4425 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
4426 alignment = MIN_CHUNK_SIZE;
4427 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
4428 size_t a = MALLOC_ALIGNMENT << 1;
4429 while (a < alignment) a <<= 1;
4430 alignment = a;
4433 if (bytes >= MAX_REQUEST - alignment) {
4434 if (m != 0) { /* Test isn't needed but avoids compiler warning */
4435 MALLOC_FAILURE_ACTION;
4438 else {
4439 size_t nb = request2size(bytes);
4440 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
4441 char* mem = (char*)internal_malloc(m, req);
4442 if (mem != 0) {
4443 void* leader = 0;
4444 void* trailer = 0;
4445 mchunkptr p = mem2chunk(mem);
4447 if (PREACTION(m)) return 0;
4448 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
4450 Find an aligned spot inside chunk. Since we need to give
4451 back leading space in a chunk of at least MIN_CHUNK_SIZE, if
4452 the first calculation places us at a spot with less than
4453 MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
4454 We've allocated enough total room so that this is always
4455 possible.
4457 char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
4458 alignment -
4459 SIZE_T_ONE)) &
4460 -alignment));
4461 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
4462 br : br+alignment;
4463 mchunkptr newp = (mchunkptr)pos;
4464 size_t leadsize = pos - (char*)(p);
4465 size_t newsize = chunksize(p) - leadsize;
4467 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
4468 newp->prev_foot = p->prev_foot + leadsize;
4469 newp->head = (newsize|CINUSE_BIT);
4471 else { /* Otherwise, give back leader, use the rest */
4472 set_inuse(m, newp, newsize);
4473 set_inuse(m, p, leadsize);
4474 leader = chunk2mem(p);
4476 p = newp;
4479 /* Give back spare room at the end */
4480 if (!is_mmapped(p)) {
4481 size_t size = chunksize(p);
4482 if (size > nb + MIN_CHUNK_SIZE) {
4483 size_t remainder_size = size - nb;
4484 mchunkptr remainder = chunk_plus_offset(p, nb);
4485 set_inuse(m, p, nb);
4486 set_inuse(m, remainder, remainder_size);
4487 trailer = chunk2mem(remainder);
4491 assert (chunksize(p) >= nb);
4492 assert((((size_t)(chunk2mem(p))) % alignment) == 0);
4493 check_inuse_chunk(m, p);
4494 POSTACTION(m);
4495 if (leader != 0) {
4496 internal_free(m, leader);
4498 if (trailer != 0) {
4499 internal_free(m, trailer);
4501 return chunk2mem(p);
4504 return 0;
4507 /* ------------------------ comalloc/coalloc support --------------------- */
4509 static void** ialloc(mstate m,
4510 size_t n_elements,
4511 size_t* sizes,
4512 int opts,
4513 void* chunks[]) {
4515 This provides common support for independent_X routines, handling
4516 all of the combinations that can result.
4518 The opts arg has:
4519 bit 0 set if all elements are same size (using sizes[0])
4520 bit 1 set if elements should be zeroed
4523 size_t element_size; /* chunksize of each element, if all same */
4524 size_t contents_size; /* total size of elements */
4525 size_t array_size; /* request size of pointer array */
4526 void* mem; /* malloced aggregate space */
4527 mchunkptr p; /* corresponding chunk */
4528 size_t remainder_size; /* remaining bytes while splitting */
4529 void** marray; /* either "chunks" or malloced ptr array */
4530 mchunkptr array_chunk; /* chunk for malloced ptr array */
4531 flag_t was_enabled; /* to disable mmap */
4532 size_t size;
4533 size_t i;
4535 ensure_initialization();
4536 /* compute array length, if needed */
4537 if (chunks != 0) {
4538 if (n_elements == 0)
4539 return chunks; /* nothing to do */
4540 marray = chunks;
4541 array_size = 0;
4543 else {
4544 /* if empty req, must still return chunk representing empty array */
4545 if (n_elements == 0)
4546 return (void**)internal_malloc(m, 0);
4547 marray = 0;
4548 array_size = request2size(n_elements * (sizeof(void*)));
4551 /* compute total element size */
4552 if (opts & 0x1) { /* all-same-size */
4553 element_size = request2size(*sizes);
4554 contents_size = n_elements * element_size;
4556 else { /* add up all the sizes */
4557 element_size = 0;
4558 contents_size = 0;
4559 for (i = 0; i != n_elements; ++i)
4560 contents_size += request2size(sizes[i]);
4563 size = contents_size + array_size;
4566 Allocate the aggregate chunk. First disable direct-mmapping so
4567 malloc won't use it, since we would not be able to later
4568 free/realloc space internal to a segregated mmap region.
4570 was_enabled = use_mmap(m);
4571 disable_mmap(m);
4572 mem = internal_malloc(m, size - CHUNK_OVERHEAD);
4573 if (was_enabled)
4574 enable_mmap(m);
4575 if (mem == 0)
4576 return 0;
4578 if (PREACTION(m)) return 0;
4579 p = mem2chunk(mem);
4580 remainder_size = chunksize(p);
4582 assert(!is_mmapped(p));
4584 if (opts & 0x2) { /* optionally clear the elements */
4585 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
4588 /* If not provided, allocate the pointer array as final part of chunk */
4589 if (marray == 0) {
4590 size_t array_chunk_size;
4591 array_chunk = chunk_plus_offset(p, contents_size);
4592 array_chunk_size = remainder_size - contents_size;
4593 marray = (void**) (chunk2mem(array_chunk));
4594 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
4595 remainder_size = contents_size;
4598 /* split out elements */
4599 for (i = 0; ; ++i) {
4600 marray[i] = chunk2mem(p);
4601 if (i != n_elements-1) {
4602 if (element_size != 0)
4603 size = element_size;
4604 else
4605 size = request2size(sizes[i]);
4606 remainder_size -= size;
4607 set_size_and_pinuse_of_inuse_chunk(m, p, size);
4608 p = chunk_plus_offset(p, size);
4610 else { /* the final element absorbs any overallocation slop */
4611 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
4612 break;
4616 #if DEBUG
4617 if (marray != chunks) {
4618 /* final element must have exactly exhausted chunk */
4619 if (element_size != 0) {
4620 assert(remainder_size == element_size);
4622 else {
4623 assert(remainder_size == request2size(sizes[i]));
4625 check_inuse_chunk(m, mem2chunk(marray));
4627 for (i = 0; i != n_elements; ++i)
4628 check_inuse_chunk(m, mem2chunk(marray[i]));
4630 #endif /* DEBUG */
4632 POSTACTION(m);
4633 return marray;
4637 /* -------------------------- public routines ---------------------------- */
4639 #if !ONLY_MSPACES
4641 void* dlmalloc(size_t bytes) {
4643 Basic algorithm:
4644 If a small request (< 256 bytes minus per-chunk overhead):
4645 1. If one exists, use a remainderless chunk in associated smallbin.
4646 (Remainderless means that there are too few excess bytes to
4647 represent as a chunk.)
4648 2. If it is big enough, use the dv chunk, which is normally the
4649 chunk adjacent to the one used for the most recent small request.
4650 3. If one exists, split the smallest available chunk in a bin,
4651 saving remainder in dv.
4652 4. If it is big enough, use the top chunk.
4653 5. If available, get memory from system and use it
4654 Otherwise, for a large request:
4655 1. Find the smallest available binned chunk that fits, and use it
4656 if it is better fitting than dv chunk, splitting if necessary.
4657 2. If better fitting than any binned chunk, use the dv chunk.
4658 3. If it is big enough, use the top chunk.
4659 4. If request size >= mmap threshold, try to directly mmap this chunk.
4660 5. If available, get memory from system and use it
4662 The ugly goto's here ensure that postaction occurs along all paths.
4665 #if USE_LOCKS
4666 ensure_initialization(); /* initialize in sys_alloc if not using locks */
4667 #endif
4669 if (!PREACTION(gm)) {
4670 void* mem;
4671 size_t nb;
4672 if (bytes <= MAX_SMALL_REQUEST) {
4673 bindex_t idx;
4674 binmap_t smallbits;
4675 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
4676 idx = small_index(nb);
4677 smallbits = gm->smallmap >> idx;
4679 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
4680 mchunkptr b, p;
4681 idx += ~smallbits & 1; /* Uses next bin if idx empty */
4682 b = smallbin_at(gm, idx);
4683 p = b->fd;
4684 assert(chunksize(p) == small_index2size(idx));
4685 unlink_first_small_chunk(gm, b, p, idx);
4686 set_inuse_and_pinuse(gm, p, small_index2size(idx));
4687 mem = chunk2mem(p);
4688 check_malloced_chunk(gm, mem, nb);
4689 goto postaction;
4692 else if (nb > gm->dvsize) {
4693 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
4694 mchunkptr b, p, r;
4695 size_t rsize;
4696 bindex_t i;
4697 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
4698 binmap_t leastbit = least_bit(leftbits);
4699 compute_bit2idx(leastbit, i);
4700 b = smallbin_at(gm, i);
4701 p = b->fd;
4702 assert(chunksize(p) == small_index2size(i));
4703 unlink_first_small_chunk(gm, b, p, i);
4704 rsize = small_index2size(i) - nb;
4705 /* Fit here cannot be remainderless if 4byte sizes */
4706 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
4707 set_inuse_and_pinuse(gm, p, small_index2size(i));
4708 else {
4709 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4710 r = chunk_plus_offset(p, nb);
4711 set_size_and_pinuse_of_free_chunk(r, rsize);
4712 replace_dv(gm, r, rsize);
4714 mem = chunk2mem(p);
4715 check_malloced_chunk(gm, mem, nb);
4716 goto postaction;
4719 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
4720 check_malloced_chunk(gm, mem, nb);
4721 goto postaction;
4725 else if (bytes >= MAX_REQUEST)
4726 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
4727 else {
4728 nb = pad_request(bytes);
4729 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
4730 check_malloced_chunk(gm, mem, nb);
4731 goto postaction;
4735 if (nb <= gm->dvsize) {
4736 size_t rsize = gm->dvsize - nb;
4737 mchunkptr p = gm->dv;
4738 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
4739 mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
4740 gm->dvsize = rsize;
4741 set_size_and_pinuse_of_free_chunk(r, rsize);
4742 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4744 else { /* exhaust dv */
4745 size_t dvs = gm->dvsize;
4746 gm->dvsize = 0;
4747 gm->dv = 0;
4748 set_inuse_and_pinuse(gm, p, dvs);
4750 mem = chunk2mem(p);
4751 check_malloced_chunk(gm, mem, nb);
4752 goto postaction;
4755 else if (nb < gm->topsize) { /* Split top */
4756 size_t rsize = gm->topsize -= nb;
4757 mchunkptr p = gm->top;
4758 mchunkptr r = gm->top = chunk_plus_offset(p, nb);
4759 r->head = rsize | PINUSE_BIT;
4760 set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
4761 mem = chunk2mem(p);
4762 check_top_chunk(gm, gm->top);
4763 check_malloced_chunk(gm, mem, nb);
4764 goto postaction;
4767 mem = sys_alloc(gm, nb);
4769 postaction:
4770 POSTACTION(gm);
4771 return mem;
4774 return 0;
4777 void dlfree(void* mem) {
4779 Consolidate freed chunks with preceeding or succeeding bordering
4780 free chunks, if they exist, and then place in a bin. Intermixed
4781 with special cases for top, dv, mmapped chunks, and usage errors.
4784 if (mem != 0) {
4785 mchunkptr p = mem2chunk(mem);
4786 #if FOOTERS
4787 mstate fm = get_mstate_for(p);
4788 if (!ok_magic(fm)) {
4789 USAGE_ERROR_ACTION(fm, p);
4790 return;
4792 #else /* FOOTERS */
4793 #define fm gm
4794 #endif /* FOOTERS */
4795 if (!PREACTION(fm)) {
4796 check_inuse_chunk(fm, p);
4797 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
4798 size_t psize = chunksize(p);
4799 mchunkptr next = chunk_plus_offset(p, psize);
4800 if (!pinuse(p)) {
4801 size_t prevsize = p->prev_foot;
4802 if ((prevsize & IS_MMAPPED_BIT) != 0) {
4803 prevsize &= ~IS_MMAPPED_BIT;
4804 psize += prevsize + MMAP_FOOT_PAD;
4805 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
4806 fm->footprint -= psize;
4807 goto postaction;
4809 else {
4810 mchunkptr prev = chunk_minus_offset(p, prevsize);
4811 psize += prevsize;
4812 p = prev;
4813 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
4814 if (p != fm->dv) {
4815 unlink_chunk(fm, p, prevsize);
4817 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
4818 fm->dvsize = psize;
4819 set_free_with_pinuse(p, psize, next);
4820 goto postaction;
4823 else
4824 goto erroraction;
4828 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
4829 if (!cinuse(next)) { /* consolidate forward */
4830 if (next == fm->top) {
4831 size_t tsize = fm->topsize += psize;
4832 fm->top = p;
4833 p->head = tsize | PINUSE_BIT;
4834 if (p == fm->dv) {
4835 fm->dv = 0;
4836 fm->dvsize = 0;
4838 if (should_trim(fm, tsize))
4839 sys_trim(fm, 0);
4840 goto postaction;
4842 else if (next == fm->dv) {
4843 size_t dsize = fm->dvsize += psize;
4844 fm->dv = p;
4845 set_size_and_pinuse_of_free_chunk(p, dsize);
4846 goto postaction;
4848 else {
4849 size_t nsize = chunksize(next);
4850 psize += nsize;
4851 unlink_chunk(fm, next, nsize);
4852 set_size_and_pinuse_of_free_chunk(p, psize);
4853 if (p == fm->dv) {
4854 fm->dvsize = psize;
4855 goto postaction;
4859 else
4860 set_free_with_pinuse(p, psize, next);
4862 if (is_small(psize)) {
4863 insert_small_chunk(fm, p, psize);
4864 check_free_chunk(fm, p);
4866 else {
4867 tchunkptr tp = (tchunkptr)p;
4868 insert_large_chunk(fm, tp, psize);
4869 check_free_chunk(fm, p);
4870 if (--fm->release_checks == 0)
4871 release_unused_segments(fm);
4873 goto postaction;
4876 erroraction:
4877 USAGE_ERROR_ACTION(fm, p);
4878 postaction:
4879 POSTACTION(fm);
4882 #if !FOOTERS
4883 #undef fm
4884 #endif /* FOOTERS */
4887 void* dlcalloc(size_t n_elements, size_t elem_size) {
4888 void* mem;
4889 size_t req = 0;
4890 if (n_elements != 0) {
4891 req = n_elements * elem_size;
4892 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
4893 (req / n_elements != elem_size))
4894 req = MAX_SIZE_T; /* force downstream failure on overflow */
4896 mem = dlmalloc(req);
4897 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
4898 memset(mem, 0, req);
4899 return mem;
4902 void* dlrealloc(void* oldmem, size_t bytes) {
4903 if (oldmem == 0)
4904 return dlmalloc(bytes);
4905 #ifdef REALLOC_ZERO_BYTES_FREES
4906 if (bytes == 0) {
4907 dlfree(oldmem);
4908 return 0;
4910 #endif /* REALLOC_ZERO_BYTES_FREES */
4911 else {
4912 #if ! FOOTERS
4913 mstate m = gm;
4914 #else /* FOOTERS */
4915 mstate m = get_mstate_for(mem2chunk(oldmem));
4916 if (!ok_magic(m)) {
4917 USAGE_ERROR_ACTION(m, oldmem);
4918 return 0;
4920 #endif /* FOOTERS */
4921 return internal_realloc(m, oldmem, bytes);
4925 void* dlmemalign(size_t alignment, size_t bytes) {
4926 return internal_memalign(gm, alignment, bytes);
4929 void** dlindependent_calloc(size_t n_elements, size_t elem_size,
4930 void* chunks[]) {
4931 size_t sz = elem_size; /* serves as 1-element array */
4932 return ialloc(gm, n_elements, &sz, 3, chunks);
4935 void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
4936 void* chunks[]) {
4937 return ialloc(gm, n_elements, sizes, 0, chunks);
4940 void* dlvalloc(size_t bytes) {
4941 size_t pagesz;
4942 ensure_initialization();
4943 pagesz = mparams.page_size;
4944 return dlmemalign(pagesz, bytes);
4947 void* dlpvalloc(size_t bytes) {
4948 size_t pagesz;
4949 ensure_initialization();
4950 pagesz = mparams.page_size;
4951 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
4954 int dlmalloc_trim(size_t pad) {
4955 ensure_initialization();
4956 int result = 0;
4957 if (!PREACTION(gm)) {
4958 result = sys_trim(gm, pad);
4959 POSTACTION(gm);
4961 return result;
4964 size_t dlmalloc_footprint(void) {
4965 return gm->footprint;
4968 size_t dlmalloc_max_footprint(void) {
4969 return gm->max_footprint;
4972 #if !NO_MALLINFO
4973 struct mallinfo dlmallinfo(void) {
4974 return internal_mallinfo(gm);
4976 #endif /* NO_MALLINFO */
4978 void dlmalloc_stats() {
4979 internal_malloc_stats(gm);
4982 int dlmallopt(int param_number, int value) {
4983 return change_mparam(param_number, value);
4986 #endif /* !ONLY_MSPACES */
4988 size_t dlmalloc_usable_size(void* mem) {
4989 if (mem != 0) {
4990 mchunkptr p = mem2chunk(mem);
4991 if (cinuse(p))
4992 return chunksize(p) - overhead_for(p);
4994 return 0;
4997 /* ----------------------------- user mspaces ---------------------------- */
4999 #if MSPACES
5001 static mstate init_user_mstate(char* tbase, size_t tsize) {
5002 size_t msize = pad_request(sizeof(struct malloc_state));
5003 mchunkptr mn;
5004 mchunkptr msp = align_as_chunk(tbase);
5005 mstate m = (mstate)(chunk2mem(msp));
5006 memset(m, 0, msize);
5007 INITIAL_LOCK(&m->mutex);
5008 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
5009 m->seg.base = m->least_addr = tbase;
5010 m->seg.size = m->footprint = m->max_footprint = tsize;
5011 m->magic = mparams.magic;
5012 m->release_checks = MAX_RELEASE_CHECK_RATE;
5013 m->mflags = mparams.default_mflags;
5014 m->extp = 0;
5015 m->exts = 0;
5016 disable_contiguous(m);
5017 init_bins(m);
5018 mn = next_chunk(mem2chunk(m));
5019 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
5020 check_top_chunk(m, m->top);
5021 return m;
5024 mspace create_mspace(size_t capacity, int locked) {
5025 mstate m = 0;
5026 size_t msize;
5027 ensure_initialization();
5028 msize = pad_request(sizeof(struct malloc_state));
5029 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5030 size_t rs = ((capacity == 0)? mparams.granularity :
5031 (capacity + TOP_FOOT_SIZE + msize));
5032 size_t tsize = granularity_align(rs);
5033 char* tbase = (char*)(CALL_MMAP(tsize));
5034 if (tbase != CMFAIL) {
5035 m = init_user_mstate(tbase, tsize);
5036 m->seg.sflags = IS_MMAPPED_BIT;
5037 set_lock(m, locked);
5040 return (mspace)m;
5043 mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
5044 mstate m = 0;
5045 size_t msize;
5046 ensure_initialization();
5047 msize = pad_request(sizeof(struct malloc_state));
5048 if (capacity > msize + TOP_FOOT_SIZE &&
5049 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
5050 m = init_user_mstate((char*)base, capacity);
5051 m->seg.sflags = EXTERN_BIT;
5052 set_lock(m, locked);
5054 return (mspace)m;
5057 int mspace_mmap_large_chunks(mspace msp, int enable) {
5058 int ret = 0;
5059 mstate ms = (mstate)msp;
5060 if (!PREACTION(ms)) {
5061 if (use_mmap(ms))
5062 ret = 1;
5063 if (enable)
5064 enable_mmap(ms);
5065 else
5066 disable_mmap(ms);
5067 POSTACTION(ms);
5069 return ret;
5072 size_t destroy_mspace(mspace msp) {
5073 size_t freed = 0;
5074 mstate ms = (mstate)msp;
5075 if (ok_magic(ms)) {
5076 msegmentptr sp = &ms->seg;
5077 while (sp != 0) {
5078 char* base = sp->base;
5079 size_t size = sp->size;
5080 flag_t flag = sp->sflags;
5081 sp = sp->next;
5082 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) &&
5083 CALL_MUNMAP(base, size) == 0)
5084 freed += size;
5087 else {
5088 USAGE_ERROR_ACTION(ms,ms);
5090 return freed;
5094 mspace versions of routines are near-clones of the global
5095 versions. This is not so nice but better than the alternatives.
5099 void* mspace_malloc(mspace msp, size_t bytes) {
5100 mstate ms = (mstate)msp;
5101 if (!ok_magic(ms)) {
5102 USAGE_ERROR_ACTION(ms,ms);
5103 return 0;
5105 if (!PREACTION(ms)) {
5106 void* mem;
5107 size_t nb;
5108 if (bytes <= MAX_SMALL_REQUEST) {
5109 bindex_t idx;
5110 binmap_t smallbits;
5111 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
5112 idx = small_index(nb);
5113 smallbits = ms->smallmap >> idx;
5115 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
5116 mchunkptr b, p;
5117 idx += ~smallbits & 1; /* Uses next bin if idx empty */
5118 b = smallbin_at(ms, idx);
5119 p = b->fd;
5120 assert(chunksize(p) == small_index2size(idx));
5121 unlink_first_small_chunk(ms, b, p, idx);
5122 set_inuse_and_pinuse(ms, p, small_index2size(idx));
5123 mem = chunk2mem(p);
5124 check_malloced_chunk(ms, mem, nb);
5125 goto postaction;
5128 else if (nb > ms->dvsize) {
5129 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
5130 mchunkptr b, p, r;
5131 size_t rsize;
5132 bindex_t i;
5133 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
5134 binmap_t leastbit = least_bit(leftbits);
5135 compute_bit2idx(leastbit, i);
5136 b = smallbin_at(ms, i);
5137 p = b->fd;
5138 assert(chunksize(p) == small_index2size(i));
5139 unlink_first_small_chunk(ms, b, p, i);
5140 rsize = small_index2size(i) - nb;
5141 /* Fit here cannot be remainderless if 4byte sizes */
5142 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
5143 set_inuse_and_pinuse(ms, p, small_index2size(i));
5144 else {
5145 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5146 r = chunk_plus_offset(p, nb);
5147 set_size_and_pinuse_of_free_chunk(r, rsize);
5148 replace_dv(ms, r, rsize);
5150 mem = chunk2mem(p);
5151 check_malloced_chunk(ms, mem, nb);
5152 goto postaction;
5155 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
5156 check_malloced_chunk(ms, mem, nb);
5157 goto postaction;
5161 else if (bytes >= MAX_REQUEST)
5162 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
5163 else {
5164 nb = pad_request(bytes);
5165 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
5166 check_malloced_chunk(ms, mem, nb);
5167 goto postaction;
5171 if (nb <= ms->dvsize) {
5172 size_t rsize = ms->dvsize - nb;
5173 mchunkptr p = ms->dv;
5174 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
5175 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
5176 ms->dvsize = rsize;
5177 set_size_and_pinuse_of_free_chunk(r, rsize);
5178 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5180 else { /* exhaust dv */
5181 size_t dvs = ms->dvsize;
5182 ms->dvsize = 0;
5183 ms->dv = 0;
5184 set_inuse_and_pinuse(ms, p, dvs);
5186 mem = chunk2mem(p);
5187 check_malloced_chunk(ms, mem, nb);
5188 goto postaction;
5191 else if (nb < ms->topsize) { /* Split top */
5192 size_t rsize = ms->topsize -= nb;
5193 mchunkptr p = ms->top;
5194 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
5195 r->head = rsize | PINUSE_BIT;
5196 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
5197 mem = chunk2mem(p);
5198 check_top_chunk(ms, ms->top);
5199 check_malloced_chunk(ms, mem, nb);
5200 goto postaction;
5203 mem = sys_alloc(ms, nb);
5205 postaction:
5206 POSTACTION(ms);
5207 return mem;
5210 return 0;
5213 void mspace_free(mspace msp, void* mem) {
5214 if (mem != 0) {
5215 mchunkptr p = mem2chunk(mem);
5216 #if FOOTERS
5217 mstate fm = get_mstate_for(p);
5218 #else /* FOOTERS */
5219 mstate fm = (mstate)msp;
5220 #endif /* FOOTERS */
5221 if (!ok_magic(fm)) {
5222 USAGE_ERROR_ACTION(fm, p);
5223 return;
5225 if (!PREACTION(fm)) {
5226 check_inuse_chunk(fm, p);
5227 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
5228 size_t psize = chunksize(p);
5229 mchunkptr next = chunk_plus_offset(p, psize);
5230 if (!pinuse(p)) {
5231 size_t prevsize = p->prev_foot;
5232 if ((prevsize & IS_MMAPPED_BIT) != 0) {
5233 prevsize &= ~IS_MMAPPED_BIT;
5234 psize += prevsize + MMAP_FOOT_PAD;
5235 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
5236 fm->footprint -= psize;
5237 goto postaction;
5239 else {
5240 mchunkptr prev = chunk_minus_offset(p, prevsize);
5241 psize += prevsize;
5242 p = prev;
5243 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
5244 if (p != fm->dv) {
5245 unlink_chunk(fm, p, prevsize);
5247 else if ((next->head & INUSE_BITS) == INUSE_BITS) {
5248 fm->dvsize = psize;
5249 set_free_with_pinuse(p, psize, next);
5250 goto postaction;
5253 else
5254 goto erroraction;
5258 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
5259 if (!cinuse(next)) { /* consolidate forward */
5260 if (next == fm->top) {
5261 size_t tsize = fm->topsize += psize;
5262 fm->top = p;
5263 p->head = tsize | PINUSE_BIT;
5264 if (p == fm->dv) {
5265 fm->dv = 0;
5266 fm->dvsize = 0;
5268 if (should_trim(fm, tsize))
5269 sys_trim(fm, 0);
5270 goto postaction;
5272 else if (next == fm->dv) {
5273 size_t dsize = fm->dvsize += psize;
5274 fm->dv = p;
5275 set_size_and_pinuse_of_free_chunk(p, dsize);
5276 goto postaction;
5278 else {
5279 size_t nsize = chunksize(next);
5280 psize += nsize;
5281 unlink_chunk(fm, next, nsize);
5282 set_size_and_pinuse_of_free_chunk(p, psize);
5283 if (p == fm->dv) {
5284 fm->dvsize = psize;
5285 goto postaction;
5289 else
5290 set_free_with_pinuse(p, psize, next);
5292 if (is_small(psize)) {
5293 insert_small_chunk(fm, p, psize);
5294 check_free_chunk(fm, p);
5296 else {
5297 tchunkptr tp = (tchunkptr)p;
5298 insert_large_chunk(fm, tp, psize);
5299 check_free_chunk(fm, p);
5300 if (--fm->release_checks == 0)
5301 release_unused_segments(fm);
5303 goto postaction;
5306 erroraction:
5307 USAGE_ERROR_ACTION(fm, p);
5308 postaction:
5309 POSTACTION(fm);
5314 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
5315 void* mem;
5316 size_t req = 0;
5317 mstate ms = (mstate)msp;
5318 if (!ok_magic(ms)) {
5319 USAGE_ERROR_ACTION(ms,ms);
5320 return 0;
5322 if (n_elements != 0) {
5323 req = n_elements * elem_size;
5324 if (((n_elements | elem_size) & ~(size_t)0xffff) &&
5325 (req / n_elements != elem_size))
5326 req = MAX_SIZE_T; /* force downstream failure on overflow */
5328 mem = internal_malloc(ms, req);
5329 if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
5330 memset(mem, 0, req);
5331 return mem;
5334 void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
5335 if (oldmem == 0)
5336 return mspace_malloc(msp, bytes);
5337 #ifdef REALLOC_ZERO_BYTES_FREES
5338 if (bytes == 0) {
5339 mspace_free(msp, oldmem);
5340 return 0;
5342 #endif /* REALLOC_ZERO_BYTES_FREES */
5343 else {
5344 #if FOOTERS
5345 mchunkptr p = mem2chunk(oldmem);
5346 mstate ms = get_mstate_for(p);
5347 #else /* FOOTERS */
5348 mstate ms = (mstate)msp;
5349 #endif /* FOOTERS */
5350 if (!ok_magic(ms)) {
5351 USAGE_ERROR_ACTION(ms,ms);
5352 return 0;
5354 return internal_realloc(ms, oldmem, bytes);
5358 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
5359 mstate ms = (mstate)msp;
5360 if (!ok_magic(ms)) {
5361 USAGE_ERROR_ACTION(ms,ms);
5362 return 0;
5364 return internal_memalign(ms, alignment, bytes);
5367 void** mspace_independent_calloc(mspace msp, size_t n_elements,
5368 size_t elem_size, void* chunks[]) {
5369 size_t sz = elem_size; /* serves as 1-element array */
5370 mstate ms = (mstate)msp;
5371 if (!ok_magic(ms)) {
5372 USAGE_ERROR_ACTION(ms,ms);
5373 return 0;
5375 return ialloc(ms, n_elements, &sz, 3, chunks);
5378 void** mspace_independent_comalloc(mspace msp, size_t n_elements,
5379 size_t sizes[], void* chunks[]) {
5380 mstate ms = (mstate)msp;
5381 if (!ok_magic(ms)) {
5382 USAGE_ERROR_ACTION(ms,ms);
5383 return 0;
5385 return ialloc(ms, n_elements, sizes, 0, chunks);
5388 int mspace_trim(mspace msp, size_t pad) {
5389 int result = 0;
5390 mstate ms = (mstate)msp;
5391 if (ok_magic(ms)) {
5392 if (!PREACTION(ms)) {
5393 result = sys_trim(ms, pad);
5394 POSTACTION(ms);
5397 else {
5398 USAGE_ERROR_ACTION(ms,ms);
5400 return result;
5403 void mspace_malloc_stats(mspace msp) {
5404 mstate ms = (mstate)msp;
5405 if (ok_magic(ms)) {
5406 internal_malloc_stats(ms);
5408 else {
5409 USAGE_ERROR_ACTION(ms,ms);
5413 size_t mspace_footprint(mspace msp) {
5414 size_t result = 0;
5415 mstate ms = (mstate)msp;
5416 if (ok_magic(ms)) {
5417 result = ms->footprint;
5419 else {
5420 USAGE_ERROR_ACTION(ms,ms);
5422 return result;
5426 size_t mspace_max_footprint(mspace msp) {
5427 size_t result = 0;
5428 mstate ms = (mstate)msp;
5429 if (ok_magic(ms)) {
5430 result = ms->max_footprint;
5432 else {
5433 USAGE_ERROR_ACTION(ms,ms);
5435 return result;
5439 #if !NO_MALLINFO
5440 struct mallinfo mspace_mallinfo(mspace msp) {
5441 mstate ms = (mstate)msp;
5442 if (!ok_magic(ms)) {
5443 USAGE_ERROR_ACTION(ms,ms);
5445 return internal_mallinfo(ms);
5447 #endif /* NO_MALLINFO */
5449 size_t mspace_usable_size(void* mem) {
5450 if (mem != 0) {
5451 mchunkptr p = mem2chunk(mem);
5452 if (cinuse(p))
5453 return chunksize(p) - overhead_for(p);
5455 return 0;
5458 int mspace_mallopt(int param_number, int value) {
5459 return change_mparam(param_number, value);
5462 #endif /* MSPACES */
5464 /* -------------------- Alternative MORECORE functions ------------------- */
5467 Guidelines for creating a custom version of MORECORE:
5469 * For best performance, MORECORE should allocate in multiples of pagesize.
5470 * MORECORE may allocate more memory than requested. (Or even less,
5471 but this will usually result in a malloc failure.)
5472 * MORECORE must not allocate memory when given argument zero, but
5473 instead return one past the end address of memory from previous
5474 nonzero call.
5475 * For best performance, consecutive calls to MORECORE with positive
5476 arguments should return increasing addresses, indicating that
5477 space has been contiguously extended.
5478 * Even though consecutive calls to MORECORE need not return contiguous
5479 addresses, it must be OK for malloc'ed chunks to span multiple
5480 regions in those cases where they do happen to be contiguous.
5481 * MORECORE need not handle negative arguments -- it may instead
5482 just return MFAIL when given negative arguments.
5483 Negative arguments are always multiples of pagesize. MORECORE
5484 must not misinterpret negative args as large positive unsigned
5485 args. You can suppress all such calls from even occurring by defining
5486 MORECORE_CANNOT_TRIM,
5488 As an example alternative MORECORE, here is a custom allocator
5489 kindly contributed for pre-OSX macOS. It uses virtually but not
5490 necessarily physically contiguous non-paged memory (locked in,
5491 present and won't get swapped out). You can use it by uncommenting
5492 this section, adding some #includes, and setting up the appropriate
5493 defines above:
5495 #define MORECORE osMoreCore
5497 There is also a shutdown routine that should somehow be called for
5498 cleanup upon program exit.
5500 #define MAX_POOL_ENTRIES 100
5501 #define MINIMUM_MORECORE_SIZE (64 * 1024U)
5502 static int next_os_pool;
5503 void *our_os_pools[MAX_POOL_ENTRIES];
5505 void *osMoreCore(int size)
5507 void *ptr = 0;
5508 static void *sbrk_top = 0;
5510 if (size > 0)
5512 if (size < MINIMUM_MORECORE_SIZE)
5513 size = MINIMUM_MORECORE_SIZE;
5514 if (CurrentExecutionLevel() == kTaskLevel)
5515 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
5516 if (ptr == 0)
5518 return (void *) MFAIL;
5520 // save ptrs so they can be freed during cleanup
5521 our_os_pools[next_os_pool] = ptr;
5522 next_os_pool++;
5523 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
5524 sbrk_top = (char *) ptr + size;
5525 return ptr;
5527 else if (size < 0)
5529 // we don't currently support shrink behavior
5530 return (void *) MFAIL;
5532 else
5534 return sbrk_top;
5538 // cleanup any allocated memory pools
5539 // called as last thing before shutting down driver
5541 void osCleanupMem(void)
5543 void **ptr;
5545 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
5546 if (*ptr)
5548 PoolDeallocate(*ptr);
5549 *ptr = 0;
5556 /* -----------------------------------------------------------------------
5557 History:
5558 V2.8.4 (not yet released)
5559 * Add mspace_mmap_large_chunks; thanks to Jean Brouwers
5560 * Fix insufficient sys_alloc padding when using 16byte alignment
5561 * Fix bad error check in mspace_footprint
5562 * Adaptations for ptmalloc, courtesy of Wolfram Gloger.
5563 * Reentrant spin locks, courtesy of Earl Chew and others
5564 * Win32 improvements, courtesy of Niall Douglas and Earl Chew
5565 * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
5566 * Extension hook in malloc_state
5567 * Various small adjustments to reduce warnings on some compilers
5568 * Various configuration extensions/changes for more platforms. Thanks
5569 to all who contributed these.
5571 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
5572 * Add max_footprint functions
5573 * Ensure all appropriate literals are size_t
5574 * Fix conditional compilation problem for some #define settings
5575 * Avoid concatenating segments with the one provided
5576 in create_mspace_with_base
5577 * Rename some variables to avoid compiler shadowing warnings
5578 * Use explicit lock initialization.
5579 * Better handling of sbrk interference.
5580 * Simplify and fix segment insertion, trimming and mspace_destroy
5581 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
5582 * Thanks especially to Dennis Flanagan for help on these.
5584 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
5585 * Fix memalign brace error.
5587 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
5588 * Fix improper #endif nesting in C++
5589 * Add explicit casts needed for C++
5591 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
5592 * Use trees for large bins
5593 * Support mspaces
5594 * Use segments to unify sbrk-based and mmap-based system allocation,
5595 removing need for emulation on most platforms without sbrk.
5596 * Default safety checks
5597 * Optional footer checks. Thanks to William Robertson for the idea.
5598 * Internal code refactoring
5599 * Incorporate suggestions and platform-specific changes.
5600 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
5601 Aaron Bachmann, Emery Berger, and others.
5602 * Speed up non-fastbin processing enough to remove fastbins.
5603 * Remove useless cfree() to avoid conflicts with other apps.
5604 * Remove internal memcpy, memset. Compilers handle builtins better.
5605 * Remove some options that no one ever used and rename others.
5607 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
5608 * Fix malloc_state bitmap array misdeclaration
5610 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
5611 * Allow tuning of FIRST_SORTED_BIN_SIZE
5612 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
5613 * Better detection and support for non-contiguousness of MORECORE.
5614 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
5615 * Bypass most of malloc if no frees. Thanks To Emery Berger.
5616 * Fix freeing of old top non-contiguous chunk im sysmalloc.
5617 * Raised default trim and map thresholds to 256K.
5618 * Fix mmap-related #defines. Thanks to Lubos Lunak.
5619 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
5620 * Branch-free bin calculation
5621 * Default trim and mmap thresholds now 256K.
5623 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
5624 * Introduce independent_comalloc and independent_calloc.
5625 Thanks to Michael Pachos for motivation and help.
5626 * Make optional .h file available
5627 * Allow > 2GB requests on 32bit systems.
5628 * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
5629 Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
5630 and Anonymous.
5631 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
5632 helping test this.)
5633 * memalign: check alignment arg
5634 * realloc: don't try to shift chunks backwards, since this
5635 leads to more fragmentation in some programs and doesn't
5636 seem to help in any others.
5637 * Collect all cases in malloc requiring system memory into sysmalloc
5638 * Use mmap as backup to sbrk
5639 * Place all internal state in malloc_state
5640 * Introduce fastbins (although similar to 2.5.1)
5641 * Many minor tunings and cosmetic improvements
5642 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
5643 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
5644 Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
5645 * Include errno.h to support default failure action.
5647 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
5648 * return null for negative arguments
5649 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
5650 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
5651 (e.g. WIN32 platforms)
5652 * Cleanup header file inclusion for WIN32 platforms
5653 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
5654 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
5655 memory allocation routines
5656 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
5657 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
5658 usage of 'assert' in non-WIN32 code
5659 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
5660 avoid infinite loop
5661 * Always call 'fREe()' rather than 'free()'
5663 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
5664 * Fixed ordering problem with boundary-stamping
5666 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
5667 * Added pvalloc, as recommended by H.J. Liu
5668 * Added 64bit pointer support mainly from Wolfram Gloger
5669 * Added anonymously donated WIN32 sbrk emulation
5670 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
5671 * malloc_extend_top: fix mask error that caused wastage after
5672 foreign sbrks
5673 * Add linux mremap support code from HJ Liu
5675 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
5676 * Integrated most documentation with the code.
5677 * Add support for mmap, with help from
5678 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5679 * Use last_remainder in more cases.
5680 * Pack bins using idea from colin@nyx10.cs.du.edu
5681 * Use ordered bins instead of best-fit threshhold
5682 * Eliminate block-local decls to simplify tracing and debugging.
5683 * Support another case of realloc via move into top
5684 * Fix error occuring when initial sbrk_base not word-aligned.
5685 * Rely on page size for units instead of SBRK_UNIT to
5686 avoid surprises about sbrk alignment conventions.
5687 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
5688 (raymond@es.ele.tue.nl) for the suggestion.
5689 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
5690 * More precautions for cases where other routines call sbrk,
5691 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
5692 * Added macros etc., allowing use in linux libc from
5693 H.J. Lu (hjl@gnu.ai.mit.edu)
5694 * Inverted this history list
5696 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
5697 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
5698 * Removed all preallocation code since under current scheme
5699 the work required to undo bad preallocations exceeds
5700 the work saved in good cases for most test programs.
5701 * No longer use return list or unconsolidated bins since
5702 no scheme using them consistently outperforms those that don't
5703 given above changes.
5704 * Use best fit for very large chunks to prevent some worst-cases.
5705 * Added some support for debugging
5707 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
5708 * Removed footers when chunks are in use. Thanks to
5709 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
5711 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
5712 * Added malloc_trim, with help from Wolfram Gloger
5713 (wmglo@Dent.MED.Uni-Muenchen.DE).
5715 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
5717 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
5718 * realloc: try to expand in both directions
5719 * malloc: swap order of clean-bin strategy;
5720 * realloc: only conditionally expand backwards
5721 * Try not to scavenge used bins
5722 * Use bin counts as a guide to preallocation
5723 * Occasionally bin return list chunks in first scan
5724 * Add a few optimizations from colin@nyx10.cs.du.edu
5726 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
5727 * faster bin computation & slightly different binning
5728 * merged all consolidations to one part of malloc proper
5729 (eliminating old malloc_find_space & malloc_clean_bin)
5730 * Scan 2 returns chunks (not just 1)
5731 * Propagate failure in realloc if malloc returns 0
5732 * Add stuff to allow compilation on non-ANSI compilers
5733 from kpv@research.att.com
5735 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
5736 * removed potential for odd address access in prev_chunk
5737 * removed dependency on getpagesize.h
5738 * misc cosmetics and a bit more internal documentation
5739 * anticosmetics: mangled names in macros to evade debugger strangeness
5740 * tested on sparc, hp-700, dec-mips, rs6000
5741 with gcc & native cc (hp, dec only) allowing
5742 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
5744 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
5745 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
5746 structure of old version, but most details differ.)