Merge branch 'tb/pseudo-merge-reachability-bitmap'
[alt-git.git] / blame.c
blob90633380cd583b689693e6cfe65c26a79448b00d
1 #define USE_THE_REPOSITORY_VARIABLE
3 #include "git-compat-util.h"
4 #include "refs.h"
5 #include "object-store-ll.h"
6 #include "cache-tree.h"
7 #include "mergesort.h"
8 #include "commit.h"
9 #include "convert.h"
10 #include "diff.h"
11 #include "diffcore.h"
12 #include "gettext.h"
13 #include "hex.h"
14 #include "path.h"
15 #include "read-cache.h"
16 #include "revision.h"
17 #include "setup.h"
18 #include "tag.h"
19 #include "trace2.h"
20 #include "blame.h"
21 #include "alloc.h"
22 #include "commit-slab.h"
23 #include "bloom.h"
24 #include "commit-graph.h"
26 define_commit_slab(blame_suspects, struct blame_origin *);
27 static struct blame_suspects blame_suspects;
29 struct blame_origin *get_blame_suspects(struct commit *commit)
31 struct blame_origin **result;
33 result = blame_suspects_peek(&blame_suspects, commit);
35 return result ? *result : NULL;
38 static void set_blame_suspects(struct commit *commit, struct blame_origin *origin)
40 *blame_suspects_at(&blame_suspects, commit) = origin;
43 void blame_origin_decref(struct blame_origin *o)
45 if (o && --o->refcnt <= 0) {
46 struct blame_origin *p, *l = NULL;
47 if (o->previous)
48 blame_origin_decref(o->previous);
49 free(o->file.ptr);
50 /* Should be present exactly once in commit chain */
51 for (p = get_blame_suspects(o->commit); p; l = p, p = p->next) {
52 if (p == o) {
53 if (l)
54 l->next = p->next;
55 else
56 set_blame_suspects(o->commit, p->next);
57 free(o);
58 return;
61 die("internal error in blame_origin_decref");
66 * Given a commit and a path in it, create a new origin structure.
67 * The callers that add blame to the scoreboard should use
68 * get_origin() to obtain shared, refcounted copy instead of calling
69 * this function directly.
71 static struct blame_origin *make_origin(struct commit *commit, const char *path)
73 struct blame_origin *o;
74 FLEX_ALLOC_STR(o, path, path);
75 o->commit = commit;
76 o->refcnt = 1;
77 o->next = get_blame_suspects(commit);
78 set_blame_suspects(commit, o);
79 return o;
83 * Locate an existing origin or create a new one.
84 * This moves the origin to front position in the commit util list.
86 static struct blame_origin *get_origin(struct commit *commit, const char *path)
88 struct blame_origin *o, *l;
90 for (o = get_blame_suspects(commit), l = NULL; o; l = o, o = o->next) {
91 if (!strcmp(o->path, path)) {
92 /* bump to front */
93 if (l) {
94 l->next = o->next;
95 o->next = get_blame_suspects(commit);
96 set_blame_suspects(commit, o);
98 return blame_origin_incref(o);
101 return make_origin(commit, path);
106 static void verify_working_tree_path(struct repository *r,
107 struct commit *work_tree, const char *path)
109 struct commit_list *parents;
110 int pos;
112 for (parents = work_tree->parents; parents; parents = parents->next) {
113 const struct object_id *commit_oid = &parents->item->object.oid;
114 struct object_id blob_oid;
115 unsigned short mode;
117 if (!get_tree_entry(r, commit_oid, path, &blob_oid, &mode) &&
118 oid_object_info(r, &blob_oid, NULL) == OBJ_BLOB)
119 return;
122 pos = index_name_pos(r->index, path, strlen(path));
123 if (pos >= 0)
124 ; /* path is in the index */
125 else if (-1 - pos < r->index->cache_nr &&
126 !strcmp(r->index->cache[-1 - pos]->name, path))
127 ; /* path is in the index, unmerged */
128 else
129 die("no such path '%s' in HEAD", path);
132 static struct commit_list **append_parent(struct repository *r,
133 struct commit_list **tail,
134 const struct object_id *oid)
136 struct commit *parent;
138 parent = lookup_commit_reference(r, oid);
139 if (!parent)
140 die("no such commit %s", oid_to_hex(oid));
141 return &commit_list_insert(parent, tail)->next;
144 static void append_merge_parents(struct repository *r,
145 struct commit_list **tail)
147 int merge_head;
148 struct strbuf line = STRBUF_INIT;
150 merge_head = open(git_path_merge_head(r), O_RDONLY);
151 if (merge_head < 0) {
152 if (errno == ENOENT)
153 return;
154 die("cannot open '%s' for reading",
155 git_path_merge_head(r));
158 while (!strbuf_getwholeline_fd(&line, merge_head, '\n')) {
159 struct object_id oid;
160 if (get_oid_hex(line.buf, &oid))
161 die("unknown line in '%s': %s",
162 git_path_merge_head(r), line.buf);
163 tail = append_parent(r, tail, &oid);
165 close(merge_head);
166 strbuf_release(&line);
170 * This isn't as simple as passing sb->buf and sb->len, because we
171 * want to transfer ownership of the buffer to the commit (so we
172 * must use detach).
174 static void set_commit_buffer_from_strbuf(struct repository *r,
175 struct commit *c,
176 struct strbuf *sb)
178 size_t len;
179 void *buf = strbuf_detach(sb, &len);
180 set_commit_buffer(r, c, buf, len);
184 * Prepare a dummy commit that represents the work tree (or staged) item.
185 * Note that annotating work tree item never works in the reverse.
187 static struct commit *fake_working_tree_commit(struct repository *r,
188 struct diff_options *opt,
189 const char *path,
190 const char *contents_from,
191 struct object_id *oid)
193 struct commit *commit;
194 struct blame_origin *origin;
195 struct commit_list **parent_tail, *parent;
196 struct strbuf buf = STRBUF_INIT;
197 const char *ident;
198 time_t now;
199 int len;
200 struct cache_entry *ce;
201 unsigned mode;
202 struct strbuf msg = STRBUF_INIT;
204 repo_read_index(r);
205 time(&now);
206 commit = alloc_commit_node(r);
207 commit->object.parsed = 1;
208 commit->date = now;
209 parent_tail = &commit->parents;
211 parent_tail = append_parent(r, parent_tail, oid);
212 append_merge_parents(r, parent_tail);
213 verify_working_tree_path(r, commit, path);
215 origin = make_origin(commit, path);
217 if (contents_from)
218 ident = fmt_ident("External file (--contents)", "external.file",
219 WANT_BLANK_IDENT, NULL, 0);
220 else
221 ident = fmt_ident("Not Committed Yet", "not.committed.yet",
222 WANT_BLANK_IDENT, NULL, 0);
223 strbuf_addstr(&msg, "tree 0000000000000000000000000000000000000000\n");
224 for (parent = commit->parents; parent; parent = parent->next)
225 strbuf_addf(&msg, "parent %s\n",
226 oid_to_hex(&parent->item->object.oid));
227 strbuf_addf(&msg,
228 "author %s\n"
229 "committer %s\n\n"
230 "Version of %s from %s\n",
231 ident, ident, path,
232 (!contents_from ? path :
233 (!strcmp(contents_from, "-") ? "standard input" : contents_from)));
234 set_commit_buffer_from_strbuf(r, commit, &msg);
236 if (!contents_from || strcmp("-", contents_from)) {
237 struct stat st;
238 const char *read_from;
239 char *buf_ptr;
240 unsigned long buf_len;
242 if (contents_from) {
243 if (stat(contents_from, &st) < 0)
244 die_errno("Cannot stat '%s'", contents_from);
245 read_from = contents_from;
247 else {
248 if (lstat(path, &st) < 0)
249 die_errno("Cannot lstat '%s'", path);
250 read_from = path;
252 mode = canon_mode(st.st_mode);
254 switch (st.st_mode & S_IFMT) {
255 case S_IFREG:
256 if (opt->flags.allow_textconv &&
257 textconv_object(r, read_from, mode, null_oid(), 0, &buf_ptr, &buf_len))
258 strbuf_attach(&buf, buf_ptr, buf_len, buf_len + 1);
259 else if (strbuf_read_file(&buf, read_from, st.st_size) != st.st_size)
260 die_errno("cannot open or read '%s'", read_from);
261 break;
262 case S_IFLNK:
263 if (strbuf_readlink(&buf, read_from, st.st_size) < 0)
264 die_errno("cannot readlink '%s'", read_from);
265 break;
266 default:
267 die("unsupported file type %s", read_from);
270 else {
271 /* Reading from stdin */
272 mode = 0;
273 if (strbuf_read(&buf, 0, 0) < 0)
274 die_errno("failed to read from stdin");
276 convert_to_git(r->index, path, buf.buf, buf.len, &buf, 0);
277 origin->file.ptr = buf.buf;
278 origin->file.size = buf.len;
279 pretend_object_file(buf.buf, buf.len, OBJ_BLOB, &origin->blob_oid);
282 * Read the current index, replace the path entry with
283 * origin->blob_sha1 without mucking with its mode or type
284 * bits; we are not going to write this index out -- we just
285 * want to run "diff-index --cached".
287 discard_index(r->index);
288 repo_read_index(r);
290 len = strlen(path);
291 if (!mode) {
292 int pos = index_name_pos(r->index, path, len);
293 if (0 <= pos)
294 mode = r->index->cache[pos]->ce_mode;
295 else
296 /* Let's not bother reading from HEAD tree */
297 mode = S_IFREG | 0644;
299 ce = make_empty_cache_entry(r->index, len);
300 oidcpy(&ce->oid, &origin->blob_oid);
301 memcpy(ce->name, path, len);
302 ce->ce_flags = create_ce_flags(0);
303 ce->ce_namelen = len;
304 ce->ce_mode = create_ce_mode(mode);
305 add_index_entry(r->index, ce,
306 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
308 cache_tree_invalidate_path(r->index, path);
310 return commit;
315 static int diff_hunks(mmfile_t *file_a, mmfile_t *file_b,
316 xdl_emit_hunk_consume_func_t hunk_func, void *cb_data, int xdl_opts)
318 xpparam_t xpp = {0};
319 xdemitconf_t xecfg = {0};
320 xdemitcb_t ecb = {NULL};
322 xpp.flags = xdl_opts;
323 xecfg.hunk_func = hunk_func;
324 ecb.priv = cb_data;
325 return xdi_diff(file_a, file_b, &xpp, &xecfg, &ecb);
328 static const char *get_next_line(const char *start, const char *end)
330 const char *nl = memchr(start, '\n', end - start);
332 return nl ? nl + 1 : end;
335 static int find_line_starts(int **line_starts, const char *buf,
336 unsigned long len)
338 const char *end = buf + len;
339 const char *p;
340 int *lineno;
341 int num = 0;
343 for (p = buf; p < end; p = get_next_line(p, end))
344 num++;
346 ALLOC_ARRAY(*line_starts, num + 1);
347 lineno = *line_starts;
349 for (p = buf; p < end; p = get_next_line(p, end))
350 *lineno++ = p - buf;
352 *lineno = len;
354 return num;
357 struct fingerprint_entry;
359 /* A fingerprint is intended to loosely represent a string, such that two
360 * fingerprints can be quickly compared to give an indication of the similarity
361 * of the strings that they represent.
363 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
364 * the string that it represents. Whitespace is added at each end of the
365 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
366 * For example, the string "Darth Radar" will be converted to the following
367 * fingerprint:
368 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
370 * The similarity between two fingerprints is the size of the intersection of
371 * their multisets, including repeated elements. See fingerprint_similarity for
372 * examples.
374 * For ease of implementation, the fingerprint is implemented as a map
375 * of byte pairs to the count of that byte pair in the string, instead of
376 * allowing repeated elements in a set.
378 struct fingerprint {
379 struct hashmap map;
380 /* As we know the maximum number of entries in advance, it's
381 * convenient to store the entries in a single array instead of having
382 * the hashmap manage the memory.
384 struct fingerprint_entry *entries;
387 /* A byte pair in a fingerprint. Stores the number of times the byte pair
388 * occurs in the string that the fingerprint represents.
390 struct fingerprint_entry {
391 /* The hashmap entry - the hash represents the byte pair in its
392 * entirety so we don't need to store the byte pair separately.
394 struct hashmap_entry entry;
395 /* The number of times the byte pair occurs in the string that the
396 * fingerprint represents.
398 int count;
401 /* See `struct fingerprint` for an explanation of what a fingerprint is.
402 * \param result the fingerprint of the string is stored here. This must be
403 * freed later using free_fingerprint.
404 * \param line_begin the start of the string
405 * \param line_end the end of the string
407 static void get_fingerprint(struct fingerprint *result,
408 const char *line_begin,
409 const char *line_end)
411 unsigned int hash, c0 = 0, c1;
412 const char *p;
413 int max_map_entry_count = 1 + line_end - line_begin;
414 struct fingerprint_entry *entry = xcalloc(max_map_entry_count,
415 sizeof(struct fingerprint_entry));
416 struct fingerprint_entry *found_entry;
418 hashmap_init(&result->map, NULL, NULL, max_map_entry_count);
419 result->entries = entry;
420 for (p = line_begin; p <= line_end; ++p, c0 = c1) {
421 /* Always terminate the string with whitespace.
422 * Normalise whitespace to 0, and normalise letters to
423 * lower case. This won't work for multibyte characters but at
424 * worst will match some unrelated characters.
426 if ((p == line_end) || isspace(*p))
427 c1 = 0;
428 else
429 c1 = tolower(*p);
430 hash = c0 | (c1 << 8);
431 /* Ignore whitespace pairs */
432 if (hash == 0)
433 continue;
434 hashmap_entry_init(&entry->entry, hash);
436 found_entry = hashmap_get_entry(&result->map, entry,
437 /* member name */ entry, NULL);
438 if (found_entry) {
439 found_entry->count += 1;
440 } else {
441 entry->count = 1;
442 hashmap_add(&result->map, &entry->entry);
443 ++entry;
448 static void free_fingerprint(struct fingerprint *f)
450 hashmap_clear(&f->map);
451 free(f->entries);
454 /* Calculates the similarity between two fingerprints as the size of the
455 * intersection of their multisets, including repeated elements. See
456 * `struct fingerprint` for an explanation of the fingerprint representation.
457 * The similarity between "cat mat" and "father rather" is 2 because "at" is
458 * present twice in both strings while the similarity between "tim" and "mit"
459 * is 0.
461 static int fingerprint_similarity(struct fingerprint *a, struct fingerprint *b)
463 int intersection = 0;
464 struct hashmap_iter iter;
465 const struct fingerprint_entry *entry_a, *entry_b;
467 hashmap_for_each_entry(&b->map, &iter, entry_b,
468 entry /* member name */) {
469 entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
470 if (entry_a) {
471 intersection += entry_a->count < entry_b->count ?
472 entry_a->count : entry_b->count;
475 return intersection;
478 /* Subtracts byte-pair elements in B from A, modifying A in place.
480 static void fingerprint_subtract(struct fingerprint *a, struct fingerprint *b)
482 struct hashmap_iter iter;
483 struct fingerprint_entry *entry_a;
484 const struct fingerprint_entry *entry_b;
486 hashmap_iter_init(&b->map, &iter);
488 hashmap_for_each_entry(&b->map, &iter, entry_b,
489 entry /* member name */) {
490 entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
491 if (entry_a) {
492 if (entry_a->count <= entry_b->count)
493 hashmap_remove(&a->map, &entry_b->entry, NULL);
494 else
495 entry_a->count -= entry_b->count;
500 /* Calculate fingerprints for a series of lines.
501 * Puts the fingerprints in the fingerprints array, which must have been
502 * preallocated to allow storing line_count elements.
504 static void get_line_fingerprints(struct fingerprint *fingerprints,
505 const char *content, const int *line_starts,
506 long first_line, long line_count)
508 int i;
509 const char *linestart, *lineend;
511 line_starts += first_line;
512 for (i = 0; i < line_count; ++i) {
513 linestart = content + line_starts[i];
514 lineend = content + line_starts[i + 1];
515 get_fingerprint(fingerprints + i, linestart, lineend);
519 static void free_line_fingerprints(struct fingerprint *fingerprints,
520 int nr_fingerprints)
522 int i;
524 for (i = 0; i < nr_fingerprints; i++)
525 free_fingerprint(&fingerprints[i]);
528 /* This contains the data necessary to linearly map a line number in one half
529 * of a diff chunk to the line in the other half of the diff chunk that is
530 * closest in terms of its position as a fraction of the length of the chunk.
532 struct line_number_mapping {
533 int destination_start, destination_length,
534 source_start, source_length;
537 /* Given a line number in one range, offset and scale it to map it onto the
538 * other range.
539 * Essentially this mapping is a simple linear equation but the calculation is
540 * more complicated to allow performing it with integer operations.
541 * Another complication is that if a line could map onto many lines in the
542 * destination range then we want to choose the line at the center of those
543 * possibilities.
544 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
545 * first 5 lines in B will map onto the first line in the A chunk, while the
546 * last 5 lines will all map onto the second line in the A chunk.
547 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
548 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
550 static int map_line_number(int line_number,
551 const struct line_number_mapping *mapping)
553 return ((line_number - mapping->source_start) * 2 + 1) *
554 mapping->destination_length /
555 (mapping->source_length * 2) +
556 mapping->destination_start;
559 /* Get a pointer to the element storing the similarity between a line in A
560 * and a line in B.
562 * The similarities are stored in a 2-dimensional array. Each "row" in the
563 * array contains the similarities for a line in B. The similarities stored in
564 * a row are the similarities between the line in B and the nearby lines in A.
565 * To keep the length of each row the same, it is padded out with values of -1
566 * where the search range extends beyond the lines in A.
567 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
568 * look like this:
569 * a | m
570 * b | n
571 * c | o
572 * d | p
573 * e | q
574 * Then the similarity array will contain:
575 * [-1, -1, am, bm, cm,
576 * -1, an, bn, cn, dn,
577 * ao, bo, co, do, eo,
578 * bp, cp, dp, ep, -1,
579 * cq, dq, eq, -1, -1]
580 * Where similarities are denoted either by -1 for invalid, or the
581 * concatenation of the two lines in the diff being compared.
583 * \param similarities array of similarities between lines in A and B
584 * \param line_a the index of the line in A, in the same frame of reference as
585 * closest_line_a.
586 * \param local_line_b the index of the line in B, relative to the first line
587 * in B that similarities represents.
588 * \param closest_line_a the index of the line in A that is deemed to be
589 * closest to local_line_b. This must be in the same
590 * frame of reference as line_a. This value defines
591 * where similarities is centered for the line in B.
592 * \param max_search_distance_a maximum distance in lines from the closest line
593 * in A for other lines in A for which
594 * similarities may be calculated.
596 static int *get_similarity(int *similarities,
597 int line_a, int local_line_b,
598 int closest_line_a, int max_search_distance_a)
600 assert(abs(line_a - closest_line_a) <=
601 max_search_distance_a);
602 return similarities + line_a - closest_line_a +
603 max_search_distance_a +
604 local_line_b * (max_search_distance_a * 2 + 1);
607 #define CERTAIN_NOTHING_MATCHES -2
608 #define CERTAINTY_NOT_CALCULATED -1
610 /* Given a line in B, first calculate its similarities with nearby lines in A
611 * if not already calculated, then identify the most similar and second most
612 * similar lines. The "certainty" is calculated based on those two
613 * similarities.
615 * \param start_a the index of the first line of the chunk in A
616 * \param length_a the length in lines of the chunk in A
617 * \param local_line_b the index of the line in B, relative to the first line
618 * in the chunk.
619 * \param fingerprints_a array of fingerprints for the chunk in A
620 * \param fingerprints_b array of fingerprints for the chunk in B
621 * \param similarities 2-dimensional array of similarities between lines in A
622 * and B. See get_similarity() for more details.
623 * \param certainties array of values indicating how strongly a line in B is
624 * matched with some line in A.
625 * \param second_best_result array of absolute indices in A for the second
626 * closest match of a line in B.
627 * \param result array of absolute indices in A for the closest match of a line
628 * in B.
629 * \param max_search_distance_a maximum distance in lines from the closest line
630 * in A for other lines in A for which
631 * similarities may be calculated.
632 * \param map_line_number_in_b_to_a parameter to map_line_number().
634 static void find_best_line_matches(
635 int start_a,
636 int length_a,
637 int start_b,
638 int local_line_b,
639 struct fingerprint *fingerprints_a,
640 struct fingerprint *fingerprints_b,
641 int *similarities,
642 int *certainties,
643 int *second_best_result,
644 int *result,
645 const int max_search_distance_a,
646 const struct line_number_mapping *map_line_number_in_b_to_a)
649 int i, search_start, search_end, closest_local_line_a, *similarity,
650 best_similarity = 0, second_best_similarity = 0,
651 best_similarity_index = 0, second_best_similarity_index = 0;
653 /* certainty has already been calculated so no need to redo the work */
654 if (certainties[local_line_b] != CERTAINTY_NOT_CALCULATED)
655 return;
657 closest_local_line_a = map_line_number(
658 local_line_b + start_b, map_line_number_in_b_to_a) - start_a;
660 search_start = closest_local_line_a - max_search_distance_a;
661 if (search_start < 0)
662 search_start = 0;
664 search_end = closest_local_line_a + max_search_distance_a + 1;
665 if (search_end > length_a)
666 search_end = length_a;
668 for (i = search_start; i < search_end; ++i) {
669 similarity = get_similarity(similarities,
670 i, local_line_b,
671 closest_local_line_a,
672 max_search_distance_a);
673 if (*similarity == -1) {
674 /* This value will never exceed 10 but assert just in
675 * case
677 assert(abs(i - closest_local_line_a) < 1000);
678 /* scale the similarity by (1000 - distance from
679 * closest line) to act as a tie break between lines
680 * that otherwise are equally similar.
682 *similarity = fingerprint_similarity(
683 fingerprints_b + local_line_b,
684 fingerprints_a + i) *
685 (1000 - abs(i - closest_local_line_a));
687 if (*similarity > best_similarity) {
688 second_best_similarity = best_similarity;
689 second_best_similarity_index = best_similarity_index;
690 best_similarity = *similarity;
691 best_similarity_index = i;
692 } else if (*similarity > second_best_similarity) {
693 second_best_similarity = *similarity;
694 second_best_similarity_index = i;
698 if (best_similarity == 0) {
699 /* this line definitely doesn't match with anything. Mark it
700 * with this special value so it doesn't get invalidated and
701 * won't be recalculated.
703 certainties[local_line_b] = CERTAIN_NOTHING_MATCHES;
704 result[local_line_b] = -1;
705 } else {
706 /* Calculate the certainty with which this line matches.
707 * If the line matches well with two lines then that reduces
708 * the certainty. However we still want to prioritise matching
709 * a line that matches very well with two lines over matching a
710 * line that matches poorly with one line, hence doubling
711 * best_similarity.
712 * This means that if we have
713 * line X that matches only one line with a score of 3,
714 * line Y that matches two lines equally with a score of 5,
715 * and line Z that matches only one line with a score or 2,
716 * then the lines in order of certainty are X, Y, Z.
718 certainties[local_line_b] = best_similarity * 2 -
719 second_best_similarity;
721 /* We keep both the best and second best results to allow us to
722 * check at a later stage of the matching process whether the
723 * result needs to be invalidated.
725 result[local_line_b] = start_a + best_similarity_index;
726 second_best_result[local_line_b] =
727 start_a + second_best_similarity_index;
732 * This finds the line that we can match with the most confidence, and
733 * uses it as a partition. It then calls itself on the lines on either side of
734 * that partition. In this way we avoid lines appearing out of order, and
735 * retain a sensible line ordering.
736 * \param start_a index of the first line in A with which lines in B may be
737 * compared.
738 * \param start_b index of the first line in B for which matching should be
739 * done.
740 * \param length_a number of lines in A with which lines in B may be compared.
741 * \param length_b number of lines in B for which matching should be done.
742 * \param fingerprints_a mutable array of fingerprints in A. The first element
743 * corresponds to the line at start_a.
744 * \param fingerprints_b array of fingerprints in B. The first element
745 * corresponds to the line at start_b.
746 * \param similarities 2-dimensional array of similarities between lines in A
747 * and B. See get_similarity() for more details.
748 * \param certainties array of values indicating how strongly a line in B is
749 * matched with some line in A.
750 * \param second_best_result array of absolute indices in A for the second
751 * closest match of a line in B.
752 * \param result array of absolute indices in A for the closest match of a line
753 * in B.
754 * \param max_search_distance_a maximum distance in lines from the closest line
755 * in A for other lines in A for which
756 * similarities may be calculated.
757 * \param max_search_distance_b an upper bound on the greatest possible
758 * distance between lines in B such that they will
759 * both be compared with the same line in A
760 * according to max_search_distance_a.
761 * \param map_line_number_in_b_to_a parameter to map_line_number().
763 static void fuzzy_find_matching_lines_recurse(
764 int start_a, int start_b,
765 int length_a, int length_b,
766 struct fingerprint *fingerprints_a,
767 struct fingerprint *fingerprints_b,
768 int *similarities,
769 int *certainties,
770 int *second_best_result,
771 int *result,
772 int max_search_distance_a,
773 int max_search_distance_b,
774 const struct line_number_mapping *map_line_number_in_b_to_a)
776 int i, invalidate_min, invalidate_max, offset_b,
777 second_half_start_a, second_half_start_b,
778 second_half_length_a, second_half_length_b,
779 most_certain_line_a, most_certain_local_line_b = -1,
780 most_certain_line_certainty = -1,
781 closest_local_line_a;
783 for (i = 0; i < length_b; ++i) {
784 find_best_line_matches(start_a,
785 length_a,
786 start_b,
788 fingerprints_a,
789 fingerprints_b,
790 similarities,
791 certainties,
792 second_best_result,
793 result,
794 max_search_distance_a,
795 map_line_number_in_b_to_a);
797 if (certainties[i] > most_certain_line_certainty) {
798 most_certain_line_certainty = certainties[i];
799 most_certain_local_line_b = i;
803 /* No matches. */
804 if (most_certain_local_line_b == -1)
805 return;
807 most_certain_line_a = result[most_certain_local_line_b];
810 * Subtract the most certain line's fingerprint in B from the matched
811 * fingerprint in A. This means that other lines in B can't also match
812 * the same parts of the line in A.
814 fingerprint_subtract(fingerprints_a + most_certain_line_a - start_a,
815 fingerprints_b + most_certain_local_line_b);
817 /* Invalidate results that may be affected by the choice of most
818 * certain line.
820 invalidate_min = most_certain_local_line_b - max_search_distance_b;
821 invalidate_max = most_certain_local_line_b + max_search_distance_b + 1;
822 if (invalidate_min < 0)
823 invalidate_min = 0;
824 if (invalidate_max > length_b)
825 invalidate_max = length_b;
827 /* As the fingerprint in A has changed, discard previously calculated
828 * similarity values with that fingerprint.
830 for (i = invalidate_min; i < invalidate_max; ++i) {
831 closest_local_line_a = map_line_number(
832 i + start_b, map_line_number_in_b_to_a) - start_a;
834 /* Check that the lines in A and B are close enough that there
835 * is a similarity value for them.
837 if (abs(most_certain_line_a - start_a - closest_local_line_a) >
838 max_search_distance_a) {
839 continue;
842 *get_similarity(similarities, most_certain_line_a - start_a,
843 i, closest_local_line_a,
844 max_search_distance_a) = -1;
847 /* More invalidating of results that may be affected by the choice of
848 * most certain line.
849 * Discard the matches for lines in B that are currently matched with a
850 * line in A such that their ordering contradicts the ordering imposed
851 * by the choice of most certain line.
853 for (i = most_certain_local_line_b - 1; i >= invalidate_min; --i) {
854 /* In this loop we discard results for lines in B that are
855 * before most-certain-line-B but are matched with a line in A
856 * that is after most-certain-line-A.
858 if (certainties[i] >= 0 &&
859 (result[i] >= most_certain_line_a ||
860 second_best_result[i] >= most_certain_line_a)) {
861 certainties[i] = CERTAINTY_NOT_CALCULATED;
864 for (i = most_certain_local_line_b + 1; i < invalidate_max; ++i) {
865 /* In this loop we discard results for lines in B that are
866 * after most-certain-line-B but are matched with a line in A
867 * that is before most-certain-line-A.
869 if (certainties[i] >= 0 &&
870 (result[i] <= most_certain_line_a ||
871 second_best_result[i] <= most_certain_line_a)) {
872 certainties[i] = CERTAINTY_NOT_CALCULATED;
876 /* Repeat the matching process for lines before the most certain line.
878 if (most_certain_local_line_b > 0) {
879 fuzzy_find_matching_lines_recurse(
880 start_a, start_b,
881 most_certain_line_a + 1 - start_a,
882 most_certain_local_line_b,
883 fingerprints_a, fingerprints_b, similarities,
884 certainties, second_best_result, result,
885 max_search_distance_a,
886 max_search_distance_b,
887 map_line_number_in_b_to_a);
889 /* Repeat the matching process for lines after the most certain line.
891 if (most_certain_local_line_b + 1 < length_b) {
892 second_half_start_a = most_certain_line_a;
893 offset_b = most_certain_local_line_b + 1;
894 second_half_start_b = start_b + offset_b;
895 second_half_length_a =
896 length_a + start_a - second_half_start_a;
897 second_half_length_b =
898 length_b + start_b - second_half_start_b;
899 fuzzy_find_matching_lines_recurse(
900 second_half_start_a, second_half_start_b,
901 second_half_length_a, second_half_length_b,
902 fingerprints_a + second_half_start_a - start_a,
903 fingerprints_b + offset_b,
904 similarities +
905 offset_b * (max_search_distance_a * 2 + 1),
906 certainties + offset_b,
907 second_best_result + offset_b, result + offset_b,
908 max_search_distance_a,
909 max_search_distance_b,
910 map_line_number_in_b_to_a);
914 /* Find the lines in the parent line range that most closely match the lines in
915 * the target line range. This is accomplished by matching fingerprints in each
916 * blame_origin, and choosing the best matches that preserve the line ordering.
917 * See struct fingerprint for details of fingerprint matching, and
918 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
920 * The performance is believed to be O(n log n) in the typical case and O(n^2)
921 * in a pathological case, where n is the number of lines in the target range.
923 static int *fuzzy_find_matching_lines(struct blame_origin *parent,
924 struct blame_origin *target,
925 int tlno, int parent_slno, int same,
926 int parent_len)
928 /* We use the terminology "A" for the left hand side of the diff AKA
929 * parent, and "B" for the right hand side of the diff AKA target. */
930 int start_a = parent_slno;
931 int length_a = parent_len;
932 int start_b = tlno;
933 int length_b = same - tlno;
935 struct line_number_mapping map_line_number_in_b_to_a = {
936 start_a, length_a, start_b, length_b
939 struct fingerprint *fingerprints_a = parent->fingerprints;
940 struct fingerprint *fingerprints_b = target->fingerprints;
942 int i, *result, *second_best_result,
943 *certainties, *similarities, similarity_count;
946 * max_search_distance_a means that given a line in B, compare it to
947 * the line in A that is closest to its position, and the lines in A
948 * that are no greater than max_search_distance_a lines away from the
949 * closest line in A.
951 * max_search_distance_b is an upper bound on the greatest possible
952 * distance between lines in B such that they will both be compared
953 * with the same line in A according to max_search_distance_a.
955 int max_search_distance_a = 10, max_search_distance_b;
957 if (length_a <= 0)
958 return NULL;
960 if (max_search_distance_a >= length_a)
961 max_search_distance_a = length_a ? length_a - 1 : 0;
963 max_search_distance_b = ((2 * max_search_distance_a + 1) * length_b
964 - 1) / length_a;
966 CALLOC_ARRAY(result, length_b);
967 CALLOC_ARRAY(second_best_result, length_b);
968 CALLOC_ARRAY(certainties, length_b);
970 /* See get_similarity() for details of similarities. */
971 similarity_count = length_b * (max_search_distance_a * 2 + 1);
972 CALLOC_ARRAY(similarities, similarity_count);
974 for (i = 0; i < length_b; ++i) {
975 result[i] = -1;
976 second_best_result[i] = -1;
977 certainties[i] = CERTAINTY_NOT_CALCULATED;
980 for (i = 0; i < similarity_count; ++i)
981 similarities[i] = -1;
983 fuzzy_find_matching_lines_recurse(start_a, start_b,
984 length_a, length_b,
985 fingerprints_a + start_a,
986 fingerprints_b + start_b,
987 similarities,
988 certainties,
989 second_best_result,
990 result,
991 max_search_distance_a,
992 max_search_distance_b,
993 &map_line_number_in_b_to_a);
995 free(similarities);
996 free(certainties);
997 free(second_best_result);
999 return result;
1002 static void fill_origin_fingerprints(struct blame_origin *o)
1004 int *line_starts;
1006 if (o->fingerprints)
1007 return;
1008 o->num_lines = find_line_starts(&line_starts, o->file.ptr,
1009 o->file.size);
1010 CALLOC_ARRAY(o->fingerprints, o->num_lines);
1011 get_line_fingerprints(o->fingerprints, o->file.ptr, line_starts,
1012 0, o->num_lines);
1013 free(line_starts);
1016 static void drop_origin_fingerprints(struct blame_origin *o)
1018 if (o->fingerprints) {
1019 free_line_fingerprints(o->fingerprints, o->num_lines);
1020 o->num_lines = 0;
1021 FREE_AND_NULL(o->fingerprints);
1026 * Given an origin, prepare mmfile_t structure to be used by the
1027 * diff machinery
1029 static void fill_origin_blob(struct diff_options *opt,
1030 struct blame_origin *o, mmfile_t *file,
1031 int *num_read_blob, int fill_fingerprints)
1033 if (!o->file.ptr) {
1034 enum object_type type;
1035 unsigned long file_size;
1037 (*num_read_blob)++;
1038 if (opt->flags.allow_textconv &&
1039 textconv_object(opt->repo, o->path, o->mode,
1040 &o->blob_oid, 1, &file->ptr, &file_size))
1042 else
1043 file->ptr = repo_read_object_file(the_repository,
1044 &o->blob_oid, &type,
1045 &file_size);
1046 file->size = file_size;
1048 if (!file->ptr)
1049 die("Cannot read blob %s for path %s",
1050 oid_to_hex(&o->blob_oid),
1051 o->path);
1052 o->file = *file;
1054 else
1055 *file = o->file;
1056 if (fill_fingerprints)
1057 fill_origin_fingerprints(o);
1060 static void drop_origin_blob(struct blame_origin *o)
1062 FREE_AND_NULL(o->file.ptr);
1063 drop_origin_fingerprints(o);
1067 * Any merge of blames happens on lists of blames that arrived via
1068 * different parents in a single suspect. In this case, we want to
1069 * sort according to the suspect line numbers as opposed to the final
1070 * image line numbers. The function body is somewhat longish because
1071 * it avoids unnecessary writes.
1074 static struct blame_entry *blame_merge(struct blame_entry *list1,
1075 struct blame_entry *list2)
1077 struct blame_entry *p1 = list1, *p2 = list2,
1078 **tail = &list1;
1080 if (!p1)
1081 return p2;
1082 if (!p2)
1083 return p1;
1085 if (p1->s_lno <= p2->s_lno) {
1086 do {
1087 tail = &p1->next;
1088 if (!(p1 = *tail)) {
1089 *tail = p2;
1090 return list1;
1092 } while (p1->s_lno <= p2->s_lno);
1094 for (;;) {
1095 *tail = p2;
1096 do {
1097 tail = &p2->next;
1098 if (!(p2 = *tail)) {
1099 *tail = p1;
1100 return list1;
1102 } while (p1->s_lno > p2->s_lno);
1103 *tail = p1;
1104 do {
1105 tail = &p1->next;
1106 if (!(p1 = *tail)) {
1107 *tail = p2;
1108 return list1;
1110 } while (p1->s_lno <= p2->s_lno);
1114 DEFINE_LIST_SORT(static, sort_blame_entries, struct blame_entry, next);
1117 * Final image line numbers are all different, so we don't need a
1118 * three-way comparison here.
1121 static int compare_blame_final(const struct blame_entry *e1,
1122 const struct blame_entry *e2)
1124 return e1->lno > e2->lno ? 1 : -1;
1127 static int compare_blame_suspect(const struct blame_entry *s1,
1128 const struct blame_entry *s2)
1131 * to allow for collating suspects, we sort according to the
1132 * respective pointer value as the primary sorting criterion.
1133 * The actual relation is pretty unimportant as long as it
1134 * establishes a total order. Comparing as integers gives us
1135 * that.
1137 if (s1->suspect != s2->suspect)
1138 return (intptr_t)s1->suspect > (intptr_t)s2->suspect ? 1 : -1;
1139 if (s1->s_lno == s2->s_lno)
1140 return 0;
1141 return s1->s_lno > s2->s_lno ? 1 : -1;
1144 void blame_sort_final(struct blame_scoreboard *sb)
1146 sort_blame_entries(&sb->ent, compare_blame_final);
1149 static int compare_commits_by_reverse_commit_date(const void *a,
1150 const void *b,
1151 void *c)
1153 return -compare_commits_by_commit_date(a, b, c);
1157 * For debugging -- origin is refcounted, and this asserts that
1158 * we do not underflow.
1160 static void sanity_check_refcnt(struct blame_scoreboard *sb)
1162 int baa = 0;
1163 struct blame_entry *ent;
1165 for (ent = sb->ent; ent; ent = ent->next) {
1166 /* Nobody should have zero or negative refcnt */
1167 if (ent->suspect->refcnt <= 0) {
1168 fprintf(stderr, "%s in %s has negative refcnt %d\n",
1169 ent->suspect->path,
1170 oid_to_hex(&ent->suspect->commit->object.oid),
1171 ent->suspect->refcnt);
1172 baa = 1;
1175 if (baa)
1176 sb->on_sanity_fail(sb, baa);
1180 * If two blame entries that are next to each other came from
1181 * contiguous lines in the same origin (i.e. <commit, path> pair),
1182 * merge them together.
1184 void blame_coalesce(struct blame_scoreboard *sb)
1186 struct blame_entry *ent, *next;
1188 for (ent = sb->ent; ent && (next = ent->next); ent = next) {
1189 if (ent->suspect == next->suspect &&
1190 ent->s_lno + ent->num_lines == next->s_lno &&
1191 ent->lno + ent->num_lines == next->lno &&
1192 ent->ignored == next->ignored &&
1193 ent->unblamable == next->unblamable) {
1194 ent->num_lines += next->num_lines;
1195 ent->next = next->next;
1196 blame_origin_decref(next->suspect);
1197 free(next);
1198 ent->score = 0;
1199 next = ent; /* again */
1203 if (sb->debug) /* sanity */
1204 sanity_check_refcnt(sb);
1208 * Merge the given sorted list of blames into a preexisting origin.
1209 * If there were no previous blames to that commit, it is entered into
1210 * the commit priority queue of the score board.
1213 static void queue_blames(struct blame_scoreboard *sb, struct blame_origin *porigin,
1214 struct blame_entry *sorted)
1216 if (porigin->suspects)
1217 porigin->suspects = blame_merge(porigin->suspects, sorted);
1218 else {
1219 struct blame_origin *o;
1220 for (o = get_blame_suspects(porigin->commit); o; o = o->next) {
1221 if (o->suspects) {
1222 porigin->suspects = sorted;
1223 return;
1226 porigin->suspects = sorted;
1227 prio_queue_put(&sb->commits, porigin->commit);
1232 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1233 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1234 * for an origin is also used to pass the blame for the entire file to
1235 * the parent to detect the case where a child's blob is identical to
1236 * that of its parent's.
1238 * This also fills origin->mode for corresponding tree path.
1240 static int fill_blob_sha1_and_mode(struct repository *r,
1241 struct blame_origin *origin)
1243 if (!is_null_oid(&origin->blob_oid))
1244 return 0;
1245 if (get_tree_entry(r, &origin->commit->object.oid, origin->path, &origin->blob_oid, &origin->mode))
1246 goto error_out;
1247 if (oid_object_info(r, &origin->blob_oid, NULL) != OBJ_BLOB)
1248 goto error_out;
1249 return 0;
1250 error_out:
1251 oidclr(&origin->blob_oid, the_repository->hash_algo);
1252 origin->mode = S_IFINVALID;
1253 return -1;
1256 struct blame_bloom_data {
1258 * Changed-path Bloom filter keys. These can help prevent
1259 * computing diffs against first parents, but we need to
1260 * expand the list as code is moved or files are renamed.
1262 struct bloom_filter_settings *settings;
1263 struct bloom_key **keys;
1264 int nr;
1265 int alloc;
1268 static int bloom_count_queries = 0;
1269 static int bloom_count_no = 0;
1270 static int maybe_changed_path(struct repository *r,
1271 struct blame_origin *origin,
1272 struct blame_bloom_data *bd)
1274 int i;
1275 struct bloom_filter *filter;
1277 if (!bd)
1278 return 1;
1280 if (commit_graph_generation(origin->commit) == GENERATION_NUMBER_INFINITY)
1281 return 1;
1283 filter = get_bloom_filter(r, origin->commit);
1285 if (!filter)
1286 return 1;
1288 bloom_count_queries++;
1289 for (i = 0; i < bd->nr; i++) {
1290 if (bloom_filter_contains(filter,
1291 bd->keys[i],
1292 bd->settings))
1293 return 1;
1296 bloom_count_no++;
1297 return 0;
1300 static void add_bloom_key(struct blame_bloom_data *bd,
1301 const char *path)
1303 if (!bd)
1304 return;
1306 if (bd->nr >= bd->alloc) {
1307 bd->alloc *= 2;
1308 REALLOC_ARRAY(bd->keys, bd->alloc);
1311 bd->keys[bd->nr] = xmalloc(sizeof(struct bloom_key));
1312 fill_bloom_key(path, strlen(path), bd->keys[bd->nr], bd->settings);
1313 bd->nr++;
1317 * We have an origin -- check if the same path exists in the
1318 * parent and return an origin structure to represent it.
1320 static struct blame_origin *find_origin(struct repository *r,
1321 struct commit *parent,
1322 struct blame_origin *origin,
1323 struct blame_bloom_data *bd)
1325 struct blame_origin *porigin;
1326 struct diff_options diff_opts;
1327 const char *paths[2];
1329 /* First check any existing origins */
1330 for (porigin = get_blame_suspects(parent); porigin; porigin = porigin->next)
1331 if (!strcmp(porigin->path, origin->path)) {
1333 * The same path between origin and its parent
1334 * without renaming -- the most common case.
1336 return blame_origin_incref (porigin);
1339 /* See if the origin->path is different between parent
1340 * and origin first. Most of the time they are the
1341 * same and diff-tree is fairly efficient about this.
1343 repo_diff_setup(r, &diff_opts);
1344 diff_opts.flags.recursive = 1;
1345 diff_opts.detect_rename = 0;
1346 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1347 paths[0] = origin->path;
1348 paths[1] = NULL;
1350 parse_pathspec(&diff_opts.pathspec,
1351 PATHSPEC_ALL_MAGIC & ~PATHSPEC_LITERAL,
1352 PATHSPEC_LITERAL_PATH, "", paths);
1353 diff_setup_done(&diff_opts);
1355 if (is_null_oid(&origin->commit->object.oid))
1356 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1357 else {
1358 int compute_diff = 1;
1359 if (origin->commit->parents &&
1360 oideq(&parent->object.oid,
1361 &origin->commit->parents->item->object.oid))
1362 compute_diff = maybe_changed_path(r, origin, bd);
1364 if (compute_diff)
1365 diff_tree_oid(get_commit_tree_oid(parent),
1366 get_commit_tree_oid(origin->commit),
1367 "", &diff_opts);
1369 diffcore_std(&diff_opts);
1371 if (!diff_queued_diff.nr) {
1372 /* The path is the same as parent */
1373 porigin = get_origin(parent, origin->path);
1374 oidcpy(&porigin->blob_oid, &origin->blob_oid);
1375 porigin->mode = origin->mode;
1376 } else {
1378 * Since origin->path is a pathspec, if the parent
1379 * commit had it as a directory, we will see a whole
1380 * bunch of deletion of files in the directory that we
1381 * do not care about.
1383 int i;
1384 struct diff_filepair *p = NULL;
1385 for (i = 0; i < diff_queued_diff.nr; i++) {
1386 const char *name;
1387 p = diff_queued_diff.queue[i];
1388 name = p->one->path ? p->one->path : p->two->path;
1389 if (!strcmp(name, origin->path))
1390 break;
1392 if (!p)
1393 die("internal error in blame::find_origin");
1394 switch (p->status) {
1395 default:
1396 die("internal error in blame::find_origin (%c)",
1397 p->status);
1398 case 'M':
1399 porigin = get_origin(parent, origin->path);
1400 oidcpy(&porigin->blob_oid, &p->one->oid);
1401 porigin->mode = p->one->mode;
1402 break;
1403 case 'A':
1404 case 'T':
1405 /* Did not exist in parent, or type changed */
1406 break;
1409 diff_flush(&diff_opts);
1410 return porigin;
1414 * We have an origin -- find the path that corresponds to it in its
1415 * parent and return an origin structure to represent it.
1417 static struct blame_origin *find_rename(struct repository *r,
1418 struct commit *parent,
1419 struct blame_origin *origin,
1420 struct blame_bloom_data *bd)
1422 struct blame_origin *porigin = NULL;
1423 struct diff_options diff_opts;
1424 int i;
1426 repo_diff_setup(r, &diff_opts);
1427 diff_opts.flags.recursive = 1;
1428 diff_opts.detect_rename = DIFF_DETECT_RENAME;
1429 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1430 diff_opts.single_follow = origin->path;
1431 diff_setup_done(&diff_opts);
1433 if (is_null_oid(&origin->commit->object.oid))
1434 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1435 else
1436 diff_tree_oid(get_commit_tree_oid(parent),
1437 get_commit_tree_oid(origin->commit),
1438 "", &diff_opts);
1439 diffcore_std(&diff_opts);
1441 for (i = 0; i < diff_queued_diff.nr; i++) {
1442 struct diff_filepair *p = diff_queued_diff.queue[i];
1443 if ((p->status == 'R' || p->status == 'C') &&
1444 !strcmp(p->two->path, origin->path)) {
1445 add_bloom_key(bd, p->one->path);
1446 porigin = get_origin(parent, p->one->path);
1447 oidcpy(&porigin->blob_oid, &p->one->oid);
1448 porigin->mode = p->one->mode;
1449 break;
1452 diff_flush(&diff_opts);
1453 return porigin;
1457 * Append a new blame entry to a given output queue.
1459 static void add_blame_entry(struct blame_entry ***queue,
1460 const struct blame_entry *src)
1462 struct blame_entry *e = xmalloc(sizeof(*e));
1463 memcpy(e, src, sizeof(*e));
1464 blame_origin_incref(e->suspect);
1466 e->next = **queue;
1467 **queue = e;
1468 *queue = &e->next;
1472 * src typically is on-stack; we want to copy the information in it to
1473 * a malloced blame_entry that gets added to the given queue. The
1474 * origin of dst loses a refcnt.
1476 static void dup_entry(struct blame_entry ***queue,
1477 struct blame_entry *dst, struct blame_entry *src)
1479 blame_origin_incref(src->suspect);
1480 blame_origin_decref(dst->suspect);
1481 memcpy(dst, src, sizeof(*src));
1482 dst->next = **queue;
1483 **queue = dst;
1484 *queue = &dst->next;
1487 const char *blame_nth_line(struct blame_scoreboard *sb, long lno)
1489 return sb->final_buf + sb->lineno[lno];
1493 * It is known that lines between tlno to same came from parent, and e
1494 * has an overlap with that range. it also is known that parent's
1495 * line plno corresponds to e's line tlno.
1497 * <---- e ----->
1498 * <------>
1499 * <------------>
1500 * <------------>
1501 * <------------------>
1503 * Split e into potentially three parts; before this chunk, the chunk
1504 * to be blamed for the parent, and after that portion.
1506 static void split_overlap(struct blame_entry *split,
1507 struct blame_entry *e,
1508 int tlno, int plno, int same,
1509 struct blame_origin *parent)
1511 int chunk_end_lno;
1512 int i;
1513 memset(split, 0, sizeof(struct blame_entry [3]));
1515 for (i = 0; i < 3; i++) {
1516 split[i].ignored = e->ignored;
1517 split[i].unblamable = e->unblamable;
1520 if (e->s_lno < tlno) {
1521 /* there is a pre-chunk part not blamed on parent */
1522 split[0].suspect = blame_origin_incref(e->suspect);
1523 split[0].lno = e->lno;
1524 split[0].s_lno = e->s_lno;
1525 split[0].num_lines = tlno - e->s_lno;
1526 split[1].lno = e->lno + tlno - e->s_lno;
1527 split[1].s_lno = plno;
1529 else {
1530 split[1].lno = e->lno;
1531 split[1].s_lno = plno + (e->s_lno - tlno);
1534 if (same < e->s_lno + e->num_lines) {
1535 /* there is a post-chunk part not blamed on parent */
1536 split[2].suspect = blame_origin_incref(e->suspect);
1537 split[2].lno = e->lno + (same - e->s_lno);
1538 split[2].s_lno = e->s_lno + (same - e->s_lno);
1539 split[2].num_lines = e->s_lno + e->num_lines - same;
1540 chunk_end_lno = split[2].lno;
1542 else
1543 chunk_end_lno = e->lno + e->num_lines;
1544 split[1].num_lines = chunk_end_lno - split[1].lno;
1547 * if it turns out there is nothing to blame the parent for,
1548 * forget about the splitting. !split[1].suspect signals this.
1550 if (split[1].num_lines < 1)
1551 return;
1552 split[1].suspect = blame_origin_incref(parent);
1556 * split_overlap() divided an existing blame e into up to three parts
1557 * in split. Any assigned blame is moved to queue to
1558 * reflect the split.
1560 static void split_blame(struct blame_entry ***blamed,
1561 struct blame_entry ***unblamed,
1562 struct blame_entry *split,
1563 struct blame_entry *e)
1565 if (split[0].suspect && split[2].suspect) {
1566 /* The first part (reuse storage for the existing entry e) */
1567 dup_entry(unblamed, e, &split[0]);
1569 /* The last part -- me */
1570 add_blame_entry(unblamed, &split[2]);
1572 /* ... and the middle part -- parent */
1573 add_blame_entry(blamed, &split[1]);
1575 else if (!split[0].suspect && !split[2].suspect)
1577 * The parent covers the entire area; reuse storage for
1578 * e and replace it with the parent.
1580 dup_entry(blamed, e, &split[1]);
1581 else if (split[0].suspect) {
1582 /* me and then parent */
1583 dup_entry(unblamed, e, &split[0]);
1584 add_blame_entry(blamed, &split[1]);
1586 else {
1587 /* parent and then me */
1588 dup_entry(blamed, e, &split[1]);
1589 add_blame_entry(unblamed, &split[2]);
1594 * After splitting the blame, the origins used by the
1595 * on-stack blame_entry should lose one refcnt each.
1597 static void decref_split(struct blame_entry *split)
1599 int i;
1601 for (i = 0; i < 3; i++)
1602 blame_origin_decref(split[i].suspect);
1606 * reverse_blame reverses the list given in head, appending tail.
1607 * That allows us to build lists in reverse order, then reverse them
1608 * afterwards. This can be faster than building the list in proper
1609 * order right away. The reason is that building in proper order
1610 * requires writing a link in the _previous_ element, while building
1611 * in reverse order just requires placing the list head into the
1612 * _current_ element.
1615 static struct blame_entry *reverse_blame(struct blame_entry *head,
1616 struct blame_entry *tail)
1618 while (head) {
1619 struct blame_entry *next = head->next;
1620 head->next = tail;
1621 tail = head;
1622 head = next;
1624 return tail;
1628 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1629 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1630 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1631 * e->num_lines). The caller needs to sort out the reference counting for the
1632 * new entry's suspect.
1634 static struct blame_entry *split_blame_at(struct blame_entry *e, int len,
1635 struct blame_origin *new_suspect)
1637 struct blame_entry *n = xcalloc(1, sizeof(struct blame_entry));
1639 n->suspect = new_suspect;
1640 n->ignored = e->ignored;
1641 n->unblamable = e->unblamable;
1642 n->lno = e->lno + len;
1643 n->s_lno = e->s_lno + len;
1644 n->num_lines = e->num_lines - len;
1645 e->num_lines = len;
1646 e->score = 0;
1647 return n;
1650 struct blame_line_tracker {
1651 int is_parent;
1652 int s_lno;
1655 static int are_lines_adjacent(struct blame_line_tracker *first,
1656 struct blame_line_tracker *second)
1658 return first->is_parent == second->is_parent &&
1659 first->s_lno + 1 == second->s_lno;
1662 static int scan_parent_range(struct fingerprint *p_fps,
1663 struct fingerprint *t_fps, int t_idx,
1664 int from, int nr_lines)
1666 int sim, p_idx;
1667 #define FINGERPRINT_FILE_THRESHOLD 10
1668 int best_sim_val = FINGERPRINT_FILE_THRESHOLD;
1669 int best_sim_idx = -1;
1671 for (p_idx = from; p_idx < from + nr_lines; p_idx++) {
1672 sim = fingerprint_similarity(&t_fps[t_idx], &p_fps[p_idx]);
1673 if (sim < best_sim_val)
1674 continue;
1675 /* Break ties with the closest-to-target line number */
1676 if (sim == best_sim_val && best_sim_idx != -1 &&
1677 abs(best_sim_idx - t_idx) < abs(p_idx - t_idx))
1678 continue;
1679 best_sim_val = sim;
1680 best_sim_idx = p_idx;
1682 return best_sim_idx;
1686 * The first pass checks the blame entry (from the target) against the parent's
1687 * diff chunk. If that fails for a line, the second pass tries to match that
1688 * line to any part of parent file. That catches cases where a change was
1689 * broken into two chunks by 'context.'
1691 static void guess_line_blames(struct blame_origin *parent,
1692 struct blame_origin *target,
1693 int tlno, int offset, int same, int parent_len,
1694 struct blame_line_tracker *line_blames)
1696 int i, best_idx, target_idx;
1697 int parent_slno = tlno + offset;
1698 int *fuzzy_matches;
1700 fuzzy_matches = fuzzy_find_matching_lines(parent, target,
1701 tlno, parent_slno, same,
1702 parent_len);
1703 for (i = 0; i < same - tlno; i++) {
1704 target_idx = tlno + i;
1705 if (fuzzy_matches && fuzzy_matches[i] >= 0) {
1706 best_idx = fuzzy_matches[i];
1707 } else {
1708 best_idx = scan_parent_range(parent->fingerprints,
1709 target->fingerprints,
1710 target_idx, 0,
1711 parent->num_lines);
1713 if (best_idx >= 0) {
1714 line_blames[i].is_parent = 1;
1715 line_blames[i].s_lno = best_idx;
1716 } else {
1717 line_blames[i].is_parent = 0;
1718 line_blames[i].s_lno = target_idx;
1721 free(fuzzy_matches);
1725 * This decides which parts of a blame entry go to the parent (added to the
1726 * ignoredp list) and which stay with the target (added to the diffp list). The
1727 * actual decision was made in a separate heuristic function, and those answers
1728 * for the lines in 'e' are in line_blames. This consumes e, essentially
1729 * putting it on a list.
1731 * Note that the blame entries on the ignoredp list are not necessarily sorted
1732 * with respect to the parent's line numbers yet.
1734 static void ignore_blame_entry(struct blame_entry *e,
1735 struct blame_origin *parent,
1736 struct blame_entry **diffp,
1737 struct blame_entry **ignoredp,
1738 struct blame_line_tracker *line_blames)
1740 int entry_len, nr_lines, i;
1743 * We carve new entries off the front of e. Each entry comes from a
1744 * contiguous chunk of lines: adjacent lines from the same origin
1745 * (either the parent or the target).
1747 entry_len = 1;
1748 nr_lines = e->num_lines; /* e changes in the loop */
1749 for (i = 0; i < nr_lines; i++) {
1750 struct blame_entry *next = NULL;
1753 * We are often adjacent to the next line - only split the blame
1754 * entry when we have to.
1756 if (i + 1 < nr_lines) {
1757 if (are_lines_adjacent(&line_blames[i],
1758 &line_blames[i + 1])) {
1759 entry_len++;
1760 continue;
1762 next = split_blame_at(e, entry_len,
1763 blame_origin_incref(e->suspect));
1765 if (line_blames[i].is_parent) {
1766 e->ignored = 1;
1767 blame_origin_decref(e->suspect);
1768 e->suspect = blame_origin_incref(parent);
1769 e->s_lno = line_blames[i - entry_len + 1].s_lno;
1770 e->next = *ignoredp;
1771 *ignoredp = e;
1772 } else {
1773 e->unblamable = 1;
1774 /* e->s_lno is already in the target's address space. */
1775 e->next = *diffp;
1776 *diffp = e;
1778 assert(e->num_lines == entry_len);
1779 e = next;
1780 entry_len = 1;
1782 assert(!e);
1786 * Process one hunk from the patch between the current suspect for
1787 * blame_entry e and its parent. This first blames any unfinished
1788 * entries before the chunk (which is where target and parent start
1789 * differing) on the parent, and then splits blame entries at the
1790 * start and at the end of the difference region. Since use of -M and
1791 * -C options may lead to overlapping/duplicate source line number
1792 * ranges, all we can rely on from sorting/merging is the order of the
1793 * first suspect line number.
1795 * tlno: line number in the target where this chunk begins
1796 * same: line number in the target where this chunk ends
1797 * offset: add to tlno to get the chunk starting point in the parent
1798 * parent_len: number of lines in the parent chunk
1800 static void blame_chunk(struct blame_entry ***dstq, struct blame_entry ***srcq,
1801 int tlno, int offset, int same, int parent_len,
1802 struct blame_origin *parent,
1803 struct blame_origin *target, int ignore_diffs)
1805 struct blame_entry *e = **srcq;
1806 struct blame_entry *samep = NULL, *diffp = NULL, *ignoredp = NULL;
1807 struct blame_line_tracker *line_blames = NULL;
1809 while (e && e->s_lno < tlno) {
1810 struct blame_entry *next = e->next;
1812 * current record starts before differing portion. If
1813 * it reaches into it, we need to split it up and
1814 * examine the second part separately.
1816 if (e->s_lno + e->num_lines > tlno) {
1817 /* Move second half to a new record */
1818 struct blame_entry *n;
1820 n = split_blame_at(e, tlno - e->s_lno, e->suspect);
1821 /* Push new record to diffp */
1822 n->next = diffp;
1823 diffp = n;
1824 } else
1825 blame_origin_decref(e->suspect);
1826 /* Pass blame for everything before the differing
1827 * chunk to the parent */
1828 e->suspect = blame_origin_incref(parent);
1829 e->s_lno += offset;
1830 e->next = samep;
1831 samep = e;
1832 e = next;
1835 * As we don't know how much of a common stretch after this
1836 * diff will occur, the currently blamed parts are all that we
1837 * can assign to the parent for now.
1840 if (samep) {
1841 **dstq = reverse_blame(samep, **dstq);
1842 *dstq = &samep->next;
1845 * Prepend the split off portions: everything after e starts
1846 * after the blameable portion.
1848 e = reverse_blame(diffp, e);
1851 * Now retain records on the target while parts are different
1852 * from the parent.
1854 samep = NULL;
1855 diffp = NULL;
1857 if (ignore_diffs && same - tlno > 0) {
1858 CALLOC_ARRAY(line_blames, same - tlno);
1859 guess_line_blames(parent, target, tlno, offset, same,
1860 parent_len, line_blames);
1863 while (e && e->s_lno < same) {
1864 struct blame_entry *next = e->next;
1867 * If current record extends into sameness, need to split.
1869 if (e->s_lno + e->num_lines > same) {
1871 * Move second half to a new record to be
1872 * processed by later chunks
1874 struct blame_entry *n;
1876 n = split_blame_at(e, same - e->s_lno,
1877 blame_origin_incref(e->suspect));
1878 /* Push new record to samep */
1879 n->next = samep;
1880 samep = n;
1882 if (ignore_diffs) {
1883 ignore_blame_entry(e, parent, &diffp, &ignoredp,
1884 line_blames + e->s_lno - tlno);
1885 } else {
1886 e->next = diffp;
1887 diffp = e;
1889 e = next;
1891 free(line_blames);
1892 if (ignoredp) {
1894 * Note ignoredp is not sorted yet, and thus neither is dstq.
1895 * That list must be sorted before we queue_blames(). We defer
1896 * sorting until after all diff hunks are processed, so that
1897 * guess_line_blames() can pick *any* line in the parent. The
1898 * slight drawback is that we end up sorting all blame entries
1899 * passed to the parent, including those that are unrelated to
1900 * changes made by the ignored commit.
1902 **dstq = reverse_blame(ignoredp, **dstq);
1903 *dstq = &ignoredp->next;
1905 **srcq = reverse_blame(diffp, reverse_blame(samep, e));
1906 /* Move across elements that are in the unblamable portion */
1907 if (diffp)
1908 *srcq = &diffp->next;
1911 struct blame_chunk_cb_data {
1912 struct blame_origin *parent;
1913 struct blame_origin *target;
1914 long offset;
1915 int ignore_diffs;
1916 struct blame_entry **dstq;
1917 struct blame_entry **srcq;
1920 /* diff chunks are from parent to target */
1921 static int blame_chunk_cb(long start_a, long count_a,
1922 long start_b, long count_b, void *data)
1924 struct blame_chunk_cb_data *d = data;
1925 if (start_a - start_b != d->offset)
1926 die("internal error in blame::blame_chunk_cb");
1927 blame_chunk(&d->dstq, &d->srcq, start_b, start_a - start_b,
1928 start_b + count_b, count_a, d->parent, d->target,
1929 d->ignore_diffs);
1930 d->offset = start_a + count_a - (start_b + count_b);
1931 return 0;
1935 * We are looking at the origin 'target' and aiming to pass blame
1936 * for the lines it is suspected to its parent. Run diff to find
1937 * which lines came from parent and pass blame for them.
1939 static void pass_blame_to_parent(struct blame_scoreboard *sb,
1940 struct blame_origin *target,
1941 struct blame_origin *parent, int ignore_diffs)
1943 mmfile_t file_p, file_o;
1944 struct blame_chunk_cb_data d;
1945 struct blame_entry *newdest = NULL;
1947 if (!target->suspects)
1948 return; /* nothing remains for this target */
1950 d.parent = parent;
1951 d.target = target;
1952 d.offset = 0;
1953 d.ignore_diffs = ignore_diffs;
1954 d.dstq = &newdest; d.srcq = &target->suspects;
1956 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
1957 &sb->num_read_blob, ignore_diffs);
1958 fill_origin_blob(&sb->revs->diffopt, target, &file_o,
1959 &sb->num_read_blob, ignore_diffs);
1960 sb->num_get_patch++;
1962 if (diff_hunks(&file_p, &file_o, blame_chunk_cb, &d, sb->xdl_opts))
1963 die("unable to generate diff (%s -> %s)",
1964 oid_to_hex(&parent->commit->object.oid),
1965 oid_to_hex(&target->commit->object.oid));
1966 /* The rest are the same as the parent */
1967 blame_chunk(&d.dstq, &d.srcq, INT_MAX, d.offset, INT_MAX, 0,
1968 parent, target, 0);
1969 *d.dstq = NULL;
1970 if (ignore_diffs)
1971 sort_blame_entries(&newdest, compare_blame_suspect);
1972 queue_blames(sb, parent, newdest);
1974 return;
1978 * The lines in blame_entry after splitting blames many times can become
1979 * very small and trivial, and at some point it becomes pointless to
1980 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1981 * ordinary C program, and it is not worth to say it was copied from
1982 * totally unrelated file in the parent.
1984 * Compute how trivial the lines in the blame_entry are.
1986 unsigned blame_entry_score(struct blame_scoreboard *sb, struct blame_entry *e)
1988 unsigned score;
1989 const char *cp, *ep;
1991 if (e->score)
1992 return e->score;
1994 score = 1;
1995 cp = blame_nth_line(sb, e->lno);
1996 ep = blame_nth_line(sb, e->lno + e->num_lines);
1997 while (cp < ep) {
1998 unsigned ch = *((unsigned char *)cp);
1999 if (isalnum(ch))
2000 score++;
2001 cp++;
2003 e->score = score;
2004 return score;
2008 * best_so_far[] and potential[] are both a split of an existing blame_entry
2009 * that passes blame to the parent. Maintain best_so_far the best split so
2010 * far, by comparing potential and best_so_far and copying potential into
2011 * bst_so_far as needed.
2013 static void copy_split_if_better(struct blame_scoreboard *sb,
2014 struct blame_entry *best_so_far,
2015 struct blame_entry *potential)
2017 int i;
2019 if (!potential[1].suspect)
2020 return;
2021 if (best_so_far[1].suspect) {
2022 if (blame_entry_score(sb, &potential[1]) <
2023 blame_entry_score(sb, &best_so_far[1]))
2024 return;
2027 for (i = 0; i < 3; i++)
2028 blame_origin_incref(potential[i].suspect);
2029 decref_split(best_so_far);
2030 memcpy(best_so_far, potential, sizeof(struct blame_entry[3]));
2034 * We are looking at a part of the final image represented by
2035 * ent (tlno and same are offset by ent->s_lno).
2036 * tlno is where we are looking at in the final image.
2037 * up to (but not including) same match preimage.
2038 * plno is where we are looking at in the preimage.
2040 * <-------------- final image ---------------------->
2041 * <------ent------>
2042 * ^tlno ^same
2043 * <---------preimage----->
2044 * ^plno
2046 * All line numbers are 0-based.
2048 static void handle_split(struct blame_scoreboard *sb,
2049 struct blame_entry *ent,
2050 int tlno, int plno, int same,
2051 struct blame_origin *parent,
2052 struct blame_entry *split)
2054 if (ent->num_lines <= tlno)
2055 return;
2056 if (tlno < same) {
2057 struct blame_entry potential[3];
2058 tlno += ent->s_lno;
2059 same += ent->s_lno;
2060 split_overlap(potential, ent, tlno, plno, same, parent);
2061 copy_split_if_better(sb, split, potential);
2062 decref_split(potential);
2066 struct handle_split_cb_data {
2067 struct blame_scoreboard *sb;
2068 struct blame_entry *ent;
2069 struct blame_origin *parent;
2070 struct blame_entry *split;
2071 long plno;
2072 long tlno;
2075 static int handle_split_cb(long start_a, long count_a,
2076 long start_b, long count_b, void *data)
2078 struct handle_split_cb_data *d = data;
2079 handle_split(d->sb, d->ent, d->tlno, d->plno, start_b, d->parent,
2080 d->split);
2081 d->plno = start_a + count_a;
2082 d->tlno = start_b + count_b;
2083 return 0;
2087 * Find the lines from parent that are the same as ent so that
2088 * we can pass blames to it. file_p has the blob contents for
2089 * the parent.
2091 static void find_copy_in_blob(struct blame_scoreboard *sb,
2092 struct blame_entry *ent,
2093 struct blame_origin *parent,
2094 struct blame_entry *split,
2095 mmfile_t *file_p)
2097 const char *cp;
2098 mmfile_t file_o;
2099 struct handle_split_cb_data d;
2101 memset(&d, 0, sizeof(d));
2102 d.sb = sb; d.ent = ent; d.parent = parent; d.split = split;
2104 * Prepare mmfile that contains only the lines in ent.
2106 cp = blame_nth_line(sb, ent->lno);
2107 file_o.ptr = (char *) cp;
2108 file_o.size = blame_nth_line(sb, ent->lno + ent->num_lines) - cp;
2111 * file_o is a part of final image we are annotating.
2112 * file_p partially may match that image.
2114 memset(split, 0, sizeof(struct blame_entry [3]));
2115 if (diff_hunks(file_p, &file_o, handle_split_cb, &d, sb->xdl_opts))
2116 die("unable to generate diff (%s)",
2117 oid_to_hex(&parent->commit->object.oid));
2118 /* remainder, if any, all match the preimage */
2119 handle_split(sb, ent, d.tlno, d.plno, ent->num_lines, parent, split);
2122 /* Move all blame entries from list *source that have a score smaller
2123 * than score_min to the front of list *small.
2124 * Returns a pointer to the link pointing to the old head of the small list.
2127 static struct blame_entry **filter_small(struct blame_scoreboard *sb,
2128 struct blame_entry **small,
2129 struct blame_entry **source,
2130 unsigned score_min)
2132 struct blame_entry *p = *source;
2133 struct blame_entry *oldsmall = *small;
2134 while (p) {
2135 if (blame_entry_score(sb, p) <= score_min) {
2136 *small = p;
2137 small = &p->next;
2138 p = *small;
2139 } else {
2140 *source = p;
2141 source = &p->next;
2142 p = *source;
2145 *small = oldsmall;
2146 *source = NULL;
2147 return small;
2151 * See if lines currently target is suspected for can be attributed to
2152 * parent.
2154 static void find_move_in_parent(struct blame_scoreboard *sb,
2155 struct blame_entry ***blamed,
2156 struct blame_entry **toosmall,
2157 struct blame_origin *target,
2158 struct blame_origin *parent)
2160 struct blame_entry *e, split[3];
2161 struct blame_entry *unblamed = target->suspects;
2162 struct blame_entry *leftover = NULL;
2163 mmfile_t file_p;
2165 if (!unblamed)
2166 return; /* nothing remains for this target */
2168 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
2169 &sb->num_read_blob, 0);
2170 if (!file_p.ptr)
2171 return;
2173 /* At each iteration, unblamed has a NULL-terminated list of
2174 * entries that have not yet been tested for blame. leftover
2175 * contains the reversed list of entries that have been tested
2176 * without being assignable to the parent.
2178 do {
2179 struct blame_entry **unblamedtail = &unblamed;
2180 struct blame_entry *next;
2181 for (e = unblamed; e; e = next) {
2182 next = e->next;
2183 find_copy_in_blob(sb, e, parent, split, &file_p);
2184 if (split[1].suspect &&
2185 sb->move_score < blame_entry_score(sb, &split[1])) {
2186 split_blame(blamed, &unblamedtail, split, e);
2187 } else {
2188 e->next = leftover;
2189 leftover = e;
2191 decref_split(split);
2193 *unblamedtail = NULL;
2194 toosmall = filter_small(sb, toosmall, &unblamed, sb->move_score);
2195 } while (unblamed);
2196 target->suspects = reverse_blame(leftover, NULL);
2199 struct blame_list {
2200 struct blame_entry *ent;
2201 struct blame_entry split[3];
2205 * Count the number of entries the target is suspected for,
2206 * and prepare a list of entry and the best split.
2208 static struct blame_list *setup_blame_list(struct blame_entry *unblamed,
2209 int *num_ents_p)
2211 struct blame_entry *e;
2212 int num_ents, i;
2213 struct blame_list *blame_list = NULL;
2215 for (e = unblamed, num_ents = 0; e; e = e->next)
2216 num_ents++;
2217 if (num_ents) {
2218 CALLOC_ARRAY(blame_list, num_ents);
2219 for (e = unblamed, i = 0; e; e = e->next)
2220 blame_list[i++].ent = e;
2222 *num_ents_p = num_ents;
2223 return blame_list;
2227 * For lines target is suspected for, see if we can find code movement
2228 * across file boundary from the parent commit. porigin is the path
2229 * in the parent we already tried.
2231 static void find_copy_in_parent(struct blame_scoreboard *sb,
2232 struct blame_entry ***blamed,
2233 struct blame_entry **toosmall,
2234 struct blame_origin *target,
2235 struct commit *parent,
2236 struct blame_origin *porigin,
2237 int opt)
2239 struct diff_options diff_opts;
2240 int i, j;
2241 struct blame_list *blame_list;
2242 int num_ents;
2243 struct blame_entry *unblamed = target->suspects;
2244 struct blame_entry *leftover = NULL;
2246 if (!unblamed)
2247 return; /* nothing remains for this target */
2249 repo_diff_setup(sb->repo, &diff_opts);
2250 diff_opts.flags.recursive = 1;
2251 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2253 diff_setup_done(&diff_opts);
2255 /* Try "find copies harder" on new path if requested;
2256 * we do not want to use diffcore_rename() actually to
2257 * match things up; find_copies_harder is set only to
2258 * force diff_tree_oid() to feed all filepairs to diff_queue,
2259 * and this code needs to be after diff_setup_done(), which
2260 * usually makes find-copies-harder imply copy detection.
2262 if ((opt & PICKAXE_BLAME_COPY_HARDEST)
2263 || ((opt & PICKAXE_BLAME_COPY_HARDER)
2264 && (!porigin || strcmp(target->path, porigin->path))))
2265 diff_opts.flags.find_copies_harder = 1;
2267 if (is_null_oid(&target->commit->object.oid))
2268 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
2269 else
2270 diff_tree_oid(get_commit_tree_oid(parent),
2271 get_commit_tree_oid(target->commit),
2272 "", &diff_opts);
2274 if (!diff_opts.flags.find_copies_harder)
2275 diffcore_std(&diff_opts);
2277 do {
2278 struct blame_entry **unblamedtail = &unblamed;
2279 blame_list = setup_blame_list(unblamed, &num_ents);
2281 for (i = 0; i < diff_queued_diff.nr; i++) {
2282 struct diff_filepair *p = diff_queued_diff.queue[i];
2283 struct blame_origin *norigin;
2284 mmfile_t file_p;
2285 struct blame_entry potential[3];
2287 if (!DIFF_FILE_VALID(p->one))
2288 continue; /* does not exist in parent */
2289 if (S_ISGITLINK(p->one->mode))
2290 continue; /* ignore git links */
2291 if (porigin && !strcmp(p->one->path, porigin->path))
2292 /* find_move already dealt with this path */
2293 continue;
2295 norigin = get_origin(parent, p->one->path);
2296 oidcpy(&norigin->blob_oid, &p->one->oid);
2297 norigin->mode = p->one->mode;
2298 fill_origin_blob(&sb->revs->diffopt, norigin, &file_p,
2299 &sb->num_read_blob, 0);
2300 if (!file_p.ptr)
2301 continue;
2303 for (j = 0; j < num_ents; j++) {
2304 find_copy_in_blob(sb, blame_list[j].ent,
2305 norigin, potential, &file_p);
2306 copy_split_if_better(sb, blame_list[j].split,
2307 potential);
2308 decref_split(potential);
2310 blame_origin_decref(norigin);
2313 for (j = 0; j < num_ents; j++) {
2314 struct blame_entry *split = blame_list[j].split;
2315 if (split[1].suspect &&
2316 sb->copy_score < blame_entry_score(sb, &split[1])) {
2317 split_blame(blamed, &unblamedtail, split,
2318 blame_list[j].ent);
2319 } else {
2320 blame_list[j].ent->next = leftover;
2321 leftover = blame_list[j].ent;
2323 decref_split(split);
2325 free(blame_list);
2326 *unblamedtail = NULL;
2327 toosmall = filter_small(sb, toosmall, &unblamed, sb->copy_score);
2328 } while (unblamed);
2329 target->suspects = reverse_blame(leftover, NULL);
2330 diff_flush(&diff_opts);
2334 * The blobs of origin and porigin exactly match, so everything
2335 * origin is suspected for can be blamed on the parent.
2337 static void pass_whole_blame(struct blame_scoreboard *sb,
2338 struct blame_origin *origin, struct blame_origin *porigin)
2340 struct blame_entry *e, *suspects;
2342 if (!porigin->file.ptr && origin->file.ptr) {
2343 /* Steal its file */
2344 porigin->file = origin->file;
2345 origin->file.ptr = NULL;
2347 suspects = origin->suspects;
2348 origin->suspects = NULL;
2349 for (e = suspects; e; e = e->next) {
2350 blame_origin_incref(porigin);
2351 blame_origin_decref(e->suspect);
2352 e->suspect = porigin;
2354 queue_blames(sb, porigin, suspects);
2358 * We pass blame from the current commit to its parents. We keep saying
2359 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2360 * exonerate ourselves.
2362 static struct commit_list *first_scapegoat(struct rev_info *revs, struct commit *commit,
2363 int reverse)
2365 if (!reverse) {
2366 if (revs->first_parent_only &&
2367 commit->parents &&
2368 commit->parents->next) {
2369 free_commit_list(commit->parents->next);
2370 commit->parents->next = NULL;
2372 return commit->parents;
2374 return lookup_decoration(&revs->children, &commit->object);
2377 static int num_scapegoats(struct rev_info *revs, struct commit *commit, int reverse)
2379 struct commit_list *l = first_scapegoat(revs, commit, reverse);
2380 return commit_list_count(l);
2383 /* Distribute collected unsorted blames to the respected sorted lists
2384 * in the various origins.
2386 static void distribute_blame(struct blame_scoreboard *sb, struct blame_entry *blamed)
2388 sort_blame_entries(&blamed, compare_blame_suspect);
2389 while (blamed)
2391 struct blame_origin *porigin = blamed->suspect;
2392 struct blame_entry *suspects = NULL;
2393 do {
2394 struct blame_entry *next = blamed->next;
2395 blamed->next = suspects;
2396 suspects = blamed;
2397 blamed = next;
2398 } while (blamed && blamed->suspect == porigin);
2399 suspects = reverse_blame(suspects, NULL);
2400 queue_blames(sb, porigin, suspects);
2404 #define MAXSG 16
2406 typedef struct blame_origin *(*blame_find_alg)(struct repository *,
2407 struct commit *,
2408 struct blame_origin *,
2409 struct blame_bloom_data *);
2411 static void pass_blame(struct blame_scoreboard *sb, struct blame_origin *origin, int opt)
2413 struct rev_info *revs = sb->revs;
2414 int i, pass, num_sg;
2415 struct commit *commit = origin->commit;
2416 struct commit_list *sg;
2417 struct blame_origin *sg_buf[MAXSG];
2418 struct blame_origin *porigin, **sg_origin = sg_buf;
2419 struct blame_entry *toosmall = NULL;
2420 struct blame_entry *blames, **blametail = &blames;
2422 num_sg = num_scapegoats(revs, commit, sb->reverse);
2423 if (!num_sg)
2424 goto finish;
2425 else if (num_sg < ARRAY_SIZE(sg_buf))
2426 memset(sg_buf, 0, sizeof(sg_buf));
2427 else
2428 CALLOC_ARRAY(sg_origin, num_sg);
2431 * The first pass looks for unrenamed path to optimize for
2432 * common cases, then we look for renames in the second pass.
2434 for (pass = 0; pass < 2 - sb->no_whole_file_rename; pass++) {
2435 blame_find_alg find = pass ? find_rename : find_origin;
2437 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2438 i < num_sg && sg;
2439 sg = sg->next, i++) {
2440 struct commit *p = sg->item;
2441 int j, same;
2443 if (sg_origin[i])
2444 continue;
2445 if (repo_parse_commit(the_repository, p))
2446 continue;
2447 porigin = find(sb->repo, p, origin, sb->bloom_data);
2448 if (!porigin)
2449 continue;
2450 if (oideq(&porigin->blob_oid, &origin->blob_oid)) {
2451 pass_whole_blame(sb, origin, porigin);
2452 blame_origin_decref(porigin);
2453 goto finish;
2455 for (j = same = 0; j < i; j++)
2456 if (sg_origin[j] &&
2457 oideq(&sg_origin[j]->blob_oid, &porigin->blob_oid)) {
2458 same = 1;
2459 break;
2461 if (!same)
2462 sg_origin[i] = porigin;
2463 else
2464 blame_origin_decref(porigin);
2468 sb->num_commits++;
2469 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2470 i < num_sg && sg;
2471 sg = sg->next, i++) {
2472 struct blame_origin *porigin = sg_origin[i];
2473 if (!porigin)
2474 continue;
2475 if (!origin->previous) {
2476 blame_origin_incref(porigin);
2477 origin->previous = porigin;
2479 pass_blame_to_parent(sb, origin, porigin, 0);
2480 if (!origin->suspects)
2481 goto finish;
2485 * Pass remaining suspects for ignored commits to their parents.
2487 if (oidset_contains(&sb->ignore_list, &commit->object.oid)) {
2488 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2489 i < num_sg && sg;
2490 sg = sg->next, i++) {
2491 struct blame_origin *porigin = sg_origin[i];
2493 if (!porigin)
2494 continue;
2495 pass_blame_to_parent(sb, origin, porigin, 1);
2497 * Preemptively drop porigin so we can refresh the
2498 * fingerprints if we use the parent again, which can
2499 * occur if you ignore back-to-back commits.
2501 drop_origin_blob(porigin);
2502 if (!origin->suspects)
2503 goto finish;
2508 * Optionally find moves in parents' files.
2510 if (opt & PICKAXE_BLAME_MOVE) {
2511 filter_small(sb, &toosmall, &origin->suspects, sb->move_score);
2512 if (origin->suspects) {
2513 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2514 i < num_sg && sg;
2515 sg = sg->next, i++) {
2516 struct blame_origin *porigin = sg_origin[i];
2517 if (!porigin)
2518 continue;
2519 find_move_in_parent(sb, &blametail, &toosmall, origin, porigin);
2520 if (!origin->suspects)
2521 break;
2527 * Optionally find copies from parents' files.
2529 if (opt & PICKAXE_BLAME_COPY) {
2530 if (sb->copy_score > sb->move_score)
2531 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2532 else if (sb->copy_score < sb->move_score) {
2533 origin->suspects = blame_merge(origin->suspects, toosmall);
2534 toosmall = NULL;
2535 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2537 if (!origin->suspects)
2538 goto finish;
2540 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2541 i < num_sg && sg;
2542 sg = sg->next, i++) {
2543 struct blame_origin *porigin = sg_origin[i];
2544 find_copy_in_parent(sb, &blametail, &toosmall,
2545 origin, sg->item, porigin, opt);
2546 if (!origin->suspects)
2547 goto finish;
2551 finish:
2552 *blametail = NULL;
2553 distribute_blame(sb, blames);
2555 * prepend toosmall to origin->suspects
2557 * There is no point in sorting: this ends up on a big
2558 * unsorted list in the caller anyway.
2560 if (toosmall) {
2561 struct blame_entry **tail = &toosmall;
2562 while (*tail)
2563 tail = &(*tail)->next;
2564 *tail = origin->suspects;
2565 origin->suspects = toosmall;
2567 for (i = 0; i < num_sg; i++) {
2568 if (sg_origin[i]) {
2569 if (!sg_origin[i]->suspects)
2570 drop_origin_blob(sg_origin[i]);
2571 blame_origin_decref(sg_origin[i]);
2574 drop_origin_blob(origin);
2575 if (sg_buf != sg_origin)
2576 free(sg_origin);
2580 * The main loop -- while we have blobs with lines whose true origin
2581 * is still unknown, pick one blob, and allow its lines to pass blames
2582 * to its parents. */
2583 void assign_blame(struct blame_scoreboard *sb, int opt)
2585 struct rev_info *revs = sb->revs;
2586 struct commit *commit = prio_queue_get(&sb->commits);
2588 while (commit) {
2589 struct blame_entry *ent;
2590 struct blame_origin *suspect = get_blame_suspects(commit);
2592 /* find one suspect to break down */
2593 while (suspect && !suspect->suspects)
2594 suspect = suspect->next;
2596 if (!suspect) {
2597 commit = prio_queue_get(&sb->commits);
2598 continue;
2601 assert(commit == suspect->commit);
2604 * We will use this suspect later in the loop,
2605 * so hold onto it in the meantime.
2607 blame_origin_incref(suspect);
2608 repo_parse_commit(the_repository, commit);
2609 if (sb->reverse ||
2610 (!(commit->object.flags & UNINTERESTING) &&
2611 !(revs->max_age != -1 && commit->date < revs->max_age)))
2612 pass_blame(sb, suspect, opt);
2613 else {
2614 commit->object.flags |= UNINTERESTING;
2615 if (commit->object.parsed)
2616 mark_parents_uninteresting(sb->revs, commit);
2618 /* treat root commit as boundary */
2619 if (!commit->parents && !sb->show_root)
2620 commit->object.flags |= UNINTERESTING;
2622 /* Take responsibility for the remaining entries */
2623 ent = suspect->suspects;
2624 if (ent) {
2625 suspect->guilty = 1;
2626 for (;;) {
2627 struct blame_entry *next = ent->next;
2628 if (sb->found_guilty_entry)
2629 sb->found_guilty_entry(ent, sb->found_guilty_entry_data);
2630 if (next) {
2631 ent = next;
2632 continue;
2634 ent->next = sb->ent;
2635 sb->ent = suspect->suspects;
2636 suspect->suspects = NULL;
2637 break;
2640 blame_origin_decref(suspect);
2642 if (sb->debug) /* sanity */
2643 sanity_check_refcnt(sb);
2648 * To allow quick access to the contents of nth line in the
2649 * final image, prepare an index in the scoreboard.
2651 static int prepare_lines(struct blame_scoreboard *sb)
2653 sb->num_lines = find_line_starts(&sb->lineno, sb->final_buf,
2654 sb->final_buf_size);
2655 return sb->num_lines;
2658 static struct commit *find_single_final(struct rev_info *revs,
2659 const char **name_p)
2661 int i;
2662 struct commit *found = NULL;
2663 const char *name = NULL;
2665 for (i = 0; i < revs->pending.nr; i++) {
2666 struct object *obj = revs->pending.objects[i].item;
2667 if (obj->flags & UNINTERESTING)
2668 continue;
2669 obj = deref_tag(revs->repo, obj, NULL, 0);
2670 if (!obj || obj->type != OBJ_COMMIT)
2671 die("Non commit %s?", revs->pending.objects[i].name);
2672 if (found)
2673 die("More than one commit to dig from %s and %s?",
2674 revs->pending.objects[i].name, name);
2675 found = (struct commit *)obj;
2676 name = revs->pending.objects[i].name;
2678 if (name_p)
2679 *name_p = xstrdup_or_null(name);
2680 return found;
2683 static struct commit *dwim_reverse_initial(struct rev_info *revs,
2684 const char **name_p)
2687 * DWIM "git blame --reverse ONE -- PATH" as
2688 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2689 * when it makes sense.
2691 struct object *obj;
2692 struct commit *head_commit;
2693 struct object_id head_oid;
2695 if (revs->pending.nr != 1)
2696 return NULL;
2698 /* Is that sole rev a committish? */
2699 obj = revs->pending.objects[0].item;
2700 obj = deref_tag(revs->repo, obj, NULL, 0);
2701 if (!obj || obj->type != OBJ_COMMIT)
2702 return NULL;
2704 /* Do we have HEAD? */
2705 if (!refs_resolve_ref_unsafe(get_main_ref_store(the_repository), "HEAD", RESOLVE_REF_READING, &head_oid, NULL))
2706 return NULL;
2707 head_commit = lookup_commit_reference_gently(revs->repo,
2708 &head_oid, 1);
2709 if (!head_commit)
2710 return NULL;
2712 /* Turn "ONE" into "ONE..HEAD" then */
2713 obj->flags |= UNINTERESTING;
2714 add_pending_object(revs, &head_commit->object, "HEAD");
2716 if (name_p)
2717 *name_p = revs->pending.objects[0].name;
2718 return (struct commit *)obj;
2721 static struct commit *find_single_initial(struct rev_info *revs,
2722 const char **name_p)
2724 int i;
2725 struct commit *found = NULL;
2726 const char *name = NULL;
2729 * There must be one and only one negative commit, and it must be
2730 * the boundary.
2732 for (i = 0; i < revs->pending.nr; i++) {
2733 struct object *obj = revs->pending.objects[i].item;
2734 if (!(obj->flags & UNINTERESTING))
2735 continue;
2736 obj = deref_tag(revs->repo, obj, NULL, 0);
2737 if (!obj || obj->type != OBJ_COMMIT)
2738 die("Non commit %s?", revs->pending.objects[i].name);
2739 if (found)
2740 die("More than one commit to dig up from, %s and %s?",
2741 revs->pending.objects[i].name, name);
2742 found = (struct commit *) obj;
2743 name = revs->pending.objects[i].name;
2746 if (!name)
2747 found = dwim_reverse_initial(revs, &name);
2748 if (!name)
2749 die("No commit to dig up from?");
2751 if (name_p)
2752 *name_p = xstrdup(name);
2753 return found;
2756 void init_scoreboard(struct blame_scoreboard *sb)
2758 memset(sb, 0, sizeof(struct blame_scoreboard));
2759 sb->move_score = BLAME_DEFAULT_MOVE_SCORE;
2760 sb->copy_score = BLAME_DEFAULT_COPY_SCORE;
2763 void setup_scoreboard(struct blame_scoreboard *sb,
2764 struct blame_origin **orig)
2766 const char *final_commit_name = NULL;
2767 struct blame_origin *o;
2768 struct commit *final_commit = NULL;
2769 enum object_type type;
2771 init_blame_suspects(&blame_suspects);
2773 if (sb->reverse && sb->contents_from)
2774 die(_("--contents and --reverse do not blend well."));
2776 if (!sb->repo)
2777 BUG("repo is NULL");
2779 if (!sb->reverse) {
2780 sb->final = find_single_final(sb->revs, &final_commit_name);
2781 sb->commits.compare = compare_commits_by_commit_date;
2782 } else {
2783 sb->final = find_single_initial(sb->revs, &final_commit_name);
2784 sb->commits.compare = compare_commits_by_reverse_commit_date;
2787 if (sb->reverse && sb->revs->first_parent_only)
2788 sb->revs->children.name = NULL;
2790 if (sb->contents_from || !sb->final) {
2791 struct object_id head_oid, *parent_oid;
2794 * Build a fake commit at the top of the history, when
2795 * (1) "git blame [^A] --path", i.e. with no positive end
2796 * of the history range, in which case we build such
2797 * a fake commit on top of the HEAD to blame in-tree
2798 * modifications.
2799 * (2) "git blame --contents=file [A] -- path", with or
2800 * without positive end of the history range but with
2801 * --contents, in which case we pretend that there is
2802 * a fake commit on top of the positive end (defaulting to
2803 * HEAD) that has the given contents in the path.
2805 if (sb->final) {
2806 parent_oid = &sb->final->object.oid;
2807 } else {
2808 if (!refs_resolve_ref_unsafe(get_main_ref_store(the_repository), "HEAD", RESOLVE_REF_READING, &head_oid, NULL))
2809 die("no such ref: HEAD");
2810 parent_oid = &head_oid;
2813 if (!sb->contents_from)
2814 setup_work_tree();
2816 sb->final = fake_working_tree_commit(sb->repo,
2817 &sb->revs->diffopt,
2818 sb->path, sb->contents_from,
2819 parent_oid);
2820 add_pending_object(sb->revs, &(sb->final->object), ":");
2823 if (sb->reverse && sb->revs->first_parent_only) {
2824 final_commit = find_single_final(sb->revs, NULL);
2825 if (!final_commit)
2826 die(_("--reverse and --first-parent together require specified latest commit"));
2830 * If we have bottom, this will mark the ancestors of the
2831 * bottom commits we would reach while traversing as
2832 * uninteresting.
2834 if (prepare_revision_walk(sb->revs))
2835 die(_("revision walk setup failed"));
2837 if (sb->reverse && sb->revs->first_parent_only) {
2838 struct commit *c = final_commit;
2840 sb->revs->children.name = "children";
2841 while (c->parents &&
2842 !oideq(&c->object.oid, &sb->final->object.oid)) {
2843 struct commit_list *l = xcalloc(1, sizeof(*l));
2845 l->item = c;
2846 if (add_decoration(&sb->revs->children,
2847 &c->parents->item->object, l))
2848 BUG("not unique item in first-parent chain");
2849 c = c->parents->item;
2852 if (!oideq(&c->object.oid, &sb->final->object.oid))
2853 die(_("--reverse --first-parent together require range along first-parent chain"));
2856 if (is_null_oid(&sb->final->object.oid)) {
2857 o = get_blame_suspects(sb->final);
2858 sb->final_buf = xmemdupz(o->file.ptr, o->file.size);
2859 sb->final_buf_size = o->file.size;
2861 else {
2862 o = get_origin(sb->final, sb->path);
2863 if (fill_blob_sha1_and_mode(sb->repo, o))
2864 die(_("no such path %s in %s"), sb->path, final_commit_name);
2866 if (sb->revs->diffopt.flags.allow_textconv &&
2867 textconv_object(sb->repo, sb->path, o->mode, &o->blob_oid, 1, (char **) &sb->final_buf,
2868 &sb->final_buf_size))
2870 else
2871 sb->final_buf = repo_read_object_file(the_repository,
2872 &o->blob_oid,
2873 &type,
2874 &sb->final_buf_size);
2876 if (!sb->final_buf)
2877 die(_("cannot read blob %s for path %s"),
2878 oid_to_hex(&o->blob_oid),
2879 sb->path);
2881 sb->num_read_blob++;
2882 prepare_lines(sb);
2884 if (orig)
2885 *orig = o;
2887 free((char *)final_commit_name);
2892 struct blame_entry *blame_entry_prepend(struct blame_entry *head,
2893 long start, long end,
2894 struct blame_origin *o)
2896 struct blame_entry *new_head = xcalloc(1, sizeof(struct blame_entry));
2897 new_head->lno = start;
2898 new_head->num_lines = end - start;
2899 new_head->suspect = o;
2900 new_head->s_lno = start;
2901 new_head->next = head;
2902 blame_origin_incref(o);
2903 return new_head;
2906 void setup_blame_bloom_data(struct blame_scoreboard *sb)
2908 struct blame_bloom_data *bd;
2909 struct bloom_filter_settings *bs;
2911 if (!sb->repo->objects->commit_graph)
2912 return;
2914 bs = get_bloom_filter_settings(sb->repo);
2915 if (!bs)
2916 return;
2918 bd = xmalloc(sizeof(struct blame_bloom_data));
2920 bd->settings = bs;
2922 bd->alloc = 4;
2923 bd->nr = 0;
2924 ALLOC_ARRAY(bd->keys, bd->alloc);
2926 add_bloom_key(bd, sb->path);
2928 sb->bloom_data = bd;
2931 void cleanup_scoreboard(struct blame_scoreboard *sb)
2933 free(sb->lineno);
2934 clear_prio_queue(&sb->commits);
2935 oidset_clear(&sb->ignore_list);
2937 if (sb->bloom_data) {
2938 int i;
2939 for (i = 0; i < sb->bloom_data->nr; i++) {
2940 free(sb->bloom_data->keys[i]->hashes);
2941 free(sb->bloom_data->keys[i]);
2943 free(sb->bloom_data->keys);
2944 FREE_AND_NULL(sb->bloom_data);
2946 trace2_data_intmax("blame", sb->repo,
2947 "bloom/queries", bloom_count_queries);
2948 trace2_data_intmax("blame", sb->repo,
2949 "bloom/response-no", bloom_count_no);