3 #include "object-store.h"
4 #include "cache-tree.h"
16 #include "commit-slab.h"
18 #include "commit-graph.h"
20 define_commit_slab(blame_suspects
, struct blame_origin
*);
21 static struct blame_suspects blame_suspects
;
23 struct blame_origin
*get_blame_suspects(struct commit
*commit
)
25 struct blame_origin
**result
;
27 result
= blame_suspects_peek(&blame_suspects
, commit
);
29 return result
? *result
: NULL
;
32 static void set_blame_suspects(struct commit
*commit
, struct blame_origin
*origin
)
34 *blame_suspects_at(&blame_suspects
, commit
) = origin
;
37 void blame_origin_decref(struct blame_origin
*o
)
39 if (o
&& --o
->refcnt
<= 0) {
40 struct blame_origin
*p
, *l
= NULL
;
42 blame_origin_decref(o
->previous
);
44 /* Should be present exactly once in commit chain */
45 for (p
= get_blame_suspects(o
->commit
); p
; l
= p
, p
= p
->next
) {
50 set_blame_suspects(o
->commit
, p
->next
);
55 die("internal error in blame_origin_decref");
60 * Given a commit and a path in it, create a new origin structure.
61 * The callers that add blame to the scoreboard should use
62 * get_origin() to obtain shared, refcounted copy instead of calling
63 * this function directly.
65 static struct blame_origin
*make_origin(struct commit
*commit
, const char *path
)
67 struct blame_origin
*o
;
68 FLEX_ALLOC_STR(o
, path
, path
);
71 o
->next
= get_blame_suspects(commit
);
72 set_blame_suspects(commit
, o
);
77 * Locate an existing origin or create a new one.
78 * This moves the origin to front position in the commit util list.
80 static struct blame_origin
*get_origin(struct commit
*commit
, const char *path
)
82 struct blame_origin
*o
, *l
;
84 for (o
= get_blame_suspects(commit
), l
= NULL
; o
; l
= o
, o
= o
->next
) {
85 if (!strcmp(o
->path
, path
)) {
89 o
->next
= get_blame_suspects(commit
);
90 set_blame_suspects(commit
, o
);
92 return blame_origin_incref(o
);
95 return make_origin(commit
, path
);
100 static void verify_working_tree_path(struct repository
*r
,
101 struct commit
*work_tree
, const char *path
)
103 struct commit_list
*parents
;
106 for (parents
= work_tree
->parents
; parents
; parents
= parents
->next
) {
107 const struct object_id
*commit_oid
= &parents
->item
->object
.oid
;
108 struct object_id blob_oid
;
111 if (!get_tree_entry(r
, commit_oid
, path
, &blob_oid
, &mode
) &&
112 oid_object_info(r
, &blob_oid
, NULL
) == OBJ_BLOB
)
116 pos
= index_name_pos(r
->index
, path
, strlen(path
));
118 ; /* path is in the index */
119 else if (-1 - pos
< r
->index
->cache_nr
&&
120 !strcmp(r
->index
->cache
[-1 - pos
]->name
, path
))
121 ; /* path is in the index, unmerged */
123 die("no such path '%s' in HEAD", path
);
126 static struct commit_list
**append_parent(struct repository
*r
,
127 struct commit_list
**tail
,
128 const struct object_id
*oid
)
130 struct commit
*parent
;
132 parent
= lookup_commit_reference(r
, oid
);
134 die("no such commit %s", oid_to_hex(oid
));
135 return &commit_list_insert(parent
, tail
)->next
;
138 static void append_merge_parents(struct repository
*r
,
139 struct commit_list
**tail
)
142 struct strbuf line
= STRBUF_INIT
;
144 merge_head
= open(git_path_merge_head(r
), O_RDONLY
);
145 if (merge_head
< 0) {
148 die("cannot open '%s' for reading",
149 git_path_merge_head(r
));
152 while (!strbuf_getwholeline_fd(&line
, merge_head
, '\n')) {
153 struct object_id oid
;
154 if (get_oid_hex(line
.buf
, &oid
))
155 die("unknown line in '%s': %s",
156 git_path_merge_head(r
), line
.buf
);
157 tail
= append_parent(r
, tail
, &oid
);
160 strbuf_release(&line
);
164 * This isn't as simple as passing sb->buf and sb->len, because we
165 * want to transfer ownership of the buffer to the commit (so we
168 static void set_commit_buffer_from_strbuf(struct repository
*r
,
173 void *buf
= strbuf_detach(sb
, &len
);
174 set_commit_buffer(r
, c
, buf
, len
);
178 * Prepare a dummy commit that represents the work tree (or staged) item.
179 * Note that annotating work tree item never works in the reverse.
181 static struct commit
*fake_working_tree_commit(struct repository
*r
,
182 struct diff_options
*opt
,
184 const char *contents_from
,
185 struct object_id
*oid
)
187 struct commit
*commit
;
188 struct blame_origin
*origin
;
189 struct commit_list
**parent_tail
, *parent
;
190 struct strbuf buf
= STRBUF_INIT
;
194 struct cache_entry
*ce
;
196 struct strbuf msg
= STRBUF_INIT
;
200 commit
= alloc_commit_node(r
);
201 commit
->object
.parsed
= 1;
203 parent_tail
= &commit
->parents
;
205 parent_tail
= append_parent(r
, parent_tail
, oid
);
206 append_merge_parents(r
, parent_tail
);
207 verify_working_tree_path(r
, commit
, path
);
209 origin
= make_origin(commit
, path
);
212 ident
= fmt_ident("External file (--contents)", "external.file",
213 WANT_BLANK_IDENT
, NULL
, 0);
215 ident
= fmt_ident("Not Committed Yet", "not.committed.yet",
216 WANT_BLANK_IDENT
, NULL
, 0);
217 strbuf_addstr(&msg
, "tree 0000000000000000000000000000000000000000\n");
218 for (parent
= commit
->parents
; parent
; parent
= parent
->next
)
219 strbuf_addf(&msg
, "parent %s\n",
220 oid_to_hex(&parent
->item
->object
.oid
));
224 "Version of %s from %s\n",
226 (!contents_from
? path
:
227 (!strcmp(contents_from
, "-") ? "standard input" : contents_from
)));
228 set_commit_buffer_from_strbuf(r
, commit
, &msg
);
230 if (!contents_from
|| strcmp("-", contents_from
)) {
232 const char *read_from
;
234 unsigned long buf_len
;
237 if (stat(contents_from
, &st
) < 0)
238 die_errno("Cannot stat '%s'", contents_from
);
239 read_from
= contents_from
;
242 if (lstat(path
, &st
) < 0)
243 die_errno("Cannot lstat '%s'", path
);
246 mode
= canon_mode(st
.st_mode
);
248 switch (st
.st_mode
& S_IFMT
) {
250 if (opt
->flags
.allow_textconv
&&
251 textconv_object(r
, read_from
, mode
, null_oid(), 0, &buf_ptr
, &buf_len
))
252 strbuf_attach(&buf
, buf_ptr
, buf_len
, buf_len
+ 1);
253 else if (strbuf_read_file(&buf
, read_from
, st
.st_size
) != st
.st_size
)
254 die_errno("cannot open or read '%s'", read_from
);
257 if (strbuf_readlink(&buf
, read_from
, st
.st_size
) < 0)
258 die_errno("cannot readlink '%s'", read_from
);
261 die("unsupported file type %s", read_from
);
265 /* Reading from stdin */
267 if (strbuf_read(&buf
, 0, 0) < 0)
268 die_errno("failed to read from stdin");
270 convert_to_git(r
->index
, path
, buf
.buf
, buf
.len
, &buf
, 0);
271 origin
->file
.ptr
= buf
.buf
;
272 origin
->file
.size
= buf
.len
;
273 pretend_object_file(buf
.buf
, buf
.len
, OBJ_BLOB
, &origin
->blob_oid
);
276 * Read the current index, replace the path entry with
277 * origin->blob_sha1 without mucking with its mode or type
278 * bits; we are not going to write this index out -- we just
279 * want to run "diff-index --cached".
281 discard_index(r
->index
);
286 int pos
= index_name_pos(r
->index
, path
, len
);
288 mode
= r
->index
->cache
[pos
]->ce_mode
;
290 /* Let's not bother reading from HEAD tree */
291 mode
= S_IFREG
| 0644;
293 ce
= make_empty_cache_entry(r
->index
, len
);
294 oidcpy(&ce
->oid
, &origin
->blob_oid
);
295 memcpy(ce
->name
, path
, len
);
296 ce
->ce_flags
= create_ce_flags(0);
297 ce
->ce_namelen
= len
;
298 ce
->ce_mode
= create_ce_mode(mode
);
299 add_index_entry(r
->index
, ce
,
300 ADD_CACHE_OK_TO_ADD
| ADD_CACHE_OK_TO_REPLACE
);
302 cache_tree_invalidate_path(r
->index
, path
);
309 static int diff_hunks(mmfile_t
*file_a
, mmfile_t
*file_b
,
310 xdl_emit_hunk_consume_func_t hunk_func
, void *cb_data
, int xdl_opts
)
313 xdemitconf_t xecfg
= {0};
314 xdemitcb_t ecb
= {NULL
};
316 xpp
.flags
= xdl_opts
;
317 xecfg
.hunk_func
= hunk_func
;
319 return xdi_diff(file_a
, file_b
, &xpp
, &xecfg
, &ecb
);
322 static const char *get_next_line(const char *start
, const char *end
)
324 const char *nl
= memchr(start
, '\n', end
- start
);
326 return nl
? nl
+ 1 : end
;
329 static int find_line_starts(int **line_starts
, const char *buf
,
332 const char *end
= buf
+ len
;
337 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
340 ALLOC_ARRAY(*line_starts
, num
+ 1);
341 lineno
= *line_starts
;
343 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
351 struct fingerprint_entry
;
353 /* A fingerprint is intended to loosely represent a string, such that two
354 * fingerprints can be quickly compared to give an indication of the similarity
355 * of the strings that they represent.
357 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
358 * the string that it represents. Whitespace is added at each end of the
359 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
360 * For example, the string "Darth Radar" will be converted to the following
362 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
364 * The similarity between two fingerprints is the size of the intersection of
365 * their multisets, including repeated elements. See fingerprint_similarity for
368 * For ease of implementation, the fingerprint is implemented as a map
369 * of byte pairs to the count of that byte pair in the string, instead of
370 * allowing repeated elements in a set.
374 /* As we know the maximum number of entries in advance, it's
375 * convenient to store the entries in a single array instead of having
376 * the hashmap manage the memory.
378 struct fingerprint_entry
*entries
;
381 /* A byte pair in a fingerprint. Stores the number of times the byte pair
382 * occurs in the string that the fingerprint represents.
384 struct fingerprint_entry
{
385 /* The hashmap entry - the hash represents the byte pair in its
386 * entirety so we don't need to store the byte pair separately.
388 struct hashmap_entry entry
;
389 /* The number of times the byte pair occurs in the string that the
390 * fingerprint represents.
395 /* See `struct fingerprint` for an explanation of what a fingerprint is.
396 * \param result the fingerprint of the string is stored here. This must be
397 * freed later using free_fingerprint.
398 * \param line_begin the start of the string
399 * \param line_end the end of the string
401 static void get_fingerprint(struct fingerprint
*result
,
402 const char *line_begin
,
403 const char *line_end
)
405 unsigned int hash
, c0
= 0, c1
;
407 int max_map_entry_count
= 1 + line_end
- line_begin
;
408 struct fingerprint_entry
*entry
= xcalloc(max_map_entry_count
,
409 sizeof(struct fingerprint_entry
));
410 struct fingerprint_entry
*found_entry
;
412 hashmap_init(&result
->map
, NULL
, NULL
, max_map_entry_count
);
413 result
->entries
= entry
;
414 for (p
= line_begin
; p
<= line_end
; ++p
, c0
= c1
) {
415 /* Always terminate the string with whitespace.
416 * Normalise whitespace to 0, and normalise letters to
417 * lower case. This won't work for multibyte characters but at
418 * worst will match some unrelated characters.
420 if ((p
== line_end
) || isspace(*p
))
424 hash
= c0
| (c1
<< 8);
425 /* Ignore whitespace pairs */
428 hashmap_entry_init(&entry
->entry
, hash
);
430 found_entry
= hashmap_get_entry(&result
->map
, entry
,
431 /* member name */ entry
, NULL
);
433 found_entry
->count
+= 1;
436 hashmap_add(&result
->map
, &entry
->entry
);
442 static void free_fingerprint(struct fingerprint
*f
)
444 hashmap_clear(&f
->map
);
448 /* Calculates the similarity between two fingerprints as the size of the
449 * intersection of their multisets, including repeated elements. See
450 * `struct fingerprint` for an explanation of the fingerprint representation.
451 * The similarity between "cat mat" and "father rather" is 2 because "at" is
452 * present twice in both strings while the similarity between "tim" and "mit"
455 static int fingerprint_similarity(struct fingerprint
*a
, struct fingerprint
*b
)
457 int intersection
= 0;
458 struct hashmap_iter iter
;
459 const struct fingerprint_entry
*entry_a
, *entry_b
;
461 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
462 entry
/* member name */) {
463 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
465 intersection
+= entry_a
->count
< entry_b
->count
?
466 entry_a
->count
: entry_b
->count
;
472 /* Subtracts byte-pair elements in B from A, modifying A in place.
474 static void fingerprint_subtract(struct fingerprint
*a
, struct fingerprint
*b
)
476 struct hashmap_iter iter
;
477 struct fingerprint_entry
*entry_a
;
478 const struct fingerprint_entry
*entry_b
;
480 hashmap_iter_init(&b
->map
, &iter
);
482 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
483 entry
/* member name */) {
484 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
486 if (entry_a
->count
<= entry_b
->count
)
487 hashmap_remove(&a
->map
, &entry_b
->entry
, NULL
);
489 entry_a
->count
-= entry_b
->count
;
494 /* Calculate fingerprints for a series of lines.
495 * Puts the fingerprints in the fingerprints array, which must have been
496 * preallocated to allow storing line_count elements.
498 static void get_line_fingerprints(struct fingerprint
*fingerprints
,
499 const char *content
, const int *line_starts
,
500 long first_line
, long line_count
)
503 const char *linestart
, *lineend
;
505 line_starts
+= first_line
;
506 for (i
= 0; i
< line_count
; ++i
) {
507 linestart
= content
+ line_starts
[i
];
508 lineend
= content
+ line_starts
[i
+ 1];
509 get_fingerprint(fingerprints
+ i
, linestart
, lineend
);
513 static void free_line_fingerprints(struct fingerprint
*fingerprints
,
518 for (i
= 0; i
< nr_fingerprints
; i
++)
519 free_fingerprint(&fingerprints
[i
]);
522 /* This contains the data necessary to linearly map a line number in one half
523 * of a diff chunk to the line in the other half of the diff chunk that is
524 * closest in terms of its position as a fraction of the length of the chunk.
526 struct line_number_mapping
{
527 int destination_start
, destination_length
,
528 source_start
, source_length
;
531 /* Given a line number in one range, offset and scale it to map it onto the
533 * Essentially this mapping is a simple linear equation but the calculation is
534 * more complicated to allow performing it with integer operations.
535 * Another complication is that if a line could map onto many lines in the
536 * destination range then we want to choose the line at the center of those
538 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
539 * first 5 lines in B will map onto the first line in the A chunk, while the
540 * last 5 lines will all map onto the second line in the A chunk.
541 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
542 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
544 static int map_line_number(int line_number
,
545 const struct line_number_mapping
*mapping
)
547 return ((line_number
- mapping
->source_start
) * 2 + 1) *
548 mapping
->destination_length
/
549 (mapping
->source_length
* 2) +
550 mapping
->destination_start
;
553 /* Get a pointer to the element storing the similarity between a line in A
556 * The similarities are stored in a 2-dimensional array. Each "row" in the
557 * array contains the similarities for a line in B. The similarities stored in
558 * a row are the similarities between the line in B and the nearby lines in A.
559 * To keep the length of each row the same, it is padded out with values of -1
560 * where the search range extends beyond the lines in A.
561 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
568 * Then the similarity array will contain:
569 * [-1, -1, am, bm, cm,
570 * -1, an, bn, cn, dn,
571 * ao, bo, co, do, eo,
572 * bp, cp, dp, ep, -1,
573 * cq, dq, eq, -1, -1]
574 * Where similarities are denoted either by -1 for invalid, or the
575 * concatenation of the two lines in the diff being compared.
577 * \param similarities array of similarities between lines in A and B
578 * \param line_a the index of the line in A, in the same frame of reference as
580 * \param local_line_b the index of the line in B, relative to the first line
581 * in B that similarities represents.
582 * \param closest_line_a the index of the line in A that is deemed to be
583 * closest to local_line_b. This must be in the same
584 * frame of reference as line_a. This value defines
585 * where similarities is centered for the line in B.
586 * \param max_search_distance_a maximum distance in lines from the closest line
587 * in A for other lines in A for which
588 * similarities may be calculated.
590 static int *get_similarity(int *similarities
,
591 int line_a
, int local_line_b
,
592 int closest_line_a
, int max_search_distance_a
)
594 assert(abs(line_a
- closest_line_a
) <=
595 max_search_distance_a
);
596 return similarities
+ line_a
- closest_line_a
+
597 max_search_distance_a
+
598 local_line_b
* (max_search_distance_a
* 2 + 1);
601 #define CERTAIN_NOTHING_MATCHES -2
602 #define CERTAINTY_NOT_CALCULATED -1
604 /* Given a line in B, first calculate its similarities with nearby lines in A
605 * if not already calculated, then identify the most similar and second most
606 * similar lines. The "certainty" is calculated based on those two
609 * \param start_a the index of the first line of the chunk in A
610 * \param length_a the length in lines of the chunk in A
611 * \param local_line_b the index of the line in B, relative to the first line
613 * \param fingerprints_a array of fingerprints for the chunk in A
614 * \param fingerprints_b array of fingerprints for the chunk in B
615 * \param similarities 2-dimensional array of similarities between lines in A
616 * and B. See get_similarity() for more details.
617 * \param certainties array of values indicating how strongly a line in B is
618 * matched with some line in A.
619 * \param second_best_result array of absolute indices in A for the second
620 * closest match of a line in B.
621 * \param result array of absolute indices in A for the closest match of a line
623 * \param max_search_distance_a maximum distance in lines from the closest line
624 * in A for other lines in A for which
625 * similarities may be calculated.
626 * \param map_line_number_in_b_to_a parameter to map_line_number().
628 static void find_best_line_matches(
633 struct fingerprint
*fingerprints_a
,
634 struct fingerprint
*fingerprints_b
,
637 int *second_best_result
,
639 const int max_search_distance_a
,
640 const struct line_number_mapping
*map_line_number_in_b_to_a
)
643 int i
, search_start
, search_end
, closest_local_line_a
, *similarity
,
644 best_similarity
= 0, second_best_similarity
= 0,
645 best_similarity_index
= 0, second_best_similarity_index
= 0;
647 /* certainty has already been calculated so no need to redo the work */
648 if (certainties
[local_line_b
] != CERTAINTY_NOT_CALCULATED
)
651 closest_local_line_a
= map_line_number(
652 local_line_b
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
654 search_start
= closest_local_line_a
- max_search_distance_a
;
655 if (search_start
< 0)
658 search_end
= closest_local_line_a
+ max_search_distance_a
+ 1;
659 if (search_end
> length_a
)
660 search_end
= length_a
;
662 for (i
= search_start
; i
< search_end
; ++i
) {
663 similarity
= get_similarity(similarities
,
665 closest_local_line_a
,
666 max_search_distance_a
);
667 if (*similarity
== -1) {
668 /* This value will never exceed 10 but assert just in
671 assert(abs(i
- closest_local_line_a
) < 1000);
672 /* scale the similarity by (1000 - distance from
673 * closest line) to act as a tie break between lines
674 * that otherwise are equally similar.
676 *similarity
= fingerprint_similarity(
677 fingerprints_b
+ local_line_b
,
678 fingerprints_a
+ i
) *
679 (1000 - abs(i
- closest_local_line_a
));
681 if (*similarity
> best_similarity
) {
682 second_best_similarity
= best_similarity
;
683 second_best_similarity_index
= best_similarity_index
;
684 best_similarity
= *similarity
;
685 best_similarity_index
= i
;
686 } else if (*similarity
> second_best_similarity
) {
687 second_best_similarity
= *similarity
;
688 second_best_similarity_index
= i
;
692 if (best_similarity
== 0) {
693 /* this line definitely doesn't match with anything. Mark it
694 * with this special value so it doesn't get invalidated and
695 * won't be recalculated.
697 certainties
[local_line_b
] = CERTAIN_NOTHING_MATCHES
;
698 result
[local_line_b
] = -1;
700 /* Calculate the certainty with which this line matches.
701 * If the line matches well with two lines then that reduces
702 * the certainty. However we still want to prioritise matching
703 * a line that matches very well with two lines over matching a
704 * line that matches poorly with one line, hence doubling
706 * This means that if we have
707 * line X that matches only one line with a score of 3,
708 * line Y that matches two lines equally with a score of 5,
709 * and line Z that matches only one line with a score or 2,
710 * then the lines in order of certainty are X, Y, Z.
712 certainties
[local_line_b
] = best_similarity
* 2 -
713 second_best_similarity
;
715 /* We keep both the best and second best results to allow us to
716 * check at a later stage of the matching process whether the
717 * result needs to be invalidated.
719 result
[local_line_b
] = start_a
+ best_similarity_index
;
720 second_best_result
[local_line_b
] =
721 start_a
+ second_best_similarity_index
;
726 * This finds the line that we can match with the most confidence, and
727 * uses it as a partition. It then calls itself on the lines on either side of
728 * that partition. In this way we avoid lines appearing out of order, and
729 * retain a sensible line ordering.
730 * \param start_a index of the first line in A with which lines in B may be
732 * \param start_b index of the first line in B for which matching should be
734 * \param length_a number of lines in A with which lines in B may be compared.
735 * \param length_b number of lines in B for which matching should be done.
736 * \param fingerprints_a mutable array of fingerprints in A. The first element
737 * corresponds to the line at start_a.
738 * \param fingerprints_b array of fingerprints in B. The first element
739 * corresponds to the line at start_b.
740 * \param similarities 2-dimensional array of similarities between lines in A
741 * and B. See get_similarity() for more details.
742 * \param certainties array of values indicating how strongly a line in B is
743 * matched with some line in A.
744 * \param second_best_result array of absolute indices in A for the second
745 * closest match of a line in B.
746 * \param result array of absolute indices in A for the closest match of a line
748 * \param max_search_distance_a maximum distance in lines from the closest line
749 * in A for other lines in A for which
750 * similarities may be calculated.
751 * \param max_search_distance_b an upper bound on the greatest possible
752 * distance between lines in B such that they will
753 * both be compared with the same line in A
754 * according to max_search_distance_a.
755 * \param map_line_number_in_b_to_a parameter to map_line_number().
757 static void fuzzy_find_matching_lines_recurse(
758 int start_a
, int start_b
,
759 int length_a
, int length_b
,
760 struct fingerprint
*fingerprints_a
,
761 struct fingerprint
*fingerprints_b
,
764 int *second_best_result
,
766 int max_search_distance_a
,
767 int max_search_distance_b
,
768 const struct line_number_mapping
*map_line_number_in_b_to_a
)
770 int i
, invalidate_min
, invalidate_max
, offset_b
,
771 second_half_start_a
, second_half_start_b
,
772 second_half_length_a
, second_half_length_b
,
773 most_certain_line_a
, most_certain_local_line_b
= -1,
774 most_certain_line_certainty
= -1,
775 closest_local_line_a
;
777 for (i
= 0; i
< length_b
; ++i
) {
778 find_best_line_matches(start_a
,
788 max_search_distance_a
,
789 map_line_number_in_b_to_a
);
791 if (certainties
[i
] > most_certain_line_certainty
) {
792 most_certain_line_certainty
= certainties
[i
];
793 most_certain_local_line_b
= i
;
798 if (most_certain_local_line_b
== -1)
801 most_certain_line_a
= result
[most_certain_local_line_b
];
804 * Subtract the most certain line's fingerprint in B from the matched
805 * fingerprint in A. This means that other lines in B can't also match
806 * the same parts of the line in A.
808 fingerprint_subtract(fingerprints_a
+ most_certain_line_a
- start_a
,
809 fingerprints_b
+ most_certain_local_line_b
);
811 /* Invalidate results that may be affected by the choice of most
814 invalidate_min
= most_certain_local_line_b
- max_search_distance_b
;
815 invalidate_max
= most_certain_local_line_b
+ max_search_distance_b
+ 1;
816 if (invalidate_min
< 0)
818 if (invalidate_max
> length_b
)
819 invalidate_max
= length_b
;
821 /* As the fingerprint in A has changed, discard previously calculated
822 * similarity values with that fingerprint.
824 for (i
= invalidate_min
; i
< invalidate_max
; ++i
) {
825 closest_local_line_a
= map_line_number(
826 i
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
828 /* Check that the lines in A and B are close enough that there
829 * is a similarity value for them.
831 if (abs(most_certain_line_a
- start_a
- closest_local_line_a
) >
832 max_search_distance_a
) {
836 *get_similarity(similarities
, most_certain_line_a
- start_a
,
837 i
, closest_local_line_a
,
838 max_search_distance_a
) = -1;
841 /* More invalidating of results that may be affected by the choice of
843 * Discard the matches for lines in B that are currently matched with a
844 * line in A such that their ordering contradicts the ordering imposed
845 * by the choice of most certain line.
847 for (i
= most_certain_local_line_b
- 1; i
>= invalidate_min
; --i
) {
848 /* In this loop we discard results for lines in B that are
849 * before most-certain-line-B but are matched with a line in A
850 * that is after most-certain-line-A.
852 if (certainties
[i
] >= 0 &&
853 (result
[i
] >= most_certain_line_a
||
854 second_best_result
[i
] >= most_certain_line_a
)) {
855 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
858 for (i
= most_certain_local_line_b
+ 1; i
< invalidate_max
; ++i
) {
859 /* In this loop we discard results for lines in B that are
860 * after most-certain-line-B but are matched with a line in A
861 * that is before most-certain-line-A.
863 if (certainties
[i
] >= 0 &&
864 (result
[i
] <= most_certain_line_a
||
865 second_best_result
[i
] <= most_certain_line_a
)) {
866 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
870 /* Repeat the matching process for lines before the most certain line.
872 if (most_certain_local_line_b
> 0) {
873 fuzzy_find_matching_lines_recurse(
875 most_certain_line_a
+ 1 - start_a
,
876 most_certain_local_line_b
,
877 fingerprints_a
, fingerprints_b
, similarities
,
878 certainties
, second_best_result
, result
,
879 max_search_distance_a
,
880 max_search_distance_b
,
881 map_line_number_in_b_to_a
);
883 /* Repeat the matching process for lines after the most certain line.
885 if (most_certain_local_line_b
+ 1 < length_b
) {
886 second_half_start_a
= most_certain_line_a
;
887 offset_b
= most_certain_local_line_b
+ 1;
888 second_half_start_b
= start_b
+ offset_b
;
889 second_half_length_a
=
890 length_a
+ start_a
- second_half_start_a
;
891 second_half_length_b
=
892 length_b
+ start_b
- second_half_start_b
;
893 fuzzy_find_matching_lines_recurse(
894 second_half_start_a
, second_half_start_b
,
895 second_half_length_a
, second_half_length_b
,
896 fingerprints_a
+ second_half_start_a
- start_a
,
897 fingerprints_b
+ offset_b
,
899 offset_b
* (max_search_distance_a
* 2 + 1),
900 certainties
+ offset_b
,
901 second_best_result
+ offset_b
, result
+ offset_b
,
902 max_search_distance_a
,
903 max_search_distance_b
,
904 map_line_number_in_b_to_a
);
908 /* Find the lines in the parent line range that most closely match the lines in
909 * the target line range. This is accomplished by matching fingerprints in each
910 * blame_origin, and choosing the best matches that preserve the line ordering.
911 * See struct fingerprint for details of fingerprint matching, and
912 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
914 * The performance is believed to be O(n log n) in the typical case and O(n^2)
915 * in a pathological case, where n is the number of lines in the target range.
917 static int *fuzzy_find_matching_lines(struct blame_origin
*parent
,
918 struct blame_origin
*target
,
919 int tlno
, int parent_slno
, int same
,
922 /* We use the terminology "A" for the left hand side of the diff AKA
923 * parent, and "B" for the right hand side of the diff AKA target. */
924 int start_a
= parent_slno
;
925 int length_a
= parent_len
;
927 int length_b
= same
- tlno
;
929 struct line_number_mapping map_line_number_in_b_to_a
= {
930 start_a
, length_a
, start_b
, length_b
933 struct fingerprint
*fingerprints_a
= parent
->fingerprints
;
934 struct fingerprint
*fingerprints_b
= target
->fingerprints
;
936 int i
, *result
, *second_best_result
,
937 *certainties
, *similarities
, similarity_count
;
940 * max_search_distance_a means that given a line in B, compare it to
941 * the line in A that is closest to its position, and the lines in A
942 * that are no greater than max_search_distance_a lines away from the
945 * max_search_distance_b is an upper bound on the greatest possible
946 * distance between lines in B such that they will both be compared
947 * with the same line in A according to max_search_distance_a.
949 int max_search_distance_a
= 10, max_search_distance_b
;
954 if (max_search_distance_a
>= length_a
)
955 max_search_distance_a
= length_a
? length_a
- 1 : 0;
957 max_search_distance_b
= ((2 * max_search_distance_a
+ 1) * length_b
960 CALLOC_ARRAY(result
, length_b
);
961 CALLOC_ARRAY(second_best_result
, length_b
);
962 CALLOC_ARRAY(certainties
, length_b
);
964 /* See get_similarity() for details of similarities. */
965 similarity_count
= length_b
* (max_search_distance_a
* 2 + 1);
966 CALLOC_ARRAY(similarities
, similarity_count
);
968 for (i
= 0; i
< length_b
; ++i
) {
970 second_best_result
[i
] = -1;
971 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
974 for (i
= 0; i
< similarity_count
; ++i
)
975 similarities
[i
] = -1;
977 fuzzy_find_matching_lines_recurse(start_a
, start_b
,
979 fingerprints_a
+ start_a
,
980 fingerprints_b
+ start_b
,
985 max_search_distance_a
,
986 max_search_distance_b
,
987 &map_line_number_in_b_to_a
);
991 free(second_best_result
);
996 static void fill_origin_fingerprints(struct blame_origin
*o
)
1000 if (o
->fingerprints
)
1002 o
->num_lines
= find_line_starts(&line_starts
, o
->file
.ptr
,
1004 CALLOC_ARRAY(o
->fingerprints
, o
->num_lines
);
1005 get_line_fingerprints(o
->fingerprints
, o
->file
.ptr
, line_starts
,
1010 static void drop_origin_fingerprints(struct blame_origin
*o
)
1012 if (o
->fingerprints
) {
1013 free_line_fingerprints(o
->fingerprints
, o
->num_lines
);
1015 FREE_AND_NULL(o
->fingerprints
);
1020 * Given an origin, prepare mmfile_t structure to be used by the
1023 static void fill_origin_blob(struct diff_options
*opt
,
1024 struct blame_origin
*o
, mmfile_t
*file
,
1025 int *num_read_blob
, int fill_fingerprints
)
1028 enum object_type type
;
1029 unsigned long file_size
;
1032 if (opt
->flags
.allow_textconv
&&
1033 textconv_object(opt
->repo
, o
->path
, o
->mode
,
1034 &o
->blob_oid
, 1, &file
->ptr
, &file_size
))
1037 file
->ptr
= repo_read_object_file(the_repository
,
1038 &o
->blob_oid
, &type
,
1040 file
->size
= file_size
;
1043 die("Cannot read blob %s for path %s",
1044 oid_to_hex(&o
->blob_oid
),
1050 if (fill_fingerprints
)
1051 fill_origin_fingerprints(o
);
1054 static void drop_origin_blob(struct blame_origin
*o
)
1056 FREE_AND_NULL(o
->file
.ptr
);
1057 drop_origin_fingerprints(o
);
1061 * Any merge of blames happens on lists of blames that arrived via
1062 * different parents in a single suspect. In this case, we want to
1063 * sort according to the suspect line numbers as opposed to the final
1064 * image line numbers. The function body is somewhat longish because
1065 * it avoids unnecessary writes.
1068 static struct blame_entry
*blame_merge(struct blame_entry
*list1
,
1069 struct blame_entry
*list2
)
1071 struct blame_entry
*p1
= list1
, *p2
= list2
,
1079 if (p1
->s_lno
<= p2
->s_lno
) {
1082 if (!(p1
= *tail
)) {
1086 } while (p1
->s_lno
<= p2
->s_lno
);
1092 if (!(p2
= *tail
)) {
1096 } while (p1
->s_lno
> p2
->s_lno
);
1100 if (!(p1
= *tail
)) {
1104 } while (p1
->s_lno
<= p2
->s_lno
);
1108 DEFINE_LIST_SORT(static, sort_blame_entries
, struct blame_entry
, next
);
1111 * Final image line numbers are all different, so we don't need a
1112 * three-way comparison here.
1115 static int compare_blame_final(const struct blame_entry
*e1
,
1116 const struct blame_entry
*e2
)
1118 return e1
->lno
> e2
->lno
? 1 : -1;
1121 static int compare_blame_suspect(const struct blame_entry
*s1
,
1122 const struct blame_entry
*s2
)
1125 * to allow for collating suspects, we sort according to the
1126 * respective pointer value as the primary sorting criterion.
1127 * The actual relation is pretty unimportant as long as it
1128 * establishes a total order. Comparing as integers gives us
1131 if (s1
->suspect
!= s2
->suspect
)
1132 return (intptr_t)s1
->suspect
> (intptr_t)s2
->suspect
? 1 : -1;
1133 if (s1
->s_lno
== s2
->s_lno
)
1135 return s1
->s_lno
> s2
->s_lno
? 1 : -1;
1138 void blame_sort_final(struct blame_scoreboard
*sb
)
1140 sort_blame_entries(&sb
->ent
, compare_blame_final
);
1143 static int compare_commits_by_reverse_commit_date(const void *a
,
1147 return -compare_commits_by_commit_date(a
, b
, c
);
1151 * For debugging -- origin is refcounted, and this asserts that
1152 * we do not underflow.
1154 static void sanity_check_refcnt(struct blame_scoreboard
*sb
)
1157 struct blame_entry
*ent
;
1159 for (ent
= sb
->ent
; ent
; ent
= ent
->next
) {
1160 /* Nobody should have zero or negative refcnt */
1161 if (ent
->suspect
->refcnt
<= 0) {
1162 fprintf(stderr
, "%s in %s has negative refcnt %d\n",
1164 oid_to_hex(&ent
->suspect
->commit
->object
.oid
),
1165 ent
->suspect
->refcnt
);
1170 sb
->on_sanity_fail(sb
, baa
);
1174 * If two blame entries that are next to each other came from
1175 * contiguous lines in the same origin (i.e. <commit, path> pair),
1176 * merge them together.
1178 void blame_coalesce(struct blame_scoreboard
*sb
)
1180 struct blame_entry
*ent
, *next
;
1182 for (ent
= sb
->ent
; ent
&& (next
= ent
->next
); ent
= next
) {
1183 if (ent
->suspect
== next
->suspect
&&
1184 ent
->s_lno
+ ent
->num_lines
== next
->s_lno
&&
1185 ent
->lno
+ ent
->num_lines
== next
->lno
&&
1186 ent
->ignored
== next
->ignored
&&
1187 ent
->unblamable
== next
->unblamable
) {
1188 ent
->num_lines
+= next
->num_lines
;
1189 ent
->next
= next
->next
;
1190 blame_origin_decref(next
->suspect
);
1193 next
= ent
; /* again */
1197 if (sb
->debug
) /* sanity */
1198 sanity_check_refcnt(sb
);
1202 * Merge the given sorted list of blames into a preexisting origin.
1203 * If there were no previous blames to that commit, it is entered into
1204 * the commit priority queue of the score board.
1207 static void queue_blames(struct blame_scoreboard
*sb
, struct blame_origin
*porigin
,
1208 struct blame_entry
*sorted
)
1210 if (porigin
->suspects
)
1211 porigin
->suspects
= blame_merge(porigin
->suspects
, sorted
);
1213 struct blame_origin
*o
;
1214 for (o
= get_blame_suspects(porigin
->commit
); o
; o
= o
->next
) {
1216 porigin
->suspects
= sorted
;
1220 porigin
->suspects
= sorted
;
1221 prio_queue_put(&sb
->commits
, porigin
->commit
);
1226 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1227 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1228 * for an origin is also used to pass the blame for the entire file to
1229 * the parent to detect the case where a child's blob is identical to
1230 * that of its parent's.
1232 * This also fills origin->mode for corresponding tree path.
1234 static int fill_blob_sha1_and_mode(struct repository
*r
,
1235 struct blame_origin
*origin
)
1237 if (!is_null_oid(&origin
->blob_oid
))
1239 if (get_tree_entry(r
, &origin
->commit
->object
.oid
, origin
->path
, &origin
->blob_oid
, &origin
->mode
))
1241 if (oid_object_info(r
, &origin
->blob_oid
, NULL
) != OBJ_BLOB
)
1245 oidclr(&origin
->blob_oid
);
1246 origin
->mode
= S_IFINVALID
;
1250 struct blame_bloom_data
{
1252 * Changed-path Bloom filter keys. These can help prevent
1253 * computing diffs against first parents, but we need to
1254 * expand the list as code is moved or files are renamed.
1256 struct bloom_filter_settings
*settings
;
1257 struct bloom_key
**keys
;
1262 static int bloom_count_queries
= 0;
1263 static int bloom_count_no
= 0;
1264 static int maybe_changed_path(struct repository
*r
,
1265 struct blame_origin
*origin
,
1266 struct blame_bloom_data
*bd
)
1269 struct bloom_filter
*filter
;
1274 if (commit_graph_generation(origin
->commit
) == GENERATION_NUMBER_INFINITY
)
1277 filter
= get_bloom_filter(r
, origin
->commit
);
1282 bloom_count_queries
++;
1283 for (i
= 0; i
< bd
->nr
; i
++) {
1284 if (bloom_filter_contains(filter
,
1294 static void add_bloom_key(struct blame_bloom_data
*bd
,
1300 if (bd
->nr
>= bd
->alloc
) {
1302 REALLOC_ARRAY(bd
->keys
, bd
->alloc
);
1305 bd
->keys
[bd
->nr
] = xmalloc(sizeof(struct bloom_key
));
1306 fill_bloom_key(path
, strlen(path
), bd
->keys
[bd
->nr
], bd
->settings
);
1311 * We have an origin -- check if the same path exists in the
1312 * parent and return an origin structure to represent it.
1314 static struct blame_origin
*find_origin(struct repository
*r
,
1315 struct commit
*parent
,
1316 struct blame_origin
*origin
,
1317 struct blame_bloom_data
*bd
)
1319 struct blame_origin
*porigin
;
1320 struct diff_options diff_opts
;
1321 const char *paths
[2];
1323 /* First check any existing origins */
1324 for (porigin
= get_blame_suspects(parent
); porigin
; porigin
= porigin
->next
)
1325 if (!strcmp(porigin
->path
, origin
->path
)) {
1327 * The same path between origin and its parent
1328 * without renaming -- the most common case.
1330 return blame_origin_incref (porigin
);
1333 /* See if the origin->path is different between parent
1334 * and origin first. Most of the time they are the
1335 * same and diff-tree is fairly efficient about this.
1337 repo_diff_setup(r
, &diff_opts
);
1338 diff_opts
.flags
.recursive
= 1;
1339 diff_opts
.detect_rename
= 0;
1340 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1341 paths
[0] = origin
->path
;
1344 parse_pathspec(&diff_opts
.pathspec
,
1345 PATHSPEC_ALL_MAGIC
& ~PATHSPEC_LITERAL
,
1346 PATHSPEC_LITERAL_PATH
, "", paths
);
1347 diff_setup_done(&diff_opts
);
1349 if (is_null_oid(&origin
->commit
->object
.oid
))
1350 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1352 int compute_diff
= 1;
1353 if (origin
->commit
->parents
&&
1354 oideq(&parent
->object
.oid
,
1355 &origin
->commit
->parents
->item
->object
.oid
))
1356 compute_diff
= maybe_changed_path(r
, origin
, bd
);
1359 diff_tree_oid(get_commit_tree_oid(parent
),
1360 get_commit_tree_oid(origin
->commit
),
1363 diffcore_std(&diff_opts
);
1365 if (!diff_queued_diff
.nr
) {
1366 /* The path is the same as parent */
1367 porigin
= get_origin(parent
, origin
->path
);
1368 oidcpy(&porigin
->blob_oid
, &origin
->blob_oid
);
1369 porigin
->mode
= origin
->mode
;
1372 * Since origin->path is a pathspec, if the parent
1373 * commit had it as a directory, we will see a whole
1374 * bunch of deletion of files in the directory that we
1375 * do not care about.
1378 struct diff_filepair
*p
= NULL
;
1379 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1381 p
= diff_queued_diff
.queue
[i
];
1382 name
= p
->one
->path
? p
->one
->path
: p
->two
->path
;
1383 if (!strcmp(name
, origin
->path
))
1387 die("internal error in blame::find_origin");
1388 switch (p
->status
) {
1390 die("internal error in blame::find_origin (%c)",
1393 porigin
= get_origin(parent
, origin
->path
);
1394 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1395 porigin
->mode
= p
->one
->mode
;
1399 /* Did not exist in parent, or type changed */
1403 diff_flush(&diff_opts
);
1408 * We have an origin -- find the path that corresponds to it in its
1409 * parent and return an origin structure to represent it.
1411 static struct blame_origin
*find_rename(struct repository
*r
,
1412 struct commit
*parent
,
1413 struct blame_origin
*origin
,
1414 struct blame_bloom_data
*bd
)
1416 struct blame_origin
*porigin
= NULL
;
1417 struct diff_options diff_opts
;
1420 repo_diff_setup(r
, &diff_opts
);
1421 diff_opts
.flags
.recursive
= 1;
1422 diff_opts
.detect_rename
= DIFF_DETECT_RENAME
;
1423 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1424 diff_opts
.single_follow
= origin
->path
;
1425 diff_setup_done(&diff_opts
);
1427 if (is_null_oid(&origin
->commit
->object
.oid
))
1428 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1430 diff_tree_oid(get_commit_tree_oid(parent
),
1431 get_commit_tree_oid(origin
->commit
),
1433 diffcore_std(&diff_opts
);
1435 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1436 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
1437 if ((p
->status
== 'R' || p
->status
== 'C') &&
1438 !strcmp(p
->two
->path
, origin
->path
)) {
1439 add_bloom_key(bd
, p
->one
->path
);
1440 porigin
= get_origin(parent
, p
->one
->path
);
1441 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1442 porigin
->mode
= p
->one
->mode
;
1446 diff_flush(&diff_opts
);
1451 * Append a new blame entry to a given output queue.
1453 static void add_blame_entry(struct blame_entry
***queue
,
1454 const struct blame_entry
*src
)
1456 struct blame_entry
*e
= xmalloc(sizeof(*e
));
1457 memcpy(e
, src
, sizeof(*e
));
1458 blame_origin_incref(e
->suspect
);
1466 * src typically is on-stack; we want to copy the information in it to
1467 * a malloced blame_entry that gets added to the given queue. The
1468 * origin of dst loses a refcnt.
1470 static void dup_entry(struct blame_entry
***queue
,
1471 struct blame_entry
*dst
, struct blame_entry
*src
)
1473 blame_origin_incref(src
->suspect
);
1474 blame_origin_decref(dst
->suspect
);
1475 memcpy(dst
, src
, sizeof(*src
));
1476 dst
->next
= **queue
;
1478 *queue
= &dst
->next
;
1481 const char *blame_nth_line(struct blame_scoreboard
*sb
, long lno
)
1483 return sb
->final_buf
+ sb
->lineno
[lno
];
1487 * It is known that lines between tlno to same came from parent, and e
1488 * has an overlap with that range. it also is known that parent's
1489 * line plno corresponds to e's line tlno.
1495 * <------------------>
1497 * Split e into potentially three parts; before this chunk, the chunk
1498 * to be blamed for the parent, and after that portion.
1500 static void split_overlap(struct blame_entry
*split
,
1501 struct blame_entry
*e
,
1502 int tlno
, int plno
, int same
,
1503 struct blame_origin
*parent
)
1507 memset(split
, 0, sizeof(struct blame_entry
[3]));
1509 for (i
= 0; i
< 3; i
++) {
1510 split
[i
].ignored
= e
->ignored
;
1511 split
[i
].unblamable
= e
->unblamable
;
1514 if (e
->s_lno
< tlno
) {
1515 /* there is a pre-chunk part not blamed on parent */
1516 split
[0].suspect
= blame_origin_incref(e
->suspect
);
1517 split
[0].lno
= e
->lno
;
1518 split
[0].s_lno
= e
->s_lno
;
1519 split
[0].num_lines
= tlno
- e
->s_lno
;
1520 split
[1].lno
= e
->lno
+ tlno
- e
->s_lno
;
1521 split
[1].s_lno
= plno
;
1524 split
[1].lno
= e
->lno
;
1525 split
[1].s_lno
= plno
+ (e
->s_lno
- tlno
);
1528 if (same
< e
->s_lno
+ e
->num_lines
) {
1529 /* there is a post-chunk part not blamed on parent */
1530 split
[2].suspect
= blame_origin_incref(e
->suspect
);
1531 split
[2].lno
= e
->lno
+ (same
- e
->s_lno
);
1532 split
[2].s_lno
= e
->s_lno
+ (same
- e
->s_lno
);
1533 split
[2].num_lines
= e
->s_lno
+ e
->num_lines
- same
;
1534 chunk_end_lno
= split
[2].lno
;
1537 chunk_end_lno
= e
->lno
+ e
->num_lines
;
1538 split
[1].num_lines
= chunk_end_lno
- split
[1].lno
;
1541 * if it turns out there is nothing to blame the parent for,
1542 * forget about the splitting. !split[1].suspect signals this.
1544 if (split
[1].num_lines
< 1)
1546 split
[1].suspect
= blame_origin_incref(parent
);
1550 * split_overlap() divided an existing blame e into up to three parts
1551 * in split. Any assigned blame is moved to queue to
1552 * reflect the split.
1554 static void split_blame(struct blame_entry
***blamed
,
1555 struct blame_entry
***unblamed
,
1556 struct blame_entry
*split
,
1557 struct blame_entry
*e
)
1559 if (split
[0].suspect
&& split
[2].suspect
) {
1560 /* The first part (reuse storage for the existing entry e) */
1561 dup_entry(unblamed
, e
, &split
[0]);
1563 /* The last part -- me */
1564 add_blame_entry(unblamed
, &split
[2]);
1566 /* ... and the middle part -- parent */
1567 add_blame_entry(blamed
, &split
[1]);
1569 else if (!split
[0].suspect
&& !split
[2].suspect
)
1571 * The parent covers the entire area; reuse storage for
1572 * e and replace it with the parent.
1574 dup_entry(blamed
, e
, &split
[1]);
1575 else if (split
[0].suspect
) {
1576 /* me and then parent */
1577 dup_entry(unblamed
, e
, &split
[0]);
1578 add_blame_entry(blamed
, &split
[1]);
1581 /* parent and then me */
1582 dup_entry(blamed
, e
, &split
[1]);
1583 add_blame_entry(unblamed
, &split
[2]);
1588 * After splitting the blame, the origins used by the
1589 * on-stack blame_entry should lose one refcnt each.
1591 static void decref_split(struct blame_entry
*split
)
1595 for (i
= 0; i
< 3; i
++)
1596 blame_origin_decref(split
[i
].suspect
);
1600 * reverse_blame reverses the list given in head, appending tail.
1601 * That allows us to build lists in reverse order, then reverse them
1602 * afterwards. This can be faster than building the list in proper
1603 * order right away. The reason is that building in proper order
1604 * requires writing a link in the _previous_ element, while building
1605 * in reverse order just requires placing the list head into the
1606 * _current_ element.
1609 static struct blame_entry
*reverse_blame(struct blame_entry
*head
,
1610 struct blame_entry
*tail
)
1613 struct blame_entry
*next
= head
->next
;
1622 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1623 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1624 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1625 * e->num_lines). The caller needs to sort out the reference counting for the
1626 * new entry's suspect.
1628 static struct blame_entry
*split_blame_at(struct blame_entry
*e
, int len
,
1629 struct blame_origin
*new_suspect
)
1631 struct blame_entry
*n
= xcalloc(1, sizeof(struct blame_entry
));
1633 n
->suspect
= new_suspect
;
1634 n
->ignored
= e
->ignored
;
1635 n
->unblamable
= e
->unblamable
;
1636 n
->lno
= e
->lno
+ len
;
1637 n
->s_lno
= e
->s_lno
+ len
;
1638 n
->num_lines
= e
->num_lines
- len
;
1644 struct blame_line_tracker
{
1649 static int are_lines_adjacent(struct blame_line_tracker
*first
,
1650 struct blame_line_tracker
*second
)
1652 return first
->is_parent
== second
->is_parent
&&
1653 first
->s_lno
+ 1 == second
->s_lno
;
1656 static int scan_parent_range(struct fingerprint
*p_fps
,
1657 struct fingerprint
*t_fps
, int t_idx
,
1658 int from
, int nr_lines
)
1661 #define FINGERPRINT_FILE_THRESHOLD 10
1662 int best_sim_val
= FINGERPRINT_FILE_THRESHOLD
;
1663 int best_sim_idx
= -1;
1665 for (p_idx
= from
; p_idx
< from
+ nr_lines
; p_idx
++) {
1666 sim
= fingerprint_similarity(&t_fps
[t_idx
], &p_fps
[p_idx
]);
1667 if (sim
< best_sim_val
)
1669 /* Break ties with the closest-to-target line number */
1670 if (sim
== best_sim_val
&& best_sim_idx
!= -1 &&
1671 abs(best_sim_idx
- t_idx
) < abs(p_idx
- t_idx
))
1674 best_sim_idx
= p_idx
;
1676 return best_sim_idx
;
1680 * The first pass checks the blame entry (from the target) against the parent's
1681 * diff chunk. If that fails for a line, the second pass tries to match that
1682 * line to any part of parent file. That catches cases where a change was
1683 * broken into two chunks by 'context.'
1685 static void guess_line_blames(struct blame_origin
*parent
,
1686 struct blame_origin
*target
,
1687 int tlno
, int offset
, int same
, int parent_len
,
1688 struct blame_line_tracker
*line_blames
)
1690 int i
, best_idx
, target_idx
;
1691 int parent_slno
= tlno
+ offset
;
1694 fuzzy_matches
= fuzzy_find_matching_lines(parent
, target
,
1695 tlno
, parent_slno
, same
,
1697 for (i
= 0; i
< same
- tlno
; i
++) {
1698 target_idx
= tlno
+ i
;
1699 if (fuzzy_matches
&& fuzzy_matches
[i
] >= 0) {
1700 best_idx
= fuzzy_matches
[i
];
1702 best_idx
= scan_parent_range(parent
->fingerprints
,
1703 target
->fingerprints
,
1707 if (best_idx
>= 0) {
1708 line_blames
[i
].is_parent
= 1;
1709 line_blames
[i
].s_lno
= best_idx
;
1711 line_blames
[i
].is_parent
= 0;
1712 line_blames
[i
].s_lno
= target_idx
;
1715 free(fuzzy_matches
);
1719 * This decides which parts of a blame entry go to the parent (added to the
1720 * ignoredp list) and which stay with the target (added to the diffp list). The
1721 * actual decision was made in a separate heuristic function, and those answers
1722 * for the lines in 'e' are in line_blames. This consumes e, essentially
1723 * putting it on a list.
1725 * Note that the blame entries on the ignoredp list are not necessarily sorted
1726 * with respect to the parent's line numbers yet.
1728 static void ignore_blame_entry(struct blame_entry
*e
,
1729 struct blame_origin
*parent
,
1730 struct blame_entry
**diffp
,
1731 struct blame_entry
**ignoredp
,
1732 struct blame_line_tracker
*line_blames
)
1734 int entry_len
, nr_lines
, i
;
1737 * We carve new entries off the front of e. Each entry comes from a
1738 * contiguous chunk of lines: adjacent lines from the same origin
1739 * (either the parent or the target).
1742 nr_lines
= e
->num_lines
; /* e changes in the loop */
1743 for (i
= 0; i
< nr_lines
; i
++) {
1744 struct blame_entry
*next
= NULL
;
1747 * We are often adjacent to the next line - only split the blame
1748 * entry when we have to.
1750 if (i
+ 1 < nr_lines
) {
1751 if (are_lines_adjacent(&line_blames
[i
],
1752 &line_blames
[i
+ 1])) {
1756 next
= split_blame_at(e
, entry_len
,
1757 blame_origin_incref(e
->suspect
));
1759 if (line_blames
[i
].is_parent
) {
1761 blame_origin_decref(e
->suspect
);
1762 e
->suspect
= blame_origin_incref(parent
);
1763 e
->s_lno
= line_blames
[i
- entry_len
+ 1].s_lno
;
1764 e
->next
= *ignoredp
;
1768 /* e->s_lno is already in the target's address space. */
1772 assert(e
->num_lines
== entry_len
);
1780 * Process one hunk from the patch between the current suspect for
1781 * blame_entry e and its parent. This first blames any unfinished
1782 * entries before the chunk (which is where target and parent start
1783 * differing) on the parent, and then splits blame entries at the
1784 * start and at the end of the difference region. Since use of -M and
1785 * -C options may lead to overlapping/duplicate source line number
1786 * ranges, all we can rely on from sorting/merging is the order of the
1787 * first suspect line number.
1789 * tlno: line number in the target where this chunk begins
1790 * same: line number in the target where this chunk ends
1791 * offset: add to tlno to get the chunk starting point in the parent
1792 * parent_len: number of lines in the parent chunk
1794 static void blame_chunk(struct blame_entry
***dstq
, struct blame_entry
***srcq
,
1795 int tlno
, int offset
, int same
, int parent_len
,
1796 struct blame_origin
*parent
,
1797 struct blame_origin
*target
, int ignore_diffs
)
1799 struct blame_entry
*e
= **srcq
;
1800 struct blame_entry
*samep
= NULL
, *diffp
= NULL
, *ignoredp
= NULL
;
1801 struct blame_line_tracker
*line_blames
= NULL
;
1803 while (e
&& e
->s_lno
< tlno
) {
1804 struct blame_entry
*next
= e
->next
;
1806 * current record starts before differing portion. If
1807 * it reaches into it, we need to split it up and
1808 * examine the second part separately.
1810 if (e
->s_lno
+ e
->num_lines
> tlno
) {
1811 /* Move second half to a new record */
1812 struct blame_entry
*n
;
1814 n
= split_blame_at(e
, tlno
- e
->s_lno
, e
->suspect
);
1815 /* Push new record to diffp */
1819 blame_origin_decref(e
->suspect
);
1820 /* Pass blame for everything before the differing
1821 * chunk to the parent */
1822 e
->suspect
= blame_origin_incref(parent
);
1829 * As we don't know how much of a common stretch after this
1830 * diff will occur, the currently blamed parts are all that we
1831 * can assign to the parent for now.
1835 **dstq
= reverse_blame(samep
, **dstq
);
1836 *dstq
= &samep
->next
;
1839 * Prepend the split off portions: everything after e starts
1840 * after the blameable portion.
1842 e
= reverse_blame(diffp
, e
);
1845 * Now retain records on the target while parts are different
1851 if (ignore_diffs
&& same
- tlno
> 0) {
1852 CALLOC_ARRAY(line_blames
, same
- tlno
);
1853 guess_line_blames(parent
, target
, tlno
, offset
, same
,
1854 parent_len
, line_blames
);
1857 while (e
&& e
->s_lno
< same
) {
1858 struct blame_entry
*next
= e
->next
;
1861 * If current record extends into sameness, need to split.
1863 if (e
->s_lno
+ e
->num_lines
> same
) {
1865 * Move second half to a new record to be
1866 * processed by later chunks
1868 struct blame_entry
*n
;
1870 n
= split_blame_at(e
, same
- e
->s_lno
,
1871 blame_origin_incref(e
->suspect
));
1872 /* Push new record to samep */
1877 ignore_blame_entry(e
, parent
, &diffp
, &ignoredp
,
1878 line_blames
+ e
->s_lno
- tlno
);
1888 * Note ignoredp is not sorted yet, and thus neither is dstq.
1889 * That list must be sorted before we queue_blames(). We defer
1890 * sorting until after all diff hunks are processed, so that
1891 * guess_line_blames() can pick *any* line in the parent. The
1892 * slight drawback is that we end up sorting all blame entries
1893 * passed to the parent, including those that are unrelated to
1894 * changes made by the ignored commit.
1896 **dstq
= reverse_blame(ignoredp
, **dstq
);
1897 *dstq
= &ignoredp
->next
;
1899 **srcq
= reverse_blame(diffp
, reverse_blame(samep
, e
));
1900 /* Move across elements that are in the unblamable portion */
1902 *srcq
= &diffp
->next
;
1905 struct blame_chunk_cb_data
{
1906 struct blame_origin
*parent
;
1907 struct blame_origin
*target
;
1910 struct blame_entry
**dstq
;
1911 struct blame_entry
**srcq
;
1914 /* diff chunks are from parent to target */
1915 static int blame_chunk_cb(long start_a
, long count_a
,
1916 long start_b
, long count_b
, void *data
)
1918 struct blame_chunk_cb_data
*d
= data
;
1919 if (start_a
- start_b
!= d
->offset
)
1920 die("internal error in blame::blame_chunk_cb");
1921 blame_chunk(&d
->dstq
, &d
->srcq
, start_b
, start_a
- start_b
,
1922 start_b
+ count_b
, count_a
, d
->parent
, d
->target
,
1924 d
->offset
= start_a
+ count_a
- (start_b
+ count_b
);
1929 * We are looking at the origin 'target' and aiming to pass blame
1930 * for the lines it is suspected to its parent. Run diff to find
1931 * which lines came from parent and pass blame for them.
1933 static void pass_blame_to_parent(struct blame_scoreboard
*sb
,
1934 struct blame_origin
*target
,
1935 struct blame_origin
*parent
, int ignore_diffs
)
1937 mmfile_t file_p
, file_o
;
1938 struct blame_chunk_cb_data d
;
1939 struct blame_entry
*newdest
= NULL
;
1941 if (!target
->suspects
)
1942 return; /* nothing remains for this target */
1947 d
.ignore_diffs
= ignore_diffs
;
1948 d
.dstq
= &newdest
; d
.srcq
= &target
->suspects
;
1950 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
1951 &sb
->num_read_blob
, ignore_diffs
);
1952 fill_origin_blob(&sb
->revs
->diffopt
, target
, &file_o
,
1953 &sb
->num_read_blob
, ignore_diffs
);
1954 sb
->num_get_patch
++;
1956 if (diff_hunks(&file_p
, &file_o
, blame_chunk_cb
, &d
, sb
->xdl_opts
))
1957 die("unable to generate diff (%s -> %s)",
1958 oid_to_hex(&parent
->commit
->object
.oid
),
1959 oid_to_hex(&target
->commit
->object
.oid
));
1960 /* The rest are the same as the parent */
1961 blame_chunk(&d
.dstq
, &d
.srcq
, INT_MAX
, d
.offset
, INT_MAX
, 0,
1965 sort_blame_entries(&newdest
, compare_blame_suspect
);
1966 queue_blames(sb
, parent
, newdest
);
1972 * The lines in blame_entry after splitting blames many times can become
1973 * very small and trivial, and at some point it becomes pointless to
1974 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1975 * ordinary C program, and it is not worth to say it was copied from
1976 * totally unrelated file in the parent.
1978 * Compute how trivial the lines in the blame_entry are.
1980 unsigned blame_entry_score(struct blame_scoreboard
*sb
, struct blame_entry
*e
)
1983 const char *cp
, *ep
;
1989 cp
= blame_nth_line(sb
, e
->lno
);
1990 ep
= blame_nth_line(sb
, e
->lno
+ e
->num_lines
);
1992 unsigned ch
= *((unsigned char *)cp
);
2002 * best_so_far[] and potential[] are both a split of an existing blame_entry
2003 * that passes blame to the parent. Maintain best_so_far the best split so
2004 * far, by comparing potential and best_so_far and copying potential into
2005 * bst_so_far as needed.
2007 static void copy_split_if_better(struct blame_scoreboard
*sb
,
2008 struct blame_entry
*best_so_far
,
2009 struct blame_entry
*potential
)
2013 if (!potential
[1].suspect
)
2015 if (best_so_far
[1].suspect
) {
2016 if (blame_entry_score(sb
, &potential
[1]) <
2017 blame_entry_score(sb
, &best_so_far
[1]))
2021 for (i
= 0; i
< 3; i
++)
2022 blame_origin_incref(potential
[i
].suspect
);
2023 decref_split(best_so_far
);
2024 memcpy(best_so_far
, potential
, sizeof(struct blame_entry
[3]));
2028 * We are looking at a part of the final image represented by
2029 * ent (tlno and same are offset by ent->s_lno).
2030 * tlno is where we are looking at in the final image.
2031 * up to (but not including) same match preimage.
2032 * plno is where we are looking at in the preimage.
2034 * <-------------- final image ---------------------->
2037 * <---------preimage----->
2040 * All line numbers are 0-based.
2042 static void handle_split(struct blame_scoreboard
*sb
,
2043 struct blame_entry
*ent
,
2044 int tlno
, int plno
, int same
,
2045 struct blame_origin
*parent
,
2046 struct blame_entry
*split
)
2048 if (ent
->num_lines
<= tlno
)
2051 struct blame_entry potential
[3];
2054 split_overlap(potential
, ent
, tlno
, plno
, same
, parent
);
2055 copy_split_if_better(sb
, split
, potential
);
2056 decref_split(potential
);
2060 struct handle_split_cb_data
{
2061 struct blame_scoreboard
*sb
;
2062 struct blame_entry
*ent
;
2063 struct blame_origin
*parent
;
2064 struct blame_entry
*split
;
2069 static int handle_split_cb(long start_a
, long count_a
,
2070 long start_b
, long count_b
, void *data
)
2072 struct handle_split_cb_data
*d
= data
;
2073 handle_split(d
->sb
, d
->ent
, d
->tlno
, d
->plno
, start_b
, d
->parent
,
2075 d
->plno
= start_a
+ count_a
;
2076 d
->tlno
= start_b
+ count_b
;
2081 * Find the lines from parent that are the same as ent so that
2082 * we can pass blames to it. file_p has the blob contents for
2085 static void find_copy_in_blob(struct blame_scoreboard
*sb
,
2086 struct blame_entry
*ent
,
2087 struct blame_origin
*parent
,
2088 struct blame_entry
*split
,
2093 struct handle_split_cb_data d
;
2095 memset(&d
, 0, sizeof(d
));
2096 d
.sb
= sb
; d
.ent
= ent
; d
.parent
= parent
; d
.split
= split
;
2098 * Prepare mmfile that contains only the lines in ent.
2100 cp
= blame_nth_line(sb
, ent
->lno
);
2101 file_o
.ptr
= (char *) cp
;
2102 file_o
.size
= blame_nth_line(sb
, ent
->lno
+ ent
->num_lines
) - cp
;
2105 * file_o is a part of final image we are annotating.
2106 * file_p partially may match that image.
2108 memset(split
, 0, sizeof(struct blame_entry
[3]));
2109 if (diff_hunks(file_p
, &file_o
, handle_split_cb
, &d
, sb
->xdl_opts
))
2110 die("unable to generate diff (%s)",
2111 oid_to_hex(&parent
->commit
->object
.oid
));
2112 /* remainder, if any, all match the preimage */
2113 handle_split(sb
, ent
, d
.tlno
, d
.plno
, ent
->num_lines
, parent
, split
);
2116 /* Move all blame entries from list *source that have a score smaller
2117 * than score_min to the front of list *small.
2118 * Returns a pointer to the link pointing to the old head of the small list.
2121 static struct blame_entry
**filter_small(struct blame_scoreboard
*sb
,
2122 struct blame_entry
**small
,
2123 struct blame_entry
**source
,
2126 struct blame_entry
*p
= *source
;
2127 struct blame_entry
*oldsmall
= *small
;
2129 if (blame_entry_score(sb
, p
) <= score_min
) {
2145 * See if lines currently target is suspected for can be attributed to
2148 static void find_move_in_parent(struct blame_scoreboard
*sb
,
2149 struct blame_entry
***blamed
,
2150 struct blame_entry
**toosmall
,
2151 struct blame_origin
*target
,
2152 struct blame_origin
*parent
)
2154 struct blame_entry
*e
, split
[3];
2155 struct blame_entry
*unblamed
= target
->suspects
;
2156 struct blame_entry
*leftover
= NULL
;
2160 return; /* nothing remains for this target */
2162 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
2163 &sb
->num_read_blob
, 0);
2167 /* At each iteration, unblamed has a NULL-terminated list of
2168 * entries that have not yet been tested for blame. leftover
2169 * contains the reversed list of entries that have been tested
2170 * without being assignable to the parent.
2173 struct blame_entry
**unblamedtail
= &unblamed
;
2174 struct blame_entry
*next
;
2175 for (e
= unblamed
; e
; e
= next
) {
2177 find_copy_in_blob(sb
, e
, parent
, split
, &file_p
);
2178 if (split
[1].suspect
&&
2179 sb
->move_score
< blame_entry_score(sb
, &split
[1])) {
2180 split_blame(blamed
, &unblamedtail
, split
, e
);
2185 decref_split(split
);
2187 *unblamedtail
= NULL
;
2188 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->move_score
);
2190 target
->suspects
= reverse_blame(leftover
, NULL
);
2194 struct blame_entry
*ent
;
2195 struct blame_entry split
[3];
2199 * Count the number of entries the target is suspected for,
2200 * and prepare a list of entry and the best split.
2202 static struct blame_list
*setup_blame_list(struct blame_entry
*unblamed
,
2205 struct blame_entry
*e
;
2207 struct blame_list
*blame_list
= NULL
;
2209 for (e
= unblamed
, num_ents
= 0; e
; e
= e
->next
)
2212 CALLOC_ARRAY(blame_list
, num_ents
);
2213 for (e
= unblamed
, i
= 0; e
; e
= e
->next
)
2214 blame_list
[i
++].ent
= e
;
2216 *num_ents_p
= num_ents
;
2221 * For lines target is suspected for, see if we can find code movement
2222 * across file boundary from the parent commit. porigin is the path
2223 * in the parent we already tried.
2225 static void find_copy_in_parent(struct blame_scoreboard
*sb
,
2226 struct blame_entry
***blamed
,
2227 struct blame_entry
**toosmall
,
2228 struct blame_origin
*target
,
2229 struct commit
*parent
,
2230 struct blame_origin
*porigin
,
2233 struct diff_options diff_opts
;
2235 struct blame_list
*blame_list
;
2237 struct blame_entry
*unblamed
= target
->suspects
;
2238 struct blame_entry
*leftover
= NULL
;
2241 return; /* nothing remains for this target */
2243 repo_diff_setup(sb
->repo
, &diff_opts
);
2244 diff_opts
.flags
.recursive
= 1;
2245 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
2247 diff_setup_done(&diff_opts
);
2249 /* Try "find copies harder" on new path if requested;
2250 * we do not want to use diffcore_rename() actually to
2251 * match things up; find_copies_harder is set only to
2252 * force diff_tree_oid() to feed all filepairs to diff_queue,
2253 * and this code needs to be after diff_setup_done(), which
2254 * usually makes find-copies-harder imply copy detection.
2256 if ((opt
& PICKAXE_BLAME_COPY_HARDEST
)
2257 || ((opt
& PICKAXE_BLAME_COPY_HARDER
)
2258 && (!porigin
|| strcmp(target
->path
, porigin
->path
))))
2259 diff_opts
.flags
.find_copies_harder
= 1;
2261 if (is_null_oid(&target
->commit
->object
.oid
))
2262 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
2264 diff_tree_oid(get_commit_tree_oid(parent
),
2265 get_commit_tree_oid(target
->commit
),
2268 if (!diff_opts
.flags
.find_copies_harder
)
2269 diffcore_std(&diff_opts
);
2272 struct blame_entry
**unblamedtail
= &unblamed
;
2273 blame_list
= setup_blame_list(unblamed
, &num_ents
);
2275 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
2276 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
2277 struct blame_origin
*norigin
;
2279 struct blame_entry potential
[3];
2281 if (!DIFF_FILE_VALID(p
->one
))
2282 continue; /* does not exist in parent */
2283 if (S_ISGITLINK(p
->one
->mode
))
2284 continue; /* ignore git links */
2285 if (porigin
&& !strcmp(p
->one
->path
, porigin
->path
))
2286 /* find_move already dealt with this path */
2289 norigin
= get_origin(parent
, p
->one
->path
);
2290 oidcpy(&norigin
->blob_oid
, &p
->one
->oid
);
2291 norigin
->mode
= p
->one
->mode
;
2292 fill_origin_blob(&sb
->revs
->diffopt
, norigin
, &file_p
,
2293 &sb
->num_read_blob
, 0);
2297 for (j
= 0; j
< num_ents
; j
++) {
2298 find_copy_in_blob(sb
, blame_list
[j
].ent
,
2299 norigin
, potential
, &file_p
);
2300 copy_split_if_better(sb
, blame_list
[j
].split
,
2302 decref_split(potential
);
2304 blame_origin_decref(norigin
);
2307 for (j
= 0; j
< num_ents
; j
++) {
2308 struct blame_entry
*split
= blame_list
[j
].split
;
2309 if (split
[1].suspect
&&
2310 sb
->copy_score
< blame_entry_score(sb
, &split
[1])) {
2311 split_blame(blamed
, &unblamedtail
, split
,
2314 blame_list
[j
].ent
->next
= leftover
;
2315 leftover
= blame_list
[j
].ent
;
2317 decref_split(split
);
2320 *unblamedtail
= NULL
;
2321 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->copy_score
);
2323 target
->suspects
= reverse_blame(leftover
, NULL
);
2324 diff_flush(&diff_opts
);
2328 * The blobs of origin and porigin exactly match, so everything
2329 * origin is suspected for can be blamed on the parent.
2331 static void pass_whole_blame(struct blame_scoreboard
*sb
,
2332 struct blame_origin
*origin
, struct blame_origin
*porigin
)
2334 struct blame_entry
*e
, *suspects
;
2336 if (!porigin
->file
.ptr
&& origin
->file
.ptr
) {
2337 /* Steal its file */
2338 porigin
->file
= origin
->file
;
2339 origin
->file
.ptr
= NULL
;
2341 suspects
= origin
->suspects
;
2342 origin
->suspects
= NULL
;
2343 for (e
= suspects
; e
; e
= e
->next
) {
2344 blame_origin_incref(porigin
);
2345 blame_origin_decref(e
->suspect
);
2346 e
->suspect
= porigin
;
2348 queue_blames(sb
, porigin
, suspects
);
2352 * We pass blame from the current commit to its parents. We keep saying
2353 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2354 * exonerate ourselves.
2356 static struct commit_list
*first_scapegoat(struct rev_info
*revs
, struct commit
*commit
,
2360 if (revs
->first_parent_only
&&
2362 commit
->parents
->next
) {
2363 free_commit_list(commit
->parents
->next
);
2364 commit
->parents
->next
= NULL
;
2366 return commit
->parents
;
2368 return lookup_decoration(&revs
->children
, &commit
->object
);
2371 static int num_scapegoats(struct rev_info
*revs
, struct commit
*commit
, int reverse
)
2373 struct commit_list
*l
= first_scapegoat(revs
, commit
, reverse
);
2374 return commit_list_count(l
);
2377 /* Distribute collected unsorted blames to the respected sorted lists
2378 * in the various origins.
2380 static void distribute_blame(struct blame_scoreboard
*sb
, struct blame_entry
*blamed
)
2382 sort_blame_entries(&blamed
, compare_blame_suspect
);
2385 struct blame_origin
*porigin
= blamed
->suspect
;
2386 struct blame_entry
*suspects
= NULL
;
2388 struct blame_entry
*next
= blamed
->next
;
2389 blamed
->next
= suspects
;
2392 } while (blamed
&& blamed
->suspect
== porigin
);
2393 suspects
= reverse_blame(suspects
, NULL
);
2394 queue_blames(sb
, porigin
, suspects
);
2400 typedef struct blame_origin
*(*blame_find_alg
)(struct repository
*,
2402 struct blame_origin
*,
2403 struct blame_bloom_data
*);
2405 static void pass_blame(struct blame_scoreboard
*sb
, struct blame_origin
*origin
, int opt
)
2407 struct rev_info
*revs
= sb
->revs
;
2408 int i
, pass
, num_sg
;
2409 struct commit
*commit
= origin
->commit
;
2410 struct commit_list
*sg
;
2411 struct blame_origin
*sg_buf
[MAXSG
];
2412 struct blame_origin
*porigin
, **sg_origin
= sg_buf
;
2413 struct blame_entry
*toosmall
= NULL
;
2414 struct blame_entry
*blames
, **blametail
= &blames
;
2416 num_sg
= num_scapegoats(revs
, commit
, sb
->reverse
);
2419 else if (num_sg
< ARRAY_SIZE(sg_buf
))
2420 memset(sg_buf
, 0, sizeof(sg_buf
));
2422 CALLOC_ARRAY(sg_origin
, num_sg
);
2425 * The first pass looks for unrenamed path to optimize for
2426 * common cases, then we look for renames in the second pass.
2428 for (pass
= 0; pass
< 2 - sb
->no_whole_file_rename
; pass
++) {
2429 blame_find_alg find
= pass
? find_rename
: find_origin
;
2431 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2433 sg
= sg
->next
, i
++) {
2434 struct commit
*p
= sg
->item
;
2439 if (repo_parse_commit(the_repository
, p
))
2441 porigin
= find(sb
->repo
, p
, origin
, sb
->bloom_data
);
2444 if (oideq(&porigin
->blob_oid
, &origin
->blob_oid
)) {
2445 pass_whole_blame(sb
, origin
, porigin
);
2446 blame_origin_decref(porigin
);
2449 for (j
= same
= 0; j
< i
; j
++)
2451 oideq(&sg_origin
[j
]->blob_oid
, &porigin
->blob_oid
)) {
2456 sg_origin
[i
] = porigin
;
2458 blame_origin_decref(porigin
);
2463 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2465 sg
= sg
->next
, i
++) {
2466 struct blame_origin
*porigin
= sg_origin
[i
];
2469 if (!origin
->previous
) {
2470 blame_origin_incref(porigin
);
2471 origin
->previous
= porigin
;
2473 pass_blame_to_parent(sb
, origin
, porigin
, 0);
2474 if (!origin
->suspects
)
2479 * Pass remaining suspects for ignored commits to their parents.
2481 if (oidset_contains(&sb
->ignore_list
, &commit
->object
.oid
)) {
2482 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2484 sg
= sg
->next
, i
++) {
2485 struct blame_origin
*porigin
= sg_origin
[i
];
2489 pass_blame_to_parent(sb
, origin
, porigin
, 1);
2491 * Preemptively drop porigin so we can refresh the
2492 * fingerprints if we use the parent again, which can
2493 * occur if you ignore back-to-back commits.
2495 drop_origin_blob(porigin
);
2496 if (!origin
->suspects
)
2502 * Optionally find moves in parents' files.
2504 if (opt
& PICKAXE_BLAME_MOVE
) {
2505 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->move_score
);
2506 if (origin
->suspects
) {
2507 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2509 sg
= sg
->next
, i
++) {
2510 struct blame_origin
*porigin
= sg_origin
[i
];
2513 find_move_in_parent(sb
, &blametail
, &toosmall
, origin
, porigin
);
2514 if (!origin
->suspects
)
2521 * Optionally find copies from parents' files.
2523 if (opt
& PICKAXE_BLAME_COPY
) {
2524 if (sb
->copy_score
> sb
->move_score
)
2525 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2526 else if (sb
->copy_score
< sb
->move_score
) {
2527 origin
->suspects
= blame_merge(origin
->suspects
, toosmall
);
2529 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2531 if (!origin
->suspects
)
2534 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2536 sg
= sg
->next
, i
++) {
2537 struct blame_origin
*porigin
= sg_origin
[i
];
2538 find_copy_in_parent(sb
, &blametail
, &toosmall
,
2539 origin
, sg
->item
, porigin
, opt
);
2540 if (!origin
->suspects
)
2547 distribute_blame(sb
, blames
);
2549 * prepend toosmall to origin->suspects
2551 * There is no point in sorting: this ends up on a big
2552 * unsorted list in the caller anyway.
2555 struct blame_entry
**tail
= &toosmall
;
2557 tail
= &(*tail
)->next
;
2558 *tail
= origin
->suspects
;
2559 origin
->suspects
= toosmall
;
2561 for (i
= 0; i
< num_sg
; i
++) {
2563 if (!sg_origin
[i
]->suspects
)
2564 drop_origin_blob(sg_origin
[i
]);
2565 blame_origin_decref(sg_origin
[i
]);
2568 drop_origin_blob(origin
);
2569 if (sg_buf
!= sg_origin
)
2574 * The main loop -- while we have blobs with lines whose true origin
2575 * is still unknown, pick one blob, and allow its lines to pass blames
2576 * to its parents. */
2577 void assign_blame(struct blame_scoreboard
*sb
, int opt
)
2579 struct rev_info
*revs
= sb
->revs
;
2580 struct commit
*commit
= prio_queue_get(&sb
->commits
);
2583 struct blame_entry
*ent
;
2584 struct blame_origin
*suspect
= get_blame_suspects(commit
);
2586 /* find one suspect to break down */
2587 while (suspect
&& !suspect
->suspects
)
2588 suspect
= suspect
->next
;
2591 commit
= prio_queue_get(&sb
->commits
);
2595 assert(commit
== suspect
->commit
);
2598 * We will use this suspect later in the loop,
2599 * so hold onto it in the meantime.
2601 blame_origin_incref(suspect
);
2602 repo_parse_commit(the_repository
, commit
);
2604 (!(commit
->object
.flags
& UNINTERESTING
) &&
2605 !(revs
->max_age
!= -1 && commit
->date
< revs
->max_age
)))
2606 pass_blame(sb
, suspect
, opt
);
2608 commit
->object
.flags
|= UNINTERESTING
;
2609 if (commit
->object
.parsed
)
2610 mark_parents_uninteresting(sb
->revs
, commit
);
2612 /* treat root commit as boundary */
2613 if (!commit
->parents
&& !sb
->show_root
)
2614 commit
->object
.flags
|= UNINTERESTING
;
2616 /* Take responsibility for the remaining entries */
2617 ent
= suspect
->suspects
;
2619 suspect
->guilty
= 1;
2621 struct blame_entry
*next
= ent
->next
;
2622 if (sb
->found_guilty_entry
)
2623 sb
->found_guilty_entry(ent
, sb
->found_guilty_entry_data
);
2628 ent
->next
= sb
->ent
;
2629 sb
->ent
= suspect
->suspects
;
2630 suspect
->suspects
= NULL
;
2634 blame_origin_decref(suspect
);
2636 if (sb
->debug
) /* sanity */
2637 sanity_check_refcnt(sb
);
2642 * To allow quick access to the contents of nth line in the
2643 * final image, prepare an index in the scoreboard.
2645 static int prepare_lines(struct blame_scoreboard
*sb
)
2647 sb
->num_lines
= find_line_starts(&sb
->lineno
, sb
->final_buf
,
2648 sb
->final_buf_size
);
2649 return sb
->num_lines
;
2652 static struct commit
*find_single_final(struct rev_info
*revs
,
2653 const char **name_p
)
2656 struct commit
*found
= NULL
;
2657 const char *name
= NULL
;
2659 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2660 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2661 if (obj
->flags
& UNINTERESTING
)
2663 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2664 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2665 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2667 die("More than one commit to dig from %s and %s?",
2668 revs
->pending
.objects
[i
].name
, name
);
2669 found
= (struct commit
*)obj
;
2670 name
= revs
->pending
.objects
[i
].name
;
2673 *name_p
= xstrdup_or_null(name
);
2677 static struct commit
*dwim_reverse_initial(struct rev_info
*revs
,
2678 const char **name_p
)
2681 * DWIM "git blame --reverse ONE -- PATH" as
2682 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2683 * when it makes sense.
2686 struct commit
*head_commit
;
2687 struct object_id head_oid
;
2689 if (revs
->pending
.nr
!= 1)
2692 /* Is that sole rev a committish? */
2693 obj
= revs
->pending
.objects
[0].item
;
2694 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2695 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2698 /* Do we have HEAD? */
2699 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
2701 head_commit
= lookup_commit_reference_gently(revs
->repo
,
2706 /* Turn "ONE" into "ONE..HEAD" then */
2707 obj
->flags
|= UNINTERESTING
;
2708 add_pending_object(revs
, &head_commit
->object
, "HEAD");
2711 *name_p
= revs
->pending
.objects
[0].name
;
2712 return (struct commit
*)obj
;
2715 static struct commit
*find_single_initial(struct rev_info
*revs
,
2716 const char **name_p
)
2719 struct commit
*found
= NULL
;
2720 const char *name
= NULL
;
2723 * There must be one and only one negative commit, and it must be
2726 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2727 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2728 if (!(obj
->flags
& UNINTERESTING
))
2730 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2731 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2732 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2734 die("More than one commit to dig up from, %s and %s?",
2735 revs
->pending
.objects
[i
].name
, name
);
2736 found
= (struct commit
*) obj
;
2737 name
= revs
->pending
.objects
[i
].name
;
2741 found
= dwim_reverse_initial(revs
, &name
);
2743 die("No commit to dig up from?");
2746 *name_p
= xstrdup(name
);
2750 void init_scoreboard(struct blame_scoreboard
*sb
)
2752 memset(sb
, 0, sizeof(struct blame_scoreboard
));
2753 sb
->move_score
= BLAME_DEFAULT_MOVE_SCORE
;
2754 sb
->copy_score
= BLAME_DEFAULT_COPY_SCORE
;
2757 void setup_scoreboard(struct blame_scoreboard
*sb
,
2758 struct blame_origin
**orig
)
2760 const char *final_commit_name
= NULL
;
2761 struct blame_origin
*o
;
2762 struct commit
*final_commit
= NULL
;
2763 enum object_type type
;
2765 init_blame_suspects(&blame_suspects
);
2767 if (sb
->reverse
&& sb
->contents_from
)
2768 die(_("--contents and --reverse do not blend well."));
2771 BUG("repo is NULL");
2774 sb
->final
= find_single_final(sb
->revs
, &final_commit_name
);
2775 sb
->commits
.compare
= compare_commits_by_commit_date
;
2777 sb
->final
= find_single_initial(sb
->revs
, &final_commit_name
);
2778 sb
->commits
.compare
= compare_commits_by_reverse_commit_date
;
2781 if (sb
->reverse
&& sb
->revs
->first_parent_only
)
2782 sb
->revs
->children
.name
= NULL
;
2784 if (sb
->contents_from
|| !sb
->final
) {
2785 struct object_id head_oid
, *parent_oid
;
2788 * Build a fake commit at the top of the history, when
2789 * (1) "git blame [^A] --path", i.e. with no positive end
2790 * of the history range, in which case we build such
2791 * a fake commit on top of the HEAD to blame in-tree
2793 * (2) "git blame --contents=file [A] -- path", with or
2794 * without positive end of the history range but with
2795 * --contents, in which case we pretend that there is
2796 * a fake commit on top of the positive end (defaulting to
2797 * HEAD) that has the given contents in the path.
2800 parent_oid
= &sb
->final
->object
.oid
;
2802 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
2803 die("no such ref: HEAD");
2804 parent_oid
= &head_oid
;
2808 sb
->final
= fake_working_tree_commit(sb
->repo
,
2810 sb
->path
, sb
->contents_from
,
2812 add_pending_object(sb
->revs
, &(sb
->final
->object
), ":");
2815 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2816 final_commit
= find_single_final(sb
->revs
, NULL
);
2818 die(_("--reverse and --first-parent together require specified latest commit"));
2822 * If we have bottom, this will mark the ancestors of the
2823 * bottom commits we would reach while traversing as
2826 if (prepare_revision_walk(sb
->revs
))
2827 die(_("revision walk setup failed"));
2829 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2830 struct commit
*c
= final_commit
;
2832 sb
->revs
->children
.name
= "children";
2833 while (c
->parents
&&
2834 !oideq(&c
->object
.oid
, &sb
->final
->object
.oid
)) {
2835 struct commit_list
*l
= xcalloc(1, sizeof(*l
));
2838 if (add_decoration(&sb
->revs
->children
,
2839 &c
->parents
->item
->object
, l
))
2840 BUG("not unique item in first-parent chain");
2841 c
= c
->parents
->item
;
2844 if (!oideq(&c
->object
.oid
, &sb
->final
->object
.oid
))
2845 die(_("--reverse --first-parent together require range along first-parent chain"));
2848 if (is_null_oid(&sb
->final
->object
.oid
)) {
2849 o
= get_blame_suspects(sb
->final
);
2850 sb
->final_buf
= xmemdupz(o
->file
.ptr
, o
->file
.size
);
2851 sb
->final_buf_size
= o
->file
.size
;
2854 o
= get_origin(sb
->final
, sb
->path
);
2855 if (fill_blob_sha1_and_mode(sb
->repo
, o
))
2856 die(_("no such path %s in %s"), sb
->path
, final_commit_name
);
2858 if (sb
->revs
->diffopt
.flags
.allow_textconv
&&
2859 textconv_object(sb
->repo
, sb
->path
, o
->mode
, &o
->blob_oid
, 1, (char **) &sb
->final_buf
,
2860 &sb
->final_buf_size
))
2863 sb
->final_buf
= repo_read_object_file(the_repository
,
2866 &sb
->final_buf_size
);
2869 die(_("cannot read blob %s for path %s"),
2870 oid_to_hex(&o
->blob_oid
),
2873 sb
->num_read_blob
++;
2879 free((char *)final_commit_name
);
2884 struct blame_entry
*blame_entry_prepend(struct blame_entry
*head
,
2885 long start
, long end
,
2886 struct blame_origin
*o
)
2888 struct blame_entry
*new_head
= xcalloc(1, sizeof(struct blame_entry
));
2889 new_head
->lno
= start
;
2890 new_head
->num_lines
= end
- start
;
2891 new_head
->suspect
= o
;
2892 new_head
->s_lno
= start
;
2893 new_head
->next
= head
;
2894 blame_origin_incref(o
);
2898 void setup_blame_bloom_data(struct blame_scoreboard
*sb
)
2900 struct blame_bloom_data
*bd
;
2901 struct bloom_filter_settings
*bs
;
2903 if (!sb
->repo
->objects
->commit_graph
)
2906 bs
= get_bloom_filter_settings(sb
->repo
);
2910 bd
= xmalloc(sizeof(struct blame_bloom_data
));
2916 ALLOC_ARRAY(bd
->keys
, bd
->alloc
);
2918 add_bloom_key(bd
, sb
->path
);
2920 sb
->bloom_data
= bd
;
2923 void cleanup_scoreboard(struct blame_scoreboard
*sb
)
2925 if (sb
->bloom_data
) {
2927 for (i
= 0; i
< sb
->bloom_data
->nr
; i
++) {
2928 free(sb
->bloom_data
->keys
[i
]->hashes
);
2929 free(sb
->bloom_data
->keys
[i
]);
2931 free(sb
->bloom_data
->keys
);
2932 FREE_AND_NULL(sb
->bloom_data
);
2934 trace2_data_intmax("blame", sb
->repo
,
2935 "bloom/queries", bloom_count_queries
);
2936 trace2_data_intmax("blame", sb
->repo
,
2937 "bloom/response-no", bloom_count_no
);