5 #include "environment.h"
7 #include "parse-options.h"
8 #include "fsmonitor-ll.h"
9 #include "fsmonitor-ipc.h"
10 #include "fsmonitor-settings.h"
11 #include "compat/fsmonitor/fsm-health.h"
12 #include "compat/fsmonitor/fsm-listen.h"
13 #include "fsmonitor--daemon.h"
14 #include "repository.h"
15 #include "simple-ipc.h"
17 #include "run-command.h"
21 static const char * const builtin_fsmonitor__daemon_usage
[] = {
22 N_("git fsmonitor--daemon start [<options>]"),
23 N_("git fsmonitor--daemon run [<options>]"),
24 "git fsmonitor--daemon stop",
25 "git fsmonitor--daemon status",
29 #ifdef HAVE_FSMONITOR_DAEMON_BACKEND
31 * Global state loaded from config.
33 #define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads"
34 static int fsmonitor__ipc_threads
= 8;
36 #define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout"
37 static int fsmonitor__start_timeout_sec
= 60;
39 #define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup"
40 static int fsmonitor__announce_startup
= 0;
42 static int fsmonitor_config(const char *var
, const char *value
,
43 const struct config_context
*ctx
, void *cb
)
45 if (!strcmp(var
, FSMONITOR__IPC_THREADS
)) {
46 int i
= git_config_int(var
, value
, ctx
->kvi
);
48 return error(_("value of '%s' out of range: %d"),
49 FSMONITOR__IPC_THREADS
, i
);
50 fsmonitor__ipc_threads
= i
;
54 if (!strcmp(var
, FSMONITOR__START_TIMEOUT
)) {
55 int i
= git_config_int(var
, value
, ctx
->kvi
);
57 return error(_("value of '%s' out of range: %d"),
58 FSMONITOR__START_TIMEOUT
, i
);
59 fsmonitor__start_timeout_sec
= i
;
63 if (!strcmp(var
, FSMONITOR__ANNOUNCE_STARTUP
)) {
65 int i
= git_config_bool_or_int(var
, value
, ctx
->kvi
, &is_bool
);
67 return error(_("value of '%s' not bool or int: %d"),
69 fsmonitor__announce_startup
= i
;
73 return git_default_config(var
, value
, ctx
, cb
);
79 * Send a "quit" command to the `git-fsmonitor--daemon` (if running)
80 * and wait for it to shutdown.
82 static int do_as_client__send_stop(void)
84 struct strbuf answer
= STRBUF_INIT
;
87 ret
= fsmonitor_ipc__send_command("quit", &answer
);
89 /* The quit command does not return any response data. */
90 strbuf_release(&answer
);
95 trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL
);
96 while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
98 trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL
);
103 static int do_as_client__status(void)
105 enum ipc_active_state state
= fsmonitor_ipc__get_state();
108 case IPC_STATE__LISTENING
:
109 printf(_("fsmonitor-daemon is watching '%s'\n"),
110 the_repository
->worktree
);
114 printf(_("fsmonitor-daemon is not watching '%s'\n"),
115 the_repository
->worktree
);
120 enum fsmonitor_cookie_item_result
{
121 FCIR_ERROR
= -1, /* could not create cookie file ? */
127 struct fsmonitor_cookie_item
{
128 struct hashmap_entry entry
;
130 enum fsmonitor_cookie_item_result result
;
133 static int cookies_cmp(const void *data UNUSED
,
134 const struct hashmap_entry
*he1
,
135 const struct hashmap_entry
*he2
, const void *keydata
)
137 const struct fsmonitor_cookie_item
*a
=
138 container_of(he1
, const struct fsmonitor_cookie_item
, entry
);
139 const struct fsmonitor_cookie_item
*b
=
140 container_of(he2
, const struct fsmonitor_cookie_item
, entry
);
142 return strcmp(a
->name
, keydata
? keydata
: b
->name
);
145 static enum fsmonitor_cookie_item_result
with_lock__wait_for_cookie(
146 struct fsmonitor_daemon_state
*state
)
148 /* assert current thread holding state->main_lock */
151 struct fsmonitor_cookie_item
*cookie
;
152 struct strbuf cookie_pathname
= STRBUF_INIT
;
153 struct strbuf cookie_filename
= STRBUF_INIT
;
154 enum fsmonitor_cookie_item_result result
;
157 CALLOC_ARRAY(cookie
, 1);
159 my_cookie_seq
= state
->cookie_seq
++;
161 strbuf_addf(&cookie_filename
, "%i-%i", getpid(), my_cookie_seq
);
163 strbuf_addbuf(&cookie_pathname
, &state
->path_cookie_prefix
);
164 strbuf_addbuf(&cookie_pathname
, &cookie_filename
);
166 cookie
->name
= strbuf_detach(&cookie_filename
, NULL
);
167 cookie
->result
= FCIR_INIT
;
168 hashmap_entry_init(&cookie
->entry
, strhash(cookie
->name
));
170 hashmap_add(&state
->cookies
, &cookie
->entry
);
172 trace_printf_key(&trace_fsmonitor
, "cookie-wait: '%s' '%s'",
173 cookie
->name
, cookie_pathname
.buf
);
176 * Create the cookie file on disk and then wait for a notification
177 * that the listener thread has seen it.
179 fd
= open(cookie_pathname
.buf
, O_WRONLY
| O_CREAT
| O_EXCL
, 0600);
181 error_errno(_("could not create fsmonitor cookie '%s'"),
184 cookie
->result
= FCIR_ERROR
;
189 * Technically, close() and unlink() can fail, but we don't
190 * care here. We only created the file to trigger a watch
191 * event from the FS to know that when we're up to date.
194 unlink(cookie_pathname
.buf
);
197 * Technically, this is an infinite wait (well, unless another
198 * thread sends us an abort). I'd like to change this to
199 * use `pthread_cond_timedwait()` and return an error/timeout
200 * and let the caller do the trivial response thing, but we
201 * don't have that routine in our thread-utils.
203 * After extensive beta testing I'm not really worried about
204 * this. Also note that the above open() and unlink() calls
205 * will cause at least two FS events on that path, so the odds
206 * of getting stuck are pretty slim.
208 while (cookie
->result
== FCIR_INIT
)
209 pthread_cond_wait(&state
->cookies_cond
,
213 hashmap_remove(&state
->cookies
, &cookie
->entry
, NULL
);
215 result
= cookie
->result
;
219 strbuf_release(&cookie_pathname
);
225 * Mark these cookies as _SEEN and wake up the corresponding client threads.
227 static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state
*state
,
228 const struct string_list
*cookie_names
)
230 /* assert current thread holding state->main_lock */
235 for (k
= 0; k
< cookie_names
->nr
; k
++) {
236 struct fsmonitor_cookie_item key
;
237 struct fsmonitor_cookie_item
*cookie
;
239 key
.name
= cookie_names
->items
[k
].string
;
240 hashmap_entry_init(&key
.entry
, strhash(key
.name
));
242 cookie
= hashmap_get_entry(&state
->cookies
, &key
, entry
, NULL
);
244 trace_printf_key(&trace_fsmonitor
, "cookie-seen: '%s'",
246 cookie
->result
= FCIR_SEEN
;
252 pthread_cond_broadcast(&state
->cookies_cond
);
256 * Set _ABORT on all pending cookies and wake up all client threads.
258 static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state
*state
)
260 /* assert current thread holding state->main_lock */
262 struct hashmap_iter iter
;
263 struct fsmonitor_cookie_item
*cookie
;
266 hashmap_for_each_entry(&state
->cookies
, &iter
, cookie
, entry
) {
267 trace_printf_key(&trace_fsmonitor
, "cookie-abort: '%s'",
269 cookie
->result
= FCIR_ABORT
;
274 pthread_cond_broadcast(&state
->cookies_cond
);
278 * Requests to and from a FSMonitor Protocol V2 provider use an opaque
279 * "token" as a virtual timestamp. Clients can request a summary of all
280 * created/deleted/modified files relative to a token. In the response,
281 * clients receive a new token for the next (relative) request.
287 * The contents of the token are private and provider-specific.
289 * For the built-in fsmonitor--daemon, we define a token as follows:
291 * "builtin" ":" <token_id> ":" <sequence_nr>
293 * The "builtin" prefix is used as a namespace to avoid conflicts
294 * with other providers (such as Watchman).
296 * The <token_id> is an arbitrary OPAQUE string, such as a GUID,
297 * UUID, or {timestamp,pid}. It is used to group all filesystem
298 * events that happened while the daemon was monitoring (and in-sync
299 * with the filesystem).
301 * Unlike FSMonitor Protocol V1, it is not defined as a timestamp
302 * and does not define less-than/greater-than relationships.
303 * (There are too many race conditions to rely on file system
306 * The <sequence_nr> is a simple integer incremented whenever the
307 * daemon needs to make its state public. For example, if 1000 file
308 * system events come in, but no clients have requested the data,
309 * the daemon can continue to accumulate file changes in the same
310 * bin and does not need to advance the sequence number. However,
311 * as soon as a client does arrive, the daemon needs to start a new
312 * bin and increment the sequence number.
314 * The sequence number serves as the boundary between 2 sets
315 * of bins -- the older ones that the client has already seen
316 * and the newer ones that it hasn't.
318 * When a new <token_id> is created, the <sequence_nr> is reset to
325 * A new token_id is created:
327 * [1] each time the daemon is started.
329 * [2] any time that the daemon must re-sync with the filesystem
330 * (such as when the kernel drops or we miss events on a very
333 * [3] in response to a client "flush" command (for dropped event
336 * When a new token_id is created, the daemon is free to discard all
337 * cached filesystem events associated with any previous token_ids.
338 * Events associated with a non-current token_id will never be sent
339 * to a client. A token_id change implicitly means that the daemon
340 * has gap in its event history.
342 * Therefore, clients that present a token with a stale (non-current)
343 * token_id will always be given a trivial response.
345 struct fsmonitor_token_data
{
346 struct strbuf token_id
;
347 struct fsmonitor_batch
*batch_head
;
348 struct fsmonitor_batch
*batch_tail
;
349 uint64_t client_ref_count
;
352 struct fsmonitor_batch
{
353 struct fsmonitor_batch
*next
;
354 uint64_t batch_seq_nr
;
355 const char **interned_paths
;
360 static struct fsmonitor_token_data
*fsmonitor_new_token_data(void)
362 static int test_env_value
= -1;
363 static uint64_t flush_count
= 0;
364 struct fsmonitor_token_data
*token
;
365 struct fsmonitor_batch
*batch
;
367 CALLOC_ARRAY(token
, 1);
368 batch
= fsmonitor_batch__new();
370 strbuf_init(&token
->token_id
, 0);
371 token
->batch_head
= batch
;
372 token
->batch_tail
= batch
;
373 token
->client_ref_count
= 0;
375 if (test_env_value
< 0)
376 test_env_value
= git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0);
378 if (!test_env_value
) {
383 gettimeofday(&tv
, NULL
);
385 gmtime_r(&secs
, &tm
);
387 strbuf_addf(&token
->token_id
,
388 "%"PRIu64
".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ",
391 tm
.tm_year
+ 1900, tm
.tm_mon
+ 1, tm
.tm_mday
,
392 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
395 strbuf_addf(&token
->token_id
, "test_%08x", test_env_value
++);
399 * We created a new <token_id> and are starting a new series
400 * of tokens with a zero <seq_nr>.
402 * Since clients cannot guess our new (non test) <token_id>
403 * they will always receive a trivial response (because of the
404 * mismatch on the <token_id>). The trivial response will
405 * tell them our new <token_id> so that subsequent requests
406 * will be relative to our new series. (And when sending that
407 * response, we pin the current head of the batch list.)
409 * Even if the client correctly guesses the <token_id>, their
410 * request of "builtin:<token_id>:0" asks for all changes MORE
411 * RECENT than batch/bin 0.
413 * This implies that it is a waste to accumulate paths in the
414 * initial batch/bin (because they will never be transmitted).
416 * So the daemon could be running for days and watching the
417 * file system, but doesn't need to actually accumulate any
418 * paths UNTIL we need to set a reference point for a later
421 * However, it is very useful for testing to always have a
422 * reference point set. Pin batch 0 to force early file system
423 * events to accumulate.
426 batch
->pinned_time
= time(NULL
);
431 struct fsmonitor_batch
*fsmonitor_batch__new(void)
433 struct fsmonitor_batch
*batch
;
435 CALLOC_ARRAY(batch
, 1);
440 void fsmonitor_batch__free_list(struct fsmonitor_batch
*batch
)
443 struct fsmonitor_batch
*next
= batch
->next
;
446 * The actual strings within the array of this batch
447 * are interned, so we don't own them. We only own
450 free(batch
->interned_paths
);
457 void fsmonitor_batch__add_path(struct fsmonitor_batch
*batch
,
460 const char *interned_path
= strintern(path
);
462 trace_printf_key(&trace_fsmonitor
, "event: %s", interned_path
);
464 ALLOC_GROW(batch
->interned_paths
, batch
->nr
+ 1, batch
->alloc
);
465 batch
->interned_paths
[batch
->nr
++] = interned_path
;
468 static void fsmonitor_batch__combine(struct fsmonitor_batch
*batch_dest
,
469 const struct fsmonitor_batch
*batch_src
)
473 ALLOC_GROW(batch_dest
->interned_paths
,
474 batch_dest
->nr
+ batch_src
->nr
+ 1,
477 for (k
= 0; k
< batch_src
->nr
; k
++)
478 batch_dest
->interned_paths
[batch_dest
->nr
++] =
479 batch_src
->interned_paths
[k
];
483 * To keep the batch list from growing unbounded in response to filesystem
484 * activity, we try to truncate old batches from the end of the list as
485 * they become irrelevant.
487 * We assume that the .git/index will be updated with the most recent token
488 * any time the index is updated. And future commands will only ask for
489 * recent changes *since* that new token. So as tokens advance into the
490 * future, older batch items will never be requested/needed. So we can
491 * truncate them without loss of functionality.
493 * However, multiple commands may be talking to the daemon concurrently
494 * or perform a slow command, so a little "token skew" is possible.
495 * Therefore, we want this to be a little bit lazy and have a generous
498 * The current reader thread walked backwards in time from `token->batch_head`
499 * back to `batch_marker` somewhere in the middle of the batch list.
501 * Let's walk backwards in time from that marker an arbitrary delay
502 * and truncate the list there. Note that these timestamps are completely
503 * artificial (based on when we pinned the batch item) and not on any
504 * filesystem activity.
506 * Return the obsolete portion of the list after we have removed it from
507 * the official list so that the caller can free it after leaving the lock.
509 #define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */
511 static struct fsmonitor_batch
*with_lock__truncate_old_batches(
512 struct fsmonitor_daemon_state
*state
,
513 const struct fsmonitor_batch
*batch_marker
)
515 /* assert current thread holding state->main_lock */
517 const struct fsmonitor_batch
*batch
;
518 struct fsmonitor_batch
*remainder
;
523 trace_printf_key(&trace_fsmonitor
, "Truncate: mark (%"PRIu64
",%"PRIu64
")",
524 batch_marker
->batch_seq_nr
,
525 (uint64_t)batch_marker
->pinned_time
);
527 for (batch
= batch_marker
; batch
; batch
= batch
->next
) {
530 if (!batch
->pinned_time
) /* an overflow batch */
533 t
= batch
->pinned_time
+ MY_TIME_DELAY_SECONDS
;
534 if (t
> batch_marker
->pinned_time
) /* too close to marker */
537 goto truncate_past_here
;
543 state
->current_token_data
->batch_tail
= (struct fsmonitor_batch
*)batch
;
545 remainder
= ((struct fsmonitor_batch
*)batch
)->next
;
546 ((struct fsmonitor_batch
*)batch
)->next
= NULL
;
551 static void fsmonitor_free_token_data(struct fsmonitor_token_data
*token
)
556 assert(token
->client_ref_count
== 0);
558 strbuf_release(&token
->token_id
);
560 fsmonitor_batch__free_list(token
->batch_head
);
566 * Flush all of our cached data about the filesystem. Call this if we
567 * lose sync with the filesystem and miss some notification events.
569 * [1] If we are missing events, then we no longer have a complete
570 * history of the directory (relative to our current start token).
571 * We should create a new token and start fresh (as if we just
574 * [2] Some of those lost events may have been for cookie files. We
575 * should assume the worst and abort them rather letting them starve.
577 * If there are no concurrent threads reading the current token data
578 * series, we can free it now. Otherwise, let the last reader free
581 * Either way, the old token data series is no longer associated with
584 static void with_lock__do_force_resync(struct fsmonitor_daemon_state
*state
)
586 /* assert current thread holding state->main_lock */
588 struct fsmonitor_token_data
*free_me
= NULL
;
589 struct fsmonitor_token_data
*new_one
= NULL
;
591 new_one
= fsmonitor_new_token_data();
593 if (state
->current_token_data
->client_ref_count
== 0)
594 free_me
= state
->current_token_data
;
595 state
->current_token_data
= new_one
;
597 fsmonitor_free_token_data(free_me
);
599 with_lock__abort_all_cookies(state
);
602 void fsmonitor_force_resync(struct fsmonitor_daemon_state
*state
)
604 pthread_mutex_lock(&state
->main_lock
);
605 with_lock__do_force_resync(state
);
606 pthread_mutex_unlock(&state
->main_lock
);
610 * Format an opaque token string to send to the client.
612 static void with_lock__format_response_token(
613 struct strbuf
*response_token
,
614 const struct strbuf
*response_token_id
,
615 const struct fsmonitor_batch
*batch
)
617 /* assert current thread holding state->main_lock */
619 strbuf_reset(response_token
);
620 strbuf_addf(response_token
, "builtin:%s:%"PRIu64
,
621 response_token_id
->buf
, batch
->batch_seq_nr
);
625 * Parse an opaque token from the client.
626 * Returns -1 on error.
628 static int fsmonitor_parse_client_token(const char *buf_token
,
629 struct strbuf
*requested_token_id
,
635 strbuf_reset(requested_token_id
);
638 if (!skip_prefix(buf_token
, "builtin:", &p
))
641 while (*p
&& *p
!= ':')
642 strbuf_addch(requested_token_id
, *p
++);
646 *seq_nr
= (uint64_t)strtoumax(p
, &p_end
, 10);
653 KHASH_INIT(str
, const char *, int, 0, kh_str_hash_func
, kh_str_hash_equal
)
655 static int do_handle_client(struct fsmonitor_daemon_state
*state
,
657 ipc_server_reply_cb
*reply
,
658 struct ipc_server_reply_data
*reply_data
)
660 struct fsmonitor_token_data
*token_data
= NULL
;
661 struct strbuf response_token
= STRBUF_INIT
;
662 struct strbuf requested_token_id
= STRBUF_INIT
;
663 struct strbuf payload
= STRBUF_INIT
;
664 uint64_t requested_oldest_seq_nr
= 0;
665 uint64_t total_response_len
= 0;
667 const struct fsmonitor_batch
*batch_head
;
668 const struct fsmonitor_batch
*batch
;
669 struct fsmonitor_batch
*remainder
= NULL
;
670 intmax_t count
= 0, duplicates
= 0;
676 enum fsmonitor_cookie_item_result cookie_result
;
679 * We expect `command` to be of the form:
681 * <command> := quit NUL
683 * | <V1-time-since-epoch-ns> NUL
684 * | <V2-opaque-fsmonitor-token> NUL
687 if (!strcmp(command
, "quit")) {
689 * A client has requested over the socket/pipe that the
692 * Tell the IPC thread pool to shutdown (which completes
693 * the await in the main thread (which can stop the
694 * fsmonitor listener thread)).
696 * There is no reply to the client.
698 return SIMPLE_IPC_QUIT
;
700 } else if (!strcmp(command
, "flush")) {
702 * Flush all of our cached data and generate a new token
703 * just like if we lost sync with the filesystem.
705 * Then send a trivial response using the new token.
710 } else if (!skip_prefix(command
, "builtin:", &p
)) {
711 /* assume V1 timestamp or garbage */
715 strtoumax(command
, &p_end
, 10);
716 trace_printf_key(&trace_fsmonitor
,
718 "fsmonitor: invalid command line '%s'" :
719 "fsmonitor: unsupported V1 protocol '%s'"),
725 /* We have "builtin:*" */
726 if (fsmonitor_parse_client_token(command
, &requested_token_id
,
727 &requested_oldest_seq_nr
)) {
728 trace_printf_key(&trace_fsmonitor
,
729 "fsmonitor: invalid V2 protocol token '%s'",
736 * We have a V2 valid token:
737 * "builtin:<token_id>:<seq_nr>"
743 pthread_mutex_lock(&state
->main_lock
);
745 if (!state
->current_token_data
)
746 BUG("fsmonitor state does not have a current token");
749 * Write a cookie file inside the directory being watched in
750 * an effort to flush out existing filesystem events that we
751 * actually care about. Suspend this client thread until we
752 * see the filesystem events for this cookie file.
754 * Creating the cookie lets us guarantee that our FS listener
755 * thread has drained the kernel queue and we are caught up
758 * If we cannot create the cookie (or otherwise guarantee that
759 * we are caught up), we send a trivial response. We have to
760 * assume that there might be some very, very recent activity
761 * on the FS still in flight.
764 cookie_result
= with_lock__wait_for_cookie(state
);
765 if (cookie_result
!= FCIR_SEEN
) {
766 error(_("fsmonitor: cookie_result '%d' != SEEN"),
773 with_lock__do_force_resync(state
);
776 * We mark the current head of the batch list as "pinned" so
777 * that the listener thread will treat this item as read-only
778 * (and prevent any more paths from being added to it) from
781 token_data
= state
->current_token_data
;
782 batch_head
= token_data
->batch_head
;
783 ((struct fsmonitor_batch
*)batch_head
)->pinned_time
= time(NULL
);
786 * FSMonitor Protocol V2 requires that we send a response header
787 * with a "new current token" and then all of the paths that changed
788 * since the "requested token". We send the seq_nr of the just-pinned
789 * head batch so that future requests from a client will be relative
792 with_lock__format_response_token(&response_token
,
793 &token_data
->token_id
, batch_head
);
795 reply(reply_data
, response_token
.buf
, response_token
.len
+ 1);
796 total_response_len
+= response_token
.len
+ 1;
798 trace2_data_string("fsmonitor", the_repository
, "response/token",
800 trace_printf_key(&trace_fsmonitor
, "response token: %s",
804 if (strcmp(requested_token_id
.buf
, token_data
->token_id
.buf
)) {
806 * The client last spoke to a different daemon
807 * instance -OR- the daemon had to resync with
808 * the filesystem (and lost events), so reject.
810 trace2_data_string("fsmonitor", the_repository
,
811 "response/token", "different");
814 } else if (requested_oldest_seq_nr
<
815 token_data
->batch_tail
->batch_seq_nr
) {
817 * The client wants older events than we have for
818 * this token_id. This means that the end of our
819 * batch list was truncated and we cannot give the
820 * client a complete snapshot relative to their
823 trace_printf_key(&trace_fsmonitor
,
824 "client requested truncated data");
830 pthread_mutex_unlock(&state
->main_lock
);
832 reply(reply_data
, "/", 2);
834 trace2_data_intmax("fsmonitor", the_repository
,
835 "response/trivial", 1);
841 * We're going to hold onto a pointer to the current
842 * token-data while we walk the list of batches of files.
843 * During this time, we will NOT be under the lock.
844 * So we ref-count it.
846 * This allows the listener thread to continue prepending
847 * new batches of items to the token-data (which we'll ignore).
849 * AND it allows the listener thread to do a token-reset
850 * (and install a new `current_token_data`).
852 token_data
->client_ref_count
++;
854 pthread_mutex_unlock(&state
->main_lock
);
857 * The client request is relative to the token that they sent,
858 * so walk the batch list backwards from the current head back
859 * to the batch (sequence number) they named.
861 * We use khash to de-dup the list of pathnames.
863 * NEEDSWORK: each batch contains a list of interned strings,
864 * so we only need to do pointer comparisons here to build the
865 * hash table. Currently, we're still comparing the string
868 shown
= kh_init_str();
869 for (batch
= batch_head
;
870 batch
&& batch
->batch_seq_nr
> requested_oldest_seq_nr
;
871 batch
= batch
->next
) {
874 for (k
= 0; k
< batch
->nr
; k
++) {
875 const char *s
= batch
->interned_paths
[k
];
878 if (kh_get_str(shown
, s
) != kh_end(shown
))
881 kh_put_str(shown
, s
, &hash_ret
);
883 trace_printf_key(&trace_fsmonitor
,
884 "send[%"PRIuMAX
"]: %s",
887 /* Each path gets written with a trailing NUL */
888 s_len
= strlen(s
) + 1;
890 if (payload
.len
+ s_len
>=
891 LARGE_PACKET_DATA_MAX
) {
892 reply(reply_data
, payload
.buf
,
894 total_response_len
+= payload
.len
;
895 strbuf_reset(&payload
);
898 strbuf_add(&payload
, s
, s_len
);
905 reply(reply_data
, payload
.buf
, payload
.len
);
906 total_response_len
+= payload
.len
;
909 kh_release_str(shown
);
911 pthread_mutex_lock(&state
->main_lock
);
913 if (token_data
->client_ref_count
> 0)
914 token_data
->client_ref_count
--;
916 if (token_data
->client_ref_count
== 0) {
917 if (token_data
!= state
->current_token_data
) {
919 * The listener thread did a token-reset while we were
920 * walking the batch list. Therefore, this token is
921 * stale and can be discarded completely. If we are
922 * the last reader thread using this token, we own
925 fsmonitor_free_token_data(token_data
);
928 * We are holding the lock and are the only
929 * reader of the ref-counted portion of the
930 * list, so we get the honor of seeing if the
931 * list can be truncated to save memory.
933 * The main loop did not walk to the end of the
934 * list, so this batch is the first item in the
935 * batch-list that is older than the requested
936 * end-point sequence number. See if the tail
937 * end of the list is obsolete.
939 remainder
= with_lock__truncate_old_batches(state
,
944 pthread_mutex_unlock(&state
->main_lock
);
947 fsmonitor_batch__free_list(remainder
);
949 trace2_data_intmax("fsmonitor", the_repository
, "response/length", total_response_len
);
950 trace2_data_intmax("fsmonitor", the_repository
, "response/count/files", count
);
951 trace2_data_intmax("fsmonitor", the_repository
, "response/count/duplicates", duplicates
);
954 strbuf_release(&response_token
);
955 strbuf_release(&requested_token_id
);
956 strbuf_release(&payload
);
961 static ipc_server_application_cb handle_client
;
963 static int handle_client(void *data
,
964 const char *command
, size_t command_len
,
965 ipc_server_reply_cb
*reply
,
966 struct ipc_server_reply_data
*reply_data
)
968 struct fsmonitor_daemon_state
*state
= data
;
972 * The Simple IPC API now supports {char*, len} arguments, but
973 * FSMonitor always uses proper null-terminated strings, so
974 * we can ignore the command_len argument. (Trust, but verify.)
976 if (command_len
!= strlen(command
))
977 BUG("FSMonitor assumes text messages");
979 trace_printf_key(&trace_fsmonitor
, "requested token: %s", command
);
981 trace2_region_enter("fsmonitor", "handle_client", the_repository
);
982 trace2_data_string("fsmonitor", the_repository
, "request", command
);
984 result
= do_handle_client(state
, command
, reply
, reply_data
);
986 trace2_region_leave("fsmonitor", "handle_client", the_repository
);
991 #define FSMONITOR_DIR "fsmonitor--daemon"
992 #define FSMONITOR_COOKIE_DIR "cookies"
993 #define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/")
995 enum fsmonitor_path_type
fsmonitor_classify_path_workdir_relative(
998 if (fspathncmp(rel
, ".git", 4))
999 return IS_WORKDIR_PATH
;
1005 return IS_WORKDIR_PATH
; /* e.g. .gitignore */
1008 if (!fspathncmp(rel
, FSMONITOR_COOKIE_PREFIX
,
1009 strlen(FSMONITOR_COOKIE_PREFIX
)))
1010 return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX
;
1012 return IS_INSIDE_DOT_GIT
;
1015 enum fsmonitor_path_type
fsmonitor_classify_path_gitdir_relative(
1018 if (!fspathncmp(rel
, FSMONITOR_COOKIE_PREFIX
,
1019 strlen(FSMONITOR_COOKIE_PREFIX
)))
1020 return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX
;
1022 return IS_INSIDE_GITDIR
;
1025 static enum fsmonitor_path_type
try_classify_workdir_abs_path(
1026 struct fsmonitor_daemon_state
*state
,
1031 if (fspathncmp(path
, state
->path_worktree_watch
.buf
,
1032 state
->path_worktree_watch
.len
))
1033 return IS_OUTSIDE_CONE
;
1035 rel
= path
+ state
->path_worktree_watch
.len
;
1038 return IS_WORKDIR_PATH
; /* it is the root dir exactly */
1040 return IS_OUTSIDE_CONE
;
1043 return fsmonitor_classify_path_workdir_relative(rel
);
1046 enum fsmonitor_path_type
fsmonitor_classify_path_absolute(
1047 struct fsmonitor_daemon_state
*state
,
1051 enum fsmonitor_path_type t
;
1053 t
= try_classify_workdir_abs_path(state
, path
);
1054 if (state
->nr_paths_watching
== 1)
1056 if (t
!= IS_OUTSIDE_CONE
)
1059 if (fspathncmp(path
, state
->path_gitdir_watch
.buf
,
1060 state
->path_gitdir_watch
.len
))
1061 return IS_OUTSIDE_CONE
;
1063 rel
= path
+ state
->path_gitdir_watch
.len
;
1066 return IS_GITDIR
; /* it is the <gitdir> exactly */
1068 return IS_OUTSIDE_CONE
;
1071 return fsmonitor_classify_path_gitdir_relative(rel
);
1075 * We try to combine small batches at the front of the batch-list to avoid
1076 * having a long list. This hopefully makes it a little easier when we want
1077 * to truncate and maintain the list. However, we don't want the paths array
1078 * to just keep growing and growing with realloc, so we insert an arbitrary
1081 #define MY_COMBINE_LIMIT (1024)
1083 void fsmonitor_publish(struct fsmonitor_daemon_state
*state
,
1084 struct fsmonitor_batch
*batch
,
1085 const struct string_list
*cookie_names
)
1087 if (!batch
&& !cookie_names
->nr
)
1090 pthread_mutex_lock(&state
->main_lock
);
1093 struct fsmonitor_batch
*head
;
1095 head
= state
->current_token_data
->batch_head
;
1097 BUG("token does not have batch");
1098 } else if (head
->pinned_time
) {
1100 * We cannot alter the current batch list
1103 * [a] it is being transmitted to at least one
1104 * client and the handle_client() thread has a
1105 * ref-count, but not a lock on the batch list
1106 * starting with this item.
1108 * [b] it has been transmitted in the past to
1109 * at least one client such that future
1110 * requests are relative to this head batch.
1112 * So, we can only prepend a new batch onto
1113 * the front of the list.
1115 batch
->batch_seq_nr
= head
->batch_seq_nr
+ 1;
1117 state
->current_token_data
->batch_head
= batch
;
1118 } else if (!head
->batch_seq_nr
) {
1120 * Batch 0 is unpinned. See the note in
1121 * `fsmonitor_new_token_data()` about why we
1122 * don't need to accumulate these paths.
1124 fsmonitor_batch__free_list(batch
);
1125 } else if (head
->nr
+ batch
->nr
> MY_COMBINE_LIMIT
) {
1127 * The head batch in the list has never been
1128 * transmitted to a client, but folding the
1129 * contents of the new batch onto it would
1130 * exceed our arbitrary limit, so just prepend
1131 * the new batch onto the list.
1133 batch
->batch_seq_nr
= head
->batch_seq_nr
+ 1;
1135 state
->current_token_data
->batch_head
= batch
;
1138 * We are free to add the paths in the given
1139 * batch onto the end of the current head batch.
1141 fsmonitor_batch__combine(head
, batch
);
1142 fsmonitor_batch__free_list(batch
);
1146 if (cookie_names
->nr
)
1147 with_lock__mark_cookies_seen(state
, cookie_names
);
1149 pthread_mutex_unlock(&state
->main_lock
);
1152 static void *fsm_health__thread_proc(void *_state
)
1154 struct fsmonitor_daemon_state
*state
= _state
;
1156 trace2_thread_start("fsm-health");
1158 fsm_health__loop(state
);
1160 trace2_thread_exit();
1164 static void *fsm_listen__thread_proc(void *_state
)
1166 struct fsmonitor_daemon_state
*state
= _state
;
1168 trace2_thread_start("fsm-listen");
1170 trace_printf_key(&trace_fsmonitor
, "Watching: worktree '%s'",
1171 state
->path_worktree_watch
.buf
);
1172 if (state
->nr_paths_watching
> 1)
1173 trace_printf_key(&trace_fsmonitor
, "Watching: gitdir '%s'",
1174 state
->path_gitdir_watch
.buf
);
1176 fsm_listen__loop(state
);
1178 pthread_mutex_lock(&state
->main_lock
);
1179 if (state
->current_token_data
&&
1180 state
->current_token_data
->client_ref_count
== 0)
1181 fsmonitor_free_token_data(state
->current_token_data
);
1182 state
->current_token_data
= NULL
;
1183 pthread_mutex_unlock(&state
->main_lock
);
1185 trace2_thread_exit();
1189 static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state
*state
)
1191 struct ipc_server_opts ipc_opts
= {
1192 .nr_threads
= fsmonitor__ipc_threads
,
1195 * We know that there are no other active threads yet,
1196 * so we can let the IPC layer temporarily chdir() if
1197 * it needs to when creating the server side of the
1198 * Unix domain socket.
1200 .uds_disallow_chdir
= 0
1202 int health_started
= 0;
1203 int listener_started
= 0;
1207 * Start the IPC thread pool before the we've started the file
1208 * system event listener thread so that we have the IPC handle
1209 * before we need it.
1211 if (ipc_server_run_async(&state
->ipc_server_data
,
1212 state
->path_ipc
.buf
, &ipc_opts
,
1213 handle_client
, state
))
1215 _("could not start IPC thread pool on '%s'"),
1216 state
->path_ipc
.buf
);
1219 * Start the fsmonitor listener thread to collect filesystem
1222 if (pthread_create(&state
->listener_thread
, NULL
,
1223 fsm_listen__thread_proc
, state
)) {
1224 ipc_server_stop_async(state
->ipc_server_data
);
1225 err
= error(_("could not start fsmonitor listener thread"));
1228 listener_started
= 1;
1231 * Start the health thread to watch over our process.
1233 if (pthread_create(&state
->health_thread
, NULL
,
1234 fsm_health__thread_proc
, state
)) {
1235 ipc_server_stop_async(state
->ipc_server_data
);
1236 err
= error(_("could not start fsmonitor health thread"));
1242 * The daemon is now fully functional in background threads.
1243 * Our primary thread should now just wait while the threads
1248 * Wait for the IPC thread pool to shutdown (whether by client
1249 * request, from filesystem activity, or an error).
1251 ipc_server_await(state
->ipc_server_data
);
1254 * The fsmonitor listener thread may have received a shutdown
1255 * event from the IPC thread pool, but it doesn't hurt to tell
1256 * it again. And wait for it to shutdown.
1258 if (listener_started
) {
1259 fsm_listen__stop_async(state
);
1260 pthread_join(state
->listener_thread
, NULL
);
1263 if (health_started
) {
1264 fsm_health__stop_async(state
);
1265 pthread_join(state
->health_thread
, NULL
);
1270 if (state
->listen_error_code
)
1271 return state
->listen_error_code
;
1272 if (state
->health_error_code
)
1273 return state
->health_error_code
;
1277 static int fsmonitor_run_daemon(void)
1279 struct fsmonitor_daemon_state state
;
1283 memset(&state
, 0, sizeof(state
));
1285 hashmap_init(&state
.cookies
, cookies_cmp
, NULL
, 0);
1286 pthread_mutex_init(&state
.main_lock
, NULL
);
1287 pthread_cond_init(&state
.cookies_cond
, NULL
);
1288 state
.listen_error_code
= 0;
1289 state
.health_error_code
= 0;
1290 state
.current_token_data
= fsmonitor_new_token_data();
1292 /* Prepare to (recursively) watch the <worktree-root> directory. */
1293 strbuf_init(&state
.path_worktree_watch
, 0);
1294 strbuf_addstr(&state
.path_worktree_watch
, absolute_path(get_git_work_tree()));
1295 state
.nr_paths_watching
= 1;
1297 strbuf_init(&state
.alias
.alias
, 0);
1298 strbuf_init(&state
.alias
.points_to
, 0);
1299 if ((err
= fsmonitor__get_alias(state
.path_worktree_watch
.buf
, &state
.alias
)))
1303 * We create and delete cookie files somewhere inside the .git
1304 * directory to help us keep sync with the file system. If
1305 * ".git" is not a directory, then <gitdir> is not inside the
1306 * cone of <worktree-root>, so set up a second watch to watch
1307 * the <gitdir> so that we get events for the cookie files.
1309 strbuf_init(&state
.path_gitdir_watch
, 0);
1310 strbuf_addbuf(&state
.path_gitdir_watch
, &state
.path_worktree_watch
);
1311 strbuf_addstr(&state
.path_gitdir_watch
, "/.git");
1312 if (!is_directory(state
.path_gitdir_watch
.buf
)) {
1313 strbuf_reset(&state
.path_gitdir_watch
);
1314 strbuf_addstr(&state
.path_gitdir_watch
, absolute_path(get_git_dir()));
1315 state
.nr_paths_watching
= 2;
1319 * We will write filesystem syncing cookie files into
1320 * <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>.
1322 * The extra layers of subdirectories here keep us from
1323 * changing the mtime on ".git/" or ".git/foo/" when we create
1324 * or delete cookie files.
1326 * There have been problems with some IDEs that do a
1327 * non-recursive watch of the ".git/" directory and run a
1328 * series of commands any time something happens.
1330 * For example, if we place our cookie files directly in
1331 * ".git/" or ".git/foo/" then a `git status` (or similar
1332 * command) from the IDE will cause a cookie file to be
1333 * created in one of those dirs. This causes the mtime of
1334 * those dirs to change. This triggers the IDE's watch
1335 * notification. This triggers the IDE to run those commands
1336 * again. And the process repeats and the machine never goes
1339 * Adding the extra layers of subdirectories prevents the
1340 * mtime of ".git/" and ".git/foo" from changing when a
1341 * cookie file is created.
1343 strbuf_init(&state
.path_cookie_prefix
, 0);
1344 strbuf_addbuf(&state
.path_cookie_prefix
, &state
.path_gitdir_watch
);
1346 strbuf_addch(&state
.path_cookie_prefix
, '/');
1347 strbuf_addstr(&state
.path_cookie_prefix
, FSMONITOR_DIR
);
1348 mkdir(state
.path_cookie_prefix
.buf
, 0777);
1350 strbuf_addch(&state
.path_cookie_prefix
, '/');
1351 strbuf_addstr(&state
.path_cookie_prefix
, FSMONITOR_COOKIE_DIR
);
1352 mkdir(state
.path_cookie_prefix
.buf
, 0777);
1354 strbuf_addch(&state
.path_cookie_prefix
, '/');
1357 * We create a named-pipe or unix domain socket inside of the
1358 * ".git" directory. (Well, on Windows, we base our named
1359 * pipe in the NPFS on the absolute path of the git
1362 strbuf_init(&state
.path_ipc
, 0);
1363 strbuf_addstr(&state
.path_ipc
,
1364 absolute_path(fsmonitor_ipc__get_path(the_repository
)));
1367 * Confirm that we can create platform-specific resources for the
1368 * filesystem listener before we bother starting all the threads.
1370 if (fsm_listen__ctor(&state
)) {
1371 err
= error(_("could not initialize listener thread"));
1375 if (fsm_health__ctor(&state
)) {
1376 err
= error(_("could not initialize health thread"));
1381 * CD out of the worktree root directory.
1383 * The common Git startup mechanism causes our CWD to be the
1384 * root of the worktree. On Windows, this causes our process
1385 * to hold a locked handle on the CWD. This prevents the
1386 * worktree from being moved or deleted while the daemon is
1389 * We assume that our FS and IPC listener threads have either
1390 * opened all of the handles that they need or will do
1391 * everything using absolute paths.
1393 home
= getenv("HOME");
1394 if (home
&& *home
&& chdir(home
))
1395 die_errno(_("could not cd home '%s'"), home
);
1397 err
= fsmonitor_run_daemon_1(&state
);
1400 pthread_cond_destroy(&state
.cookies_cond
);
1401 pthread_mutex_destroy(&state
.main_lock
);
1402 fsm_listen__dtor(&state
);
1403 fsm_health__dtor(&state
);
1405 ipc_server_free(state
.ipc_server_data
);
1407 strbuf_release(&state
.path_worktree_watch
);
1408 strbuf_release(&state
.path_gitdir_watch
);
1409 strbuf_release(&state
.path_cookie_prefix
);
1410 strbuf_release(&state
.path_ipc
);
1411 strbuf_release(&state
.alias
.alias
);
1412 strbuf_release(&state
.alias
.points_to
);
1417 static int try_to_run_foreground_daemon(int detach_console MAYBE_UNUSED
)
1420 * Technically, we don't need to probe for an existing daemon
1421 * process, since we could just call `fsmonitor_run_daemon()`
1422 * and let it fail if the pipe/socket is busy.
1424 * However, this method gives us a nicer error message for a
1425 * common error case.
1427 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
1428 die(_("fsmonitor--daemon is already running '%s'"),
1429 the_repository
->worktree
);
1431 if (fsmonitor__announce_startup
) {
1432 fprintf(stderr
, _("running fsmonitor-daemon in '%s'\n"),
1433 the_repository
->worktree
);
1437 #ifdef GIT_WINDOWS_NATIVE
1442 return !!fsmonitor_run_daemon();
1445 static start_bg_wait_cb bg_wait_cb
;
1447 static int bg_wait_cb(const struct child_process
*cp UNUSED
,
1448 void *cb_data UNUSED
)
1450 enum ipc_active_state s
= fsmonitor_ipc__get_state();
1453 case IPC_STATE__LISTENING
:
1454 /* child is "ready" */
1457 case IPC_STATE__NOT_LISTENING
:
1458 case IPC_STATE__PATH_NOT_FOUND
:
1459 /* give child more time */
1463 case IPC_STATE__INVALID_PATH
:
1464 case IPC_STATE__OTHER_ERROR
:
1465 /* all the time in world won't help */
1470 static int try_to_start_background_daemon(void)
1472 struct child_process cp
= CHILD_PROCESS_INIT
;
1473 enum start_bg_result sbgr
;
1476 * Before we try to create a background daemon process, see
1477 * if a daemon process is already listening. This makes it
1478 * easier for us to report an already-listening error to the
1479 * console, since our spawn/daemon can only report the success
1480 * of creating the background process (and not whether it
1481 * immediately exited).
1483 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
1484 die(_("fsmonitor--daemon is already running '%s'"),
1485 the_repository
->worktree
);
1487 if (fsmonitor__announce_startup
) {
1488 fprintf(stderr
, _("starting fsmonitor-daemon in '%s'\n"),
1489 the_repository
->worktree
);
1495 strvec_push(&cp
.args
, "fsmonitor--daemon");
1496 strvec_push(&cp
.args
, "run");
1497 strvec_push(&cp
.args
, "--detach");
1498 strvec_pushf(&cp
.args
, "--ipc-threads=%d", fsmonitor__ipc_threads
);
1504 sbgr
= start_bg_command(&cp
, bg_wait_cb
, NULL
,
1505 fsmonitor__start_timeout_sec
);
1514 return error(_("daemon failed to start"));
1517 return error(_("daemon not online yet"));
1520 return error(_("daemon terminated"));
1524 int cmd_fsmonitor__daemon(int argc
, const char **argv
, const char *prefix
)
1527 enum fsmonitor_reason reason
;
1528 int detach_console
= 0;
1530 struct option options
[] = {
1531 OPT_BOOL(0, "detach", &detach_console
, N_("detach from console")),
1532 OPT_INTEGER(0, "ipc-threads",
1533 &fsmonitor__ipc_threads
,
1534 N_("use <n> ipc worker threads")),
1535 OPT_INTEGER(0, "start-timeout",
1536 &fsmonitor__start_timeout_sec
,
1537 N_("max seconds to wait for background daemon startup")),
1542 git_config(fsmonitor_config
, NULL
);
1544 argc
= parse_options(argc
, argv
, prefix
, options
,
1545 builtin_fsmonitor__daemon_usage
, 0);
1547 usage_with_options(builtin_fsmonitor__daemon_usage
, options
);
1550 if (fsmonitor__ipc_threads
< 1)
1551 die(_("invalid 'ipc-threads' value (%d)"),
1552 fsmonitor__ipc_threads
);
1554 prepare_repo_settings(the_repository
);
1556 * If the repo is fsmonitor-compatible, explicitly set IPC-mode
1557 * (without bothering to load the `core.fsmonitor` config settings).
1559 * If the repo is not compatible, the repo-settings will be set to
1560 * incompatible rather than IPC, so we can use one of the __get
1561 * routines to detect the discrepancy.
1563 fsm_settings__set_ipc(the_repository
);
1565 reason
= fsm_settings__get_reason(the_repository
);
1566 if (reason
> FSMONITOR_REASON_OK
)
1568 fsm_settings__get_incompatible_msg(the_repository
,
1571 if (!strcmp(subcmd
, "start"))
1572 return !!try_to_start_background_daemon();
1574 if (!strcmp(subcmd
, "run"))
1575 return !!try_to_run_foreground_daemon(detach_console
);
1577 if (!strcmp(subcmd
, "stop"))
1578 return !!do_as_client__send_stop();
1580 if (!strcmp(subcmd
, "status"))
1581 return !!do_as_client__status();
1583 die(_("Unhandled subcommand '%s'"), subcmd
);
1587 int cmd_fsmonitor__daemon(int argc
, const char **argv
, const char *prefix UNUSED
)
1589 struct option options
[] = {
1593 if (argc
== 2 && !strcmp(argv
[1], "-h"))
1594 usage_with_options(builtin_fsmonitor__daemon_usage
, options
);
1596 die(_("fsmonitor--daemon not supported on this platform"));