3 #include "parse-options.h"
5 #include "fsmonitor-ipc.h"
6 #include "compat/fsmonitor/fsm-listen.h"
7 #include "fsmonitor--daemon.h"
8 #include "simple-ipc.h"
12 static const char * const builtin_fsmonitor__daemon_usage
[] = {
13 N_("git fsmonitor--daemon start [<options>]"),
14 N_("git fsmonitor--daemon run [<options>]"),
15 N_("git fsmonitor--daemon stop"),
16 N_("git fsmonitor--daemon status"),
20 #ifdef HAVE_FSMONITOR_DAEMON_BACKEND
22 * Global state loaded from config.
24 #define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads"
25 static int fsmonitor__ipc_threads
= 8;
27 #define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout"
28 static int fsmonitor__start_timeout_sec
= 60;
30 #define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup"
31 static int fsmonitor__announce_startup
= 0;
33 static int fsmonitor_config(const char *var
, const char *value
, void *cb
)
35 if (!strcmp(var
, FSMONITOR__IPC_THREADS
)) {
36 int i
= git_config_int(var
, value
);
38 return error(_("value of '%s' out of range: %d"),
39 FSMONITOR__IPC_THREADS
, i
);
40 fsmonitor__ipc_threads
= i
;
44 if (!strcmp(var
, FSMONITOR__START_TIMEOUT
)) {
45 int i
= git_config_int(var
, value
);
47 return error(_("value of '%s' out of range: %d"),
48 FSMONITOR__START_TIMEOUT
, i
);
49 fsmonitor__start_timeout_sec
= i
;
53 if (!strcmp(var
, FSMONITOR__ANNOUNCE_STARTUP
)) {
55 int i
= git_config_bool_or_int(var
, value
, &is_bool
);
57 return error(_("value of '%s' not bool or int: %d"),
59 fsmonitor__announce_startup
= i
;
63 return git_default_config(var
, value
, cb
);
69 * Send a "quit" command to the `git-fsmonitor--daemon` (if running)
70 * and wait for it to shutdown.
72 static int do_as_client__send_stop(void)
74 struct strbuf answer
= STRBUF_INIT
;
77 ret
= fsmonitor_ipc__send_command("quit", &answer
);
79 /* The quit command does not return any response data. */
80 strbuf_release(&answer
);
85 trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL
);
86 while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
88 trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL
);
93 static int do_as_client__status(void)
95 enum ipc_active_state state
= fsmonitor_ipc__get_state();
98 case IPC_STATE__LISTENING
:
99 printf(_("fsmonitor-daemon is watching '%s'\n"),
100 the_repository
->worktree
);
104 printf(_("fsmonitor-daemon is not watching '%s'\n"),
105 the_repository
->worktree
);
110 enum fsmonitor_cookie_item_result
{
111 FCIR_ERROR
= -1, /* could not create cookie file ? */
117 struct fsmonitor_cookie_item
{
118 struct hashmap_entry entry
;
120 enum fsmonitor_cookie_item_result result
;
123 static int cookies_cmp(const void *data
, const struct hashmap_entry
*he1
,
124 const struct hashmap_entry
*he2
, const void *keydata
)
126 const struct fsmonitor_cookie_item
*a
=
127 container_of(he1
, const struct fsmonitor_cookie_item
, entry
);
128 const struct fsmonitor_cookie_item
*b
=
129 container_of(he2
, const struct fsmonitor_cookie_item
, entry
);
131 return strcmp(a
->name
, keydata
? keydata
: b
->name
);
134 static enum fsmonitor_cookie_item_result
with_lock__wait_for_cookie(
135 struct fsmonitor_daemon_state
*state
)
137 /* assert current thread holding state->main_lock */
140 struct fsmonitor_cookie_item
*cookie
;
141 struct strbuf cookie_pathname
= STRBUF_INIT
;
142 struct strbuf cookie_filename
= STRBUF_INIT
;
143 enum fsmonitor_cookie_item_result result
;
146 CALLOC_ARRAY(cookie
, 1);
148 my_cookie_seq
= state
->cookie_seq
++;
150 strbuf_addf(&cookie_filename
, "%i-%i", getpid(), my_cookie_seq
);
152 strbuf_addbuf(&cookie_pathname
, &state
->path_cookie_prefix
);
153 strbuf_addbuf(&cookie_pathname
, &cookie_filename
);
155 cookie
->name
= strbuf_detach(&cookie_filename
, NULL
);
156 cookie
->result
= FCIR_INIT
;
157 hashmap_entry_init(&cookie
->entry
, strhash(cookie
->name
));
159 hashmap_add(&state
->cookies
, &cookie
->entry
);
161 trace_printf_key(&trace_fsmonitor
, "cookie-wait: '%s' '%s'",
162 cookie
->name
, cookie_pathname
.buf
);
165 * Create the cookie file on disk and then wait for a notification
166 * that the listener thread has seen it.
168 fd
= open(cookie_pathname
.buf
, O_WRONLY
| O_CREAT
| O_EXCL
, 0600);
170 error_errno(_("could not create fsmonitor cookie '%s'"),
173 cookie
->result
= FCIR_ERROR
;
178 * Technically, close() and unlink() can fail, but we don't
179 * care here. We only created the file to trigger a watch
180 * event from the FS to know that when we're up to date.
183 unlink(cookie_pathname
.buf
);
186 * Technically, this is an infinite wait (well, unless another
187 * thread sends us an abort). I'd like to change this to
188 * use `pthread_cond_timedwait()` and return an error/timeout
189 * and let the caller do the trivial response thing, but we
190 * don't have that routine in our thread-utils.
192 * After extensive beta testing I'm not really worried about
193 * this. Also note that the above open() and unlink() calls
194 * will cause at least two FS events on that path, so the odds
195 * of getting stuck are pretty slim.
197 while (cookie
->result
== FCIR_INIT
)
198 pthread_cond_wait(&state
->cookies_cond
,
202 hashmap_remove(&state
->cookies
, &cookie
->entry
, NULL
);
204 result
= cookie
->result
;
208 strbuf_release(&cookie_pathname
);
214 * Mark these cookies as _SEEN and wake up the corresponding client threads.
216 static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state
*state
,
217 const struct string_list
*cookie_names
)
219 /* assert current thread holding state->main_lock */
224 for (k
= 0; k
< cookie_names
->nr
; k
++) {
225 struct fsmonitor_cookie_item key
;
226 struct fsmonitor_cookie_item
*cookie
;
228 key
.name
= cookie_names
->items
[k
].string
;
229 hashmap_entry_init(&key
.entry
, strhash(key
.name
));
231 cookie
= hashmap_get_entry(&state
->cookies
, &key
, entry
, NULL
);
233 trace_printf_key(&trace_fsmonitor
, "cookie-seen: '%s'",
235 cookie
->result
= FCIR_SEEN
;
241 pthread_cond_broadcast(&state
->cookies_cond
);
245 * Set _ABORT on all pending cookies and wake up all client threads.
247 static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state
*state
)
249 /* assert current thread holding state->main_lock */
251 struct hashmap_iter iter
;
252 struct fsmonitor_cookie_item
*cookie
;
255 hashmap_for_each_entry(&state
->cookies
, &iter
, cookie
, entry
) {
256 trace_printf_key(&trace_fsmonitor
, "cookie-abort: '%s'",
258 cookie
->result
= FCIR_ABORT
;
263 pthread_cond_broadcast(&state
->cookies_cond
);
267 * Requests to and from a FSMonitor Protocol V2 provider use an opaque
268 * "token" as a virtual timestamp. Clients can request a summary of all
269 * created/deleted/modified files relative to a token. In the response,
270 * clients receive a new token for the next (relative) request.
276 * The contents of the token are private and provider-specific.
278 * For the built-in fsmonitor--daemon, we define a token as follows:
280 * "builtin" ":" <token_id> ":" <sequence_nr>
282 * The "builtin" prefix is used as a namespace to avoid conflicts
283 * with other providers (such as Watchman).
285 * The <token_id> is an arbitrary OPAQUE string, such as a GUID,
286 * UUID, or {timestamp,pid}. It is used to group all filesystem
287 * events that happened while the daemon was monitoring (and in-sync
288 * with the filesystem).
290 * Unlike FSMonitor Protocol V1, it is not defined as a timestamp
291 * and does not define less-than/greater-than relationships.
292 * (There are too many race conditions to rely on file system
295 * The <sequence_nr> is a simple integer incremented whenever the
296 * daemon needs to make its state public. For example, if 1000 file
297 * system events come in, but no clients have requested the data,
298 * the daemon can continue to accumulate file changes in the same
299 * bin and does not need to advance the sequence number. However,
300 * as soon as a client does arrive, the daemon needs to start a new
301 * bin and increment the sequence number.
303 * The sequence number serves as the boundary between 2 sets
304 * of bins -- the older ones that the client has already seen
305 * and the newer ones that it hasn't.
307 * When a new <token_id> is created, the <sequence_nr> is reset to
314 * A new token_id is created:
316 * [1] each time the daemon is started.
318 * [2] any time that the daemon must re-sync with the filesystem
319 * (such as when the kernel drops or we miss events on a very
322 * [3] in response to a client "flush" command (for dropped event
325 * When a new token_id is created, the daemon is free to discard all
326 * cached filesystem events associated with any previous token_ids.
327 * Events associated with a non-current token_id will never be sent
328 * to a client. A token_id change implicitly means that the daemon
329 * has gap in its event history.
331 * Therefore, clients that present a token with a stale (non-current)
332 * token_id will always be given a trivial response.
334 struct fsmonitor_token_data
{
335 struct strbuf token_id
;
336 struct fsmonitor_batch
*batch_head
;
337 struct fsmonitor_batch
*batch_tail
;
338 uint64_t client_ref_count
;
341 struct fsmonitor_batch
{
342 struct fsmonitor_batch
*next
;
343 uint64_t batch_seq_nr
;
344 const char **interned_paths
;
349 static struct fsmonitor_token_data
*fsmonitor_new_token_data(void)
351 static int test_env_value
= -1;
352 static uint64_t flush_count
= 0;
353 struct fsmonitor_token_data
*token
;
354 struct fsmonitor_batch
*batch
;
356 CALLOC_ARRAY(token
, 1);
357 batch
= fsmonitor_batch__new();
359 strbuf_init(&token
->token_id
, 0);
360 token
->batch_head
= batch
;
361 token
->batch_tail
= batch
;
362 token
->client_ref_count
= 0;
364 if (test_env_value
< 0)
365 test_env_value
= git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0);
367 if (!test_env_value
) {
372 gettimeofday(&tv
, NULL
);
374 gmtime_r(&secs
, &tm
);
376 strbuf_addf(&token
->token_id
,
377 "%"PRIu64
".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ",
380 tm
.tm_year
+ 1900, tm
.tm_mon
+ 1, tm
.tm_mday
,
381 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
384 strbuf_addf(&token
->token_id
, "test_%08x", test_env_value
++);
388 * We created a new <token_id> and are starting a new series
389 * of tokens with a zero <seq_nr>.
391 * Since clients cannot guess our new (non test) <token_id>
392 * they will always receive a trivial response (because of the
393 * mismatch on the <token_id>). The trivial response will
394 * tell them our new <token_id> so that subsequent requests
395 * will be relative to our new series. (And when sending that
396 * response, we pin the current head of the batch list.)
398 * Even if the client correctly guesses the <token_id>, their
399 * request of "builtin:<token_id>:0" asks for all changes MORE
400 * RECENT than batch/bin 0.
402 * This implies that it is a waste to accumulate paths in the
403 * initial batch/bin (because they will never be transmitted).
405 * So the daemon could be running for days and watching the
406 * file system, but doesn't need to actually accumulate any
407 * paths UNTIL we need to set a reference point for a later
410 * However, it is very useful for testing to always have a
411 * reference point set. Pin batch 0 to force early file system
412 * events to accumulate.
415 batch
->pinned_time
= time(NULL
);
420 struct fsmonitor_batch
*fsmonitor_batch__new(void)
422 struct fsmonitor_batch
*batch
;
424 CALLOC_ARRAY(batch
, 1);
429 void fsmonitor_batch__free_list(struct fsmonitor_batch
*batch
)
432 struct fsmonitor_batch
*next
= batch
->next
;
435 * The actual strings within the array of this batch
436 * are interned, so we don't own them. We only own
439 free(batch
->interned_paths
);
446 void fsmonitor_batch__add_path(struct fsmonitor_batch
*batch
,
449 const char *interned_path
= strintern(path
);
451 trace_printf_key(&trace_fsmonitor
, "event: %s", interned_path
);
453 ALLOC_GROW(batch
->interned_paths
, batch
->nr
+ 1, batch
->alloc
);
454 batch
->interned_paths
[batch
->nr
++] = interned_path
;
457 static void fsmonitor_batch__combine(struct fsmonitor_batch
*batch_dest
,
458 const struct fsmonitor_batch
*batch_src
)
462 ALLOC_GROW(batch_dest
->interned_paths
,
463 batch_dest
->nr
+ batch_src
->nr
+ 1,
466 for (k
= 0; k
< batch_src
->nr
; k
++)
467 batch_dest
->interned_paths
[batch_dest
->nr
++] =
468 batch_src
->interned_paths
[k
];
472 * To keep the batch list from growing unbounded in response to filesystem
473 * activity, we try to truncate old batches from the end of the list as
474 * they become irrelevant.
476 * We assume that the .git/index will be updated with the most recent token
477 * any time the index is updated. And future commands will only ask for
478 * recent changes *since* that new token. So as tokens advance into the
479 * future, older batch items will never be requested/needed. So we can
480 * truncate them without loss of functionality.
482 * However, multiple commands may be talking to the daemon concurrently
483 * or perform a slow command, so a little "token skew" is possible.
484 * Therefore, we want this to be a little bit lazy and have a generous
487 * The current reader thread walked backwards in time from `token->batch_head`
488 * back to `batch_marker` somewhere in the middle of the batch list.
490 * Let's walk backwards in time from that marker an arbitrary delay
491 * and truncate the list there. Note that these timestamps are completely
492 * artificial (based on when we pinned the batch item) and not on any
493 * filesystem activity.
495 * Return the obsolete portion of the list after we have removed it from
496 * the official list so that the caller can free it after leaving the lock.
498 #define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */
500 static struct fsmonitor_batch
*with_lock__truncate_old_batches(
501 struct fsmonitor_daemon_state
*state
,
502 const struct fsmonitor_batch
*batch_marker
)
504 /* assert current thread holding state->main_lock */
506 const struct fsmonitor_batch
*batch
;
507 struct fsmonitor_batch
*remainder
;
512 trace_printf_key(&trace_fsmonitor
, "Truncate: mark (%"PRIu64
",%"PRIu64
")",
513 batch_marker
->batch_seq_nr
,
514 (uint64_t)batch_marker
->pinned_time
);
516 for (batch
= batch_marker
; batch
; batch
= batch
->next
) {
519 if (!batch
->pinned_time
) /* an overflow batch */
522 t
= batch
->pinned_time
+ MY_TIME_DELAY_SECONDS
;
523 if (t
> batch_marker
->pinned_time
) /* too close to marker */
526 goto truncate_past_here
;
532 state
->current_token_data
->batch_tail
= (struct fsmonitor_batch
*)batch
;
534 remainder
= ((struct fsmonitor_batch
*)batch
)->next
;
535 ((struct fsmonitor_batch
*)batch
)->next
= NULL
;
540 static void fsmonitor_free_token_data(struct fsmonitor_token_data
*token
)
545 assert(token
->client_ref_count
== 0);
547 strbuf_release(&token
->token_id
);
549 fsmonitor_batch__free_list(token
->batch_head
);
555 * Flush all of our cached data about the filesystem. Call this if we
556 * lose sync with the filesystem and miss some notification events.
558 * [1] If we are missing events, then we no longer have a complete
559 * history of the directory (relative to our current start token).
560 * We should create a new token and start fresh (as if we just
563 * [2] Some of those lost events may have been for cookie files. We
564 * should assume the worst and abort them rather letting them starve.
566 * If there are no concurrent threads reading the current token data
567 * series, we can free it now. Otherwise, let the last reader free
570 * Either way, the old token data series is no longer associated with
573 static void with_lock__do_force_resync(struct fsmonitor_daemon_state
*state
)
575 /* assert current thread holding state->main_lock */
577 struct fsmonitor_token_data
*free_me
= NULL
;
578 struct fsmonitor_token_data
*new_one
= NULL
;
580 new_one
= fsmonitor_new_token_data();
582 if (state
->current_token_data
->client_ref_count
== 0)
583 free_me
= state
->current_token_data
;
584 state
->current_token_data
= new_one
;
586 fsmonitor_free_token_data(free_me
);
588 with_lock__abort_all_cookies(state
);
591 void fsmonitor_force_resync(struct fsmonitor_daemon_state
*state
)
593 pthread_mutex_lock(&state
->main_lock
);
594 with_lock__do_force_resync(state
);
595 pthread_mutex_unlock(&state
->main_lock
);
599 * Format an opaque token string to send to the client.
601 static void with_lock__format_response_token(
602 struct strbuf
*response_token
,
603 const struct strbuf
*response_token_id
,
604 const struct fsmonitor_batch
*batch
)
606 /* assert current thread holding state->main_lock */
608 strbuf_reset(response_token
);
609 strbuf_addf(response_token
, "builtin:%s:%"PRIu64
,
610 response_token_id
->buf
, batch
->batch_seq_nr
);
614 * Parse an opaque token from the client.
615 * Returns -1 on error.
617 static int fsmonitor_parse_client_token(const char *buf_token
,
618 struct strbuf
*requested_token_id
,
624 strbuf_reset(requested_token_id
);
627 if (!skip_prefix(buf_token
, "builtin:", &p
))
630 while (*p
&& *p
!= ':')
631 strbuf_addch(requested_token_id
, *p
++);
635 *seq_nr
= (uint64_t)strtoumax(p
, &p_end
, 10);
642 KHASH_INIT(str
, const char *, int, 0, kh_str_hash_func
, kh_str_hash_equal
)
644 static int do_handle_client(struct fsmonitor_daemon_state
*state
,
646 ipc_server_reply_cb
*reply
,
647 struct ipc_server_reply_data
*reply_data
)
649 struct fsmonitor_token_data
*token_data
= NULL
;
650 struct strbuf response_token
= STRBUF_INIT
;
651 struct strbuf requested_token_id
= STRBUF_INIT
;
652 struct strbuf payload
= STRBUF_INIT
;
653 uint64_t requested_oldest_seq_nr
= 0;
654 uint64_t total_response_len
= 0;
656 const struct fsmonitor_batch
*batch_head
;
657 const struct fsmonitor_batch
*batch
;
658 struct fsmonitor_batch
*remainder
= NULL
;
659 intmax_t count
= 0, duplicates
= 0;
665 enum fsmonitor_cookie_item_result cookie_result
;
668 * We expect `command` to be of the form:
670 * <command> := quit NUL
672 * | <V1-time-since-epoch-ns> NUL
673 * | <V2-opaque-fsmonitor-token> NUL
676 if (!strcmp(command
, "quit")) {
678 * A client has requested over the socket/pipe that the
681 * Tell the IPC thread pool to shutdown (which completes
682 * the await in the main thread (which can stop the
683 * fsmonitor listener thread)).
685 * There is no reply to the client.
687 return SIMPLE_IPC_QUIT
;
689 } else if (!strcmp(command
, "flush")) {
691 * Flush all of our cached data and generate a new token
692 * just like if we lost sync with the filesystem.
694 * Then send a trivial response using the new token.
699 } else if (!skip_prefix(command
, "builtin:", &p
)) {
700 /* assume V1 timestamp or garbage */
704 strtoumax(command
, &p_end
, 10);
705 trace_printf_key(&trace_fsmonitor
,
707 "fsmonitor: invalid command line '%s'" :
708 "fsmonitor: unsupported V1 protocol '%s'"),
713 /* We have "builtin:*" */
714 if (fsmonitor_parse_client_token(command
, &requested_token_id
,
715 &requested_oldest_seq_nr
)) {
716 trace_printf_key(&trace_fsmonitor
,
717 "fsmonitor: invalid V2 protocol token '%s'",
723 * We have a V2 valid token:
724 * "builtin:<token_id>:<seq_nr>"
730 pthread_mutex_lock(&state
->main_lock
);
732 if (!state
->current_token_data
)
733 BUG("fsmonitor state does not have a current token");
736 * Write a cookie file inside the directory being watched in
737 * an effort to flush out existing filesystem events that we
738 * actually care about. Suspend this client thread until we
739 * see the filesystem events for this cookie file.
741 * Creating the cookie lets us guarantee that our FS listener
742 * thread has drained the kernel queue and we are caught up
745 * If we cannot create the cookie (or otherwise guarantee that
746 * we are caught up), we send a trivial response. We have to
747 * assume that there might be some very, very recent activity
748 * on the FS still in flight.
751 cookie_result
= with_lock__wait_for_cookie(state
);
752 if (cookie_result
!= FCIR_SEEN
) {
753 error(_("fsmonitor: cookie_result '%d' != SEEN"),
760 with_lock__do_force_resync(state
);
763 * We mark the current head of the batch list as "pinned" so
764 * that the listener thread will treat this item as read-only
765 * (and prevent any more paths from being added to it) from
768 token_data
= state
->current_token_data
;
769 batch_head
= token_data
->batch_head
;
770 ((struct fsmonitor_batch
*)batch_head
)->pinned_time
= time(NULL
);
773 * FSMonitor Protocol V2 requires that we send a response header
774 * with a "new current token" and then all of the paths that changed
775 * since the "requested token". We send the seq_nr of the just-pinned
776 * head batch so that future requests from a client will be relative
779 with_lock__format_response_token(&response_token
,
780 &token_data
->token_id
, batch_head
);
782 reply(reply_data
, response_token
.buf
, response_token
.len
+ 1);
783 total_response_len
+= response_token
.len
+ 1;
785 trace2_data_string("fsmonitor", the_repository
, "response/token",
787 trace_printf_key(&trace_fsmonitor
, "response token: %s",
791 if (strcmp(requested_token_id
.buf
, token_data
->token_id
.buf
)) {
793 * The client last spoke to a different daemon
794 * instance -OR- the daemon had to resync with
795 * the filesystem (and lost events), so reject.
797 trace2_data_string("fsmonitor", the_repository
,
798 "response/token", "different");
801 } else if (requested_oldest_seq_nr
<
802 token_data
->batch_tail
->batch_seq_nr
) {
804 * The client wants older events than we have for
805 * this token_id. This means that the end of our
806 * batch list was truncated and we cannot give the
807 * client a complete snapshot relative to their
810 trace_printf_key(&trace_fsmonitor
,
811 "client requested truncated data");
817 pthread_mutex_unlock(&state
->main_lock
);
819 reply(reply_data
, "/", 2);
821 trace2_data_intmax("fsmonitor", the_repository
,
822 "response/trivial", 1);
828 * We're going to hold onto a pointer to the current
829 * token-data while we walk the list of batches of files.
830 * During this time, we will NOT be under the lock.
831 * So we ref-count it.
833 * This allows the listener thread to continue prepending
834 * new batches of items to the token-data (which we'll ignore).
836 * AND it allows the listener thread to do a token-reset
837 * (and install a new `current_token_data`).
839 token_data
->client_ref_count
++;
841 pthread_mutex_unlock(&state
->main_lock
);
844 * The client request is relative to the token that they sent,
845 * so walk the batch list backwards from the current head back
846 * to the batch (sequence number) they named.
848 * We use khash to de-dup the list of pathnames.
850 * NEEDSWORK: each batch contains a list of interned strings,
851 * so we only need to do pointer comparisons here to build the
852 * hash table. Currently, we're still comparing the string
855 shown
= kh_init_str();
856 for (batch
= batch_head
;
857 batch
&& batch
->batch_seq_nr
> requested_oldest_seq_nr
;
858 batch
= batch
->next
) {
861 for (k
= 0; k
< batch
->nr
; k
++) {
862 const char *s
= batch
->interned_paths
[k
];
865 if (kh_get_str(shown
, s
) != kh_end(shown
))
868 kh_put_str(shown
, s
, &hash_ret
);
870 trace_printf_key(&trace_fsmonitor
,
871 "send[%"PRIuMAX
"]: %s",
874 /* Each path gets written with a trailing NUL */
875 s_len
= strlen(s
) + 1;
877 if (payload
.len
+ s_len
>=
878 LARGE_PACKET_DATA_MAX
) {
879 reply(reply_data
, payload
.buf
,
881 total_response_len
+= payload
.len
;
882 strbuf_reset(&payload
);
885 strbuf_add(&payload
, s
, s_len
);
892 reply(reply_data
, payload
.buf
, payload
.len
);
893 total_response_len
+= payload
.len
;
896 kh_release_str(shown
);
898 pthread_mutex_lock(&state
->main_lock
);
900 if (token_data
->client_ref_count
> 0)
901 token_data
->client_ref_count
--;
903 if (token_data
->client_ref_count
== 0) {
904 if (token_data
!= state
->current_token_data
) {
906 * The listener thread did a token-reset while we were
907 * walking the batch list. Therefore, this token is
908 * stale and can be discarded completely. If we are
909 * the last reader thread using this token, we own
912 fsmonitor_free_token_data(token_data
);
915 * We are holding the lock and are the only
916 * reader of the ref-counted portion of the
917 * list, so we get the honor of seeing if the
918 * list can be truncated to save memory.
920 * The main loop did not walk to the end of the
921 * list, so this batch is the first item in the
922 * batch-list that is older than the requested
923 * end-point sequence number. See if the tail
924 * end of the list is obsolete.
926 remainder
= with_lock__truncate_old_batches(state
,
931 pthread_mutex_unlock(&state
->main_lock
);
934 fsmonitor_batch__free_list(remainder
);
936 trace2_data_intmax("fsmonitor", the_repository
, "response/length", total_response_len
);
937 trace2_data_intmax("fsmonitor", the_repository
, "response/count/files", count
);
938 trace2_data_intmax("fsmonitor", the_repository
, "response/count/duplicates", duplicates
);
941 strbuf_release(&response_token
);
942 strbuf_release(&requested_token_id
);
943 strbuf_release(&payload
);
948 static ipc_server_application_cb handle_client
;
950 static int handle_client(void *data
,
951 const char *command
, size_t command_len
,
952 ipc_server_reply_cb
*reply
,
953 struct ipc_server_reply_data
*reply_data
)
955 struct fsmonitor_daemon_state
*state
= data
;
959 * The Simple IPC API now supports {char*, len} arguments, but
960 * FSMonitor always uses proper null-terminated strings, so
961 * we can ignore the command_len argument. (Trust, but verify.)
963 if (command_len
!= strlen(command
))
964 BUG("FSMonitor assumes text messages");
966 trace_printf_key(&trace_fsmonitor
, "requested token: %s", command
);
968 trace2_region_enter("fsmonitor", "handle_client", the_repository
);
969 trace2_data_string("fsmonitor", the_repository
, "request", command
);
971 result
= do_handle_client(state
, command
, reply
, reply_data
);
973 trace2_region_leave("fsmonitor", "handle_client", the_repository
);
978 #define FSMONITOR_DIR "fsmonitor--daemon"
979 #define FSMONITOR_COOKIE_DIR "cookies"
980 #define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/")
982 enum fsmonitor_path_type
fsmonitor_classify_path_workdir_relative(
985 if (fspathncmp(rel
, ".git", 4))
986 return IS_WORKDIR_PATH
;
992 return IS_WORKDIR_PATH
; /* e.g. .gitignore */
995 if (!fspathncmp(rel
, FSMONITOR_COOKIE_PREFIX
,
996 strlen(FSMONITOR_COOKIE_PREFIX
)))
997 return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX
;
999 return IS_INSIDE_DOT_GIT
;
1002 enum fsmonitor_path_type
fsmonitor_classify_path_gitdir_relative(
1005 if (!fspathncmp(rel
, FSMONITOR_COOKIE_PREFIX
,
1006 strlen(FSMONITOR_COOKIE_PREFIX
)))
1007 return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX
;
1009 return IS_INSIDE_GITDIR
;
1012 static enum fsmonitor_path_type
try_classify_workdir_abs_path(
1013 struct fsmonitor_daemon_state
*state
,
1018 if (fspathncmp(path
, state
->path_worktree_watch
.buf
,
1019 state
->path_worktree_watch
.len
))
1020 return IS_OUTSIDE_CONE
;
1022 rel
= path
+ state
->path_worktree_watch
.len
;
1025 return IS_WORKDIR_PATH
; /* it is the root dir exactly */
1027 return IS_OUTSIDE_CONE
;
1030 return fsmonitor_classify_path_workdir_relative(rel
);
1033 enum fsmonitor_path_type
fsmonitor_classify_path_absolute(
1034 struct fsmonitor_daemon_state
*state
,
1038 enum fsmonitor_path_type t
;
1040 t
= try_classify_workdir_abs_path(state
, path
);
1041 if (state
->nr_paths_watching
== 1)
1043 if (t
!= IS_OUTSIDE_CONE
)
1046 if (fspathncmp(path
, state
->path_gitdir_watch
.buf
,
1047 state
->path_gitdir_watch
.len
))
1048 return IS_OUTSIDE_CONE
;
1050 rel
= path
+ state
->path_gitdir_watch
.len
;
1053 return IS_GITDIR
; /* it is the <gitdir> exactly */
1055 return IS_OUTSIDE_CONE
;
1058 return fsmonitor_classify_path_gitdir_relative(rel
);
1062 * We try to combine small batches at the front of the batch-list to avoid
1063 * having a long list. This hopefully makes it a little easier when we want
1064 * to truncate and maintain the list. However, we don't want the paths array
1065 * to just keep growing and growing with realloc, so we insert an arbitrary
1068 #define MY_COMBINE_LIMIT (1024)
1070 void fsmonitor_publish(struct fsmonitor_daemon_state
*state
,
1071 struct fsmonitor_batch
*batch
,
1072 const struct string_list
*cookie_names
)
1074 if (!batch
&& !cookie_names
->nr
)
1077 pthread_mutex_lock(&state
->main_lock
);
1080 struct fsmonitor_batch
*head
;
1082 head
= state
->current_token_data
->batch_head
;
1084 BUG("token does not have batch");
1085 } else if (head
->pinned_time
) {
1087 * We cannot alter the current batch list
1090 * [a] it is being transmitted to at least one
1091 * client and the handle_client() thread has a
1092 * ref-count, but not a lock on the batch list
1093 * starting with this item.
1095 * [b] it has been transmitted in the past to
1096 * at least one client such that future
1097 * requests are relative to this head batch.
1099 * So, we can only prepend a new batch onto
1100 * the front of the list.
1102 batch
->batch_seq_nr
= head
->batch_seq_nr
+ 1;
1104 state
->current_token_data
->batch_head
= batch
;
1105 } else if (!head
->batch_seq_nr
) {
1107 * Batch 0 is unpinned. See the note in
1108 * `fsmonitor_new_token_data()` about why we
1109 * don't need to accumulate these paths.
1111 fsmonitor_batch__free_list(batch
);
1112 } else if (head
->nr
+ batch
->nr
> MY_COMBINE_LIMIT
) {
1114 * The head batch in the list has never been
1115 * transmitted to a client, but folding the
1116 * contents of the new batch onto it would
1117 * exceed our arbitrary limit, so just prepend
1118 * the new batch onto the list.
1120 batch
->batch_seq_nr
= head
->batch_seq_nr
+ 1;
1122 state
->current_token_data
->batch_head
= batch
;
1125 * We are free to add the paths in the given
1126 * batch onto the end of the current head batch.
1128 fsmonitor_batch__combine(head
, batch
);
1129 fsmonitor_batch__free_list(batch
);
1133 if (cookie_names
->nr
)
1134 with_lock__mark_cookies_seen(state
, cookie_names
);
1136 pthread_mutex_unlock(&state
->main_lock
);
1139 static void *fsm_listen__thread_proc(void *_state
)
1141 struct fsmonitor_daemon_state
*state
= _state
;
1143 trace2_thread_start("fsm-listen");
1145 trace_printf_key(&trace_fsmonitor
, "Watching: worktree '%s'",
1146 state
->path_worktree_watch
.buf
);
1147 if (state
->nr_paths_watching
> 1)
1148 trace_printf_key(&trace_fsmonitor
, "Watching: gitdir '%s'",
1149 state
->path_gitdir_watch
.buf
);
1151 fsm_listen__loop(state
);
1153 pthread_mutex_lock(&state
->main_lock
);
1154 if (state
->current_token_data
&&
1155 state
->current_token_data
->client_ref_count
== 0)
1156 fsmonitor_free_token_data(state
->current_token_data
);
1157 state
->current_token_data
= NULL
;
1158 pthread_mutex_unlock(&state
->main_lock
);
1160 trace2_thread_exit();
1164 static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state
*state
)
1166 struct ipc_server_opts ipc_opts
= {
1167 .nr_threads
= fsmonitor__ipc_threads
,
1170 * We know that there are no other active threads yet,
1171 * so we can let the IPC layer temporarily chdir() if
1172 * it needs to when creating the server side of the
1173 * Unix domain socket.
1175 .uds_disallow_chdir
= 0
1179 * Start the IPC thread pool before the we've started the file
1180 * system event listener thread so that we have the IPC handle
1181 * before we need it.
1183 if (ipc_server_run_async(&state
->ipc_server_data
,
1184 fsmonitor_ipc__get_path(), &ipc_opts
,
1185 handle_client
, state
))
1187 _("could not start IPC thread pool on '%s'"),
1188 fsmonitor_ipc__get_path());
1191 * Start the fsmonitor listener thread to collect filesystem
1194 if (pthread_create(&state
->listener_thread
, NULL
,
1195 fsm_listen__thread_proc
, state
) < 0) {
1196 ipc_server_stop_async(state
->ipc_server_data
);
1197 ipc_server_await(state
->ipc_server_data
);
1199 return error(_("could not start fsmonitor listener thread"));
1203 * The daemon is now fully functional in background threads.
1204 * Wait for the IPC thread pool to shutdown (whether by client
1205 * request or from filesystem activity).
1207 ipc_server_await(state
->ipc_server_data
);
1210 * The fsmonitor listener thread may have received a shutdown
1211 * event from the IPC thread pool, but it doesn't hurt to tell
1212 * it again. And wait for it to shutdown.
1214 fsm_listen__stop_async(state
);
1215 pthread_join(state
->listener_thread
, NULL
);
1217 return state
->error_code
;
1220 static int fsmonitor_run_daemon(void)
1222 struct fsmonitor_daemon_state state
;
1225 memset(&state
, 0, sizeof(state
));
1227 hashmap_init(&state
.cookies
, cookies_cmp
, NULL
, 0);
1228 pthread_mutex_init(&state
.main_lock
, NULL
);
1229 pthread_cond_init(&state
.cookies_cond
, NULL
);
1230 state
.error_code
= 0;
1231 state
.current_token_data
= fsmonitor_new_token_data();
1233 /* Prepare to (recursively) watch the <worktree-root> directory. */
1234 strbuf_init(&state
.path_worktree_watch
, 0);
1235 strbuf_addstr(&state
.path_worktree_watch
, absolute_path(get_git_work_tree()));
1236 state
.nr_paths_watching
= 1;
1239 * We create and delete cookie files somewhere inside the .git
1240 * directory to help us keep sync with the file system. If
1241 * ".git" is not a directory, then <gitdir> is not inside the
1242 * cone of <worktree-root>, so set up a second watch to watch
1243 * the <gitdir> so that we get events for the cookie files.
1245 strbuf_init(&state
.path_gitdir_watch
, 0);
1246 strbuf_addbuf(&state
.path_gitdir_watch
, &state
.path_worktree_watch
);
1247 strbuf_addstr(&state
.path_gitdir_watch
, "/.git");
1248 if (!is_directory(state
.path_gitdir_watch
.buf
)) {
1249 strbuf_reset(&state
.path_gitdir_watch
);
1250 strbuf_addstr(&state
.path_gitdir_watch
, absolute_path(get_git_dir()));
1251 state
.nr_paths_watching
= 2;
1255 * We will write filesystem syncing cookie files into
1256 * <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>.
1258 * The extra layers of subdirectories here keep us from
1259 * changing the mtime on ".git/" or ".git/foo/" when we create
1260 * or delete cookie files.
1262 * There have been problems with some IDEs that do a
1263 * non-recursive watch of the ".git/" directory and run a
1264 * series of commands any time something happens.
1266 * For example, if we place our cookie files directly in
1267 * ".git/" or ".git/foo/" then a `git status` (or similar
1268 * command) from the IDE will cause a cookie file to be
1269 * created in one of those dirs. This causes the mtime of
1270 * those dirs to change. This triggers the IDE's watch
1271 * notification. This triggers the IDE to run those commands
1272 * again. And the process repeats and the machine never goes
1275 * Adding the extra layers of subdirectories prevents the
1276 * mtime of ".git/" and ".git/foo" from changing when a
1277 * cookie file is created.
1279 strbuf_init(&state
.path_cookie_prefix
, 0);
1280 strbuf_addbuf(&state
.path_cookie_prefix
, &state
.path_gitdir_watch
);
1282 strbuf_addch(&state
.path_cookie_prefix
, '/');
1283 strbuf_addstr(&state
.path_cookie_prefix
, FSMONITOR_DIR
);
1284 mkdir(state
.path_cookie_prefix
.buf
, 0777);
1286 strbuf_addch(&state
.path_cookie_prefix
, '/');
1287 strbuf_addstr(&state
.path_cookie_prefix
, FSMONITOR_COOKIE_DIR
);
1288 mkdir(state
.path_cookie_prefix
.buf
, 0777);
1290 strbuf_addch(&state
.path_cookie_prefix
, '/');
1293 * Confirm that we can create platform-specific resources for the
1294 * filesystem listener before we bother starting all the threads.
1296 if (fsm_listen__ctor(&state
)) {
1297 err
= error(_("could not initialize listener thread"));
1301 err
= fsmonitor_run_daemon_1(&state
);
1304 pthread_cond_destroy(&state
.cookies_cond
);
1305 pthread_mutex_destroy(&state
.main_lock
);
1306 fsm_listen__dtor(&state
);
1308 ipc_server_free(state
.ipc_server_data
);
1310 strbuf_release(&state
.path_worktree_watch
);
1311 strbuf_release(&state
.path_gitdir_watch
);
1312 strbuf_release(&state
.path_cookie_prefix
);
1317 static int try_to_run_foreground_daemon(int detach_console
)
1320 * Technically, we don't need to probe for an existing daemon
1321 * process, since we could just call `fsmonitor_run_daemon()`
1322 * and let it fail if the pipe/socket is busy.
1324 * However, this method gives us a nicer error message for a
1325 * common error case.
1327 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
1328 die(_("fsmonitor--daemon is already running '%s'"),
1329 the_repository
->worktree
);
1331 if (fsmonitor__announce_startup
) {
1332 fprintf(stderr
, _("running fsmonitor-daemon in '%s'\n"),
1333 the_repository
->worktree
);
1337 #ifdef GIT_WINDOWS_NATIVE
1342 return !!fsmonitor_run_daemon();
1345 static start_bg_wait_cb bg_wait_cb
;
1347 static int bg_wait_cb(const struct child_process
*cp
, void *cb_data
)
1349 enum ipc_active_state s
= fsmonitor_ipc__get_state();
1352 case IPC_STATE__LISTENING
:
1353 /* child is "ready" */
1356 case IPC_STATE__NOT_LISTENING
:
1357 case IPC_STATE__PATH_NOT_FOUND
:
1358 /* give child more time */
1362 case IPC_STATE__INVALID_PATH
:
1363 case IPC_STATE__OTHER_ERROR
:
1364 /* all the time in world won't help */
1369 static int try_to_start_background_daemon(void)
1371 struct child_process cp
= CHILD_PROCESS_INIT
;
1372 enum start_bg_result sbgr
;
1375 * Before we try to create a background daemon process, see
1376 * if a daemon process is already listening. This makes it
1377 * easier for us to report an already-listening error to the
1378 * console, since our spawn/daemon can only report the success
1379 * of creating the background process (and not whether it
1380 * immediately exited).
1382 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
1383 die(_("fsmonitor--daemon is already running '%s'"),
1384 the_repository
->worktree
);
1386 if (fsmonitor__announce_startup
) {
1387 fprintf(stderr
, _("starting fsmonitor-daemon in '%s'\n"),
1388 the_repository
->worktree
);
1394 strvec_push(&cp
.args
, "fsmonitor--daemon");
1395 strvec_push(&cp
.args
, "run");
1396 strvec_push(&cp
.args
, "--detach");
1397 strvec_pushf(&cp
.args
, "--ipc-threads=%d", fsmonitor__ipc_threads
);
1403 sbgr
= start_bg_command(&cp
, bg_wait_cb
, NULL
,
1404 fsmonitor__start_timeout_sec
);
1413 return error(_("daemon failed to start"));
1416 return error(_("daemon not online yet"));
1419 return error(_("daemon terminated"));
1423 int cmd_fsmonitor__daemon(int argc
, const char **argv
, const char *prefix
)
1426 enum fsmonitor_reason reason
;
1427 int detach_console
= 0;
1429 struct option options
[] = {
1430 OPT_BOOL(0, "detach", &detach_console
, N_("detach from console")),
1431 OPT_INTEGER(0, "ipc-threads",
1432 &fsmonitor__ipc_threads
,
1433 N_("use <n> ipc worker threads")),
1434 OPT_INTEGER(0, "start-timeout",
1435 &fsmonitor__start_timeout_sec
,
1436 N_("max seconds to wait for background daemon startup")),
1441 git_config(fsmonitor_config
, NULL
);
1443 argc
= parse_options(argc
, argv
, prefix
, options
,
1444 builtin_fsmonitor__daemon_usage
, 0);
1446 usage_with_options(builtin_fsmonitor__daemon_usage
, options
);
1449 if (fsmonitor__ipc_threads
< 1)
1450 die(_("invalid 'ipc-threads' value (%d)"),
1451 fsmonitor__ipc_threads
);
1453 prepare_repo_settings(the_repository
);
1455 * If the repo is fsmonitor-compatible, explicitly set IPC-mode
1456 * (without bothering to load the `core.fsmonitor` config settings).
1458 * If the repo is not compatible, the repo-settings will be set to
1459 * incompatible rather than IPC, so we can use one of the __get
1460 * routines to detect the discrepancy.
1462 fsm_settings__set_ipc(the_repository
);
1464 reason
= fsm_settings__get_reason(the_repository
);
1465 if (reason
> FSMONITOR_REASON_OK
)
1467 fsm_settings__get_incompatible_msg(the_repository
,
1470 if (!strcmp(subcmd
, "start"))
1471 return !!try_to_start_background_daemon();
1473 if (!strcmp(subcmd
, "run"))
1474 return !!try_to_run_foreground_daemon(detach_console
);
1476 if (!strcmp(subcmd
, "stop"))
1477 return !!do_as_client__send_stop();
1479 if (!strcmp(subcmd
, "status"))
1480 return !!do_as_client__status();
1482 die(_("Unhandled subcommand '%s'"), subcmd
);
1486 int cmd_fsmonitor__daemon(int argc
, const char **argv
, const char *prefix
)
1488 struct option options
[] = {
1492 if (argc
== 2 && !strcmp(argv
[1], "-h"))
1493 usage_with_options(builtin_fsmonitor__daemon_usage
, options
);
1495 die(_("fsmonitor--daemon not supported on this platform"));