Merge branch 'ep/guard-kset-tar-headers'
[alt-git.git] / blame.c
blob29770e5c81c0ad36cc18f8f17475ba7b2f509fb2
1 #include "cache.h"
2 #include "refs.h"
3 #include "object-store.h"
4 #include "cache-tree.h"
5 #include "mergesort.h"
6 #include "diff.h"
7 #include "diffcore.h"
8 #include "tag.h"
9 #include "blame.h"
10 #include "alloc.h"
11 #include "commit-slab.h"
13 define_commit_slab(blame_suspects, struct blame_origin *);
14 static struct blame_suspects blame_suspects;
16 struct blame_origin *get_blame_suspects(struct commit *commit)
18 struct blame_origin **result;
20 result = blame_suspects_peek(&blame_suspects, commit);
22 return result ? *result : NULL;
25 static void set_blame_suspects(struct commit *commit, struct blame_origin *origin)
27 *blame_suspects_at(&blame_suspects, commit) = origin;
30 void blame_origin_decref(struct blame_origin *o)
32 if (o && --o->refcnt <= 0) {
33 struct blame_origin *p, *l = NULL;
34 if (o->previous)
35 blame_origin_decref(o->previous);
36 free(o->file.ptr);
37 /* Should be present exactly once in commit chain */
38 for (p = get_blame_suspects(o->commit); p; l = p, p = p->next) {
39 if (p == o) {
40 if (l)
41 l->next = p->next;
42 else
43 set_blame_suspects(o->commit, p->next);
44 free(o);
45 return;
48 die("internal error in blame_origin_decref");
53 * Given a commit and a path in it, create a new origin structure.
54 * The callers that add blame to the scoreboard should use
55 * get_origin() to obtain shared, refcounted copy instead of calling
56 * this function directly.
58 static struct blame_origin *make_origin(struct commit *commit, const char *path)
60 struct blame_origin *o;
61 FLEX_ALLOC_STR(o, path, path);
62 o->commit = commit;
63 o->refcnt = 1;
64 o->next = get_blame_suspects(commit);
65 set_blame_suspects(commit, o);
66 return o;
70 * Locate an existing origin or create a new one.
71 * This moves the origin to front position in the commit util list.
73 static struct blame_origin *get_origin(struct commit *commit, const char *path)
75 struct blame_origin *o, *l;
77 for (o = get_blame_suspects(commit), l = NULL; o; l = o, o = o->next) {
78 if (!strcmp(o->path, path)) {
79 /* bump to front */
80 if (l) {
81 l->next = o->next;
82 o->next = get_blame_suspects(commit);
83 set_blame_suspects(commit, o);
85 return blame_origin_incref(o);
88 return make_origin(commit, path);
93 static void verify_working_tree_path(struct repository *r,
94 struct commit *work_tree, const char *path)
96 struct commit_list *parents;
97 int pos;
99 for (parents = work_tree->parents; parents; parents = parents->next) {
100 const struct object_id *commit_oid = &parents->item->object.oid;
101 struct object_id blob_oid;
102 unsigned short mode;
104 if (!get_tree_entry(r, commit_oid, path, &blob_oid, &mode) &&
105 oid_object_info(r, &blob_oid, NULL) == OBJ_BLOB)
106 return;
109 pos = index_name_pos(r->index, path, strlen(path));
110 if (pos >= 0)
111 ; /* path is in the index */
112 else if (-1 - pos < r->index->cache_nr &&
113 !strcmp(r->index->cache[-1 - pos]->name, path))
114 ; /* path is in the index, unmerged */
115 else
116 die("no such path '%s' in HEAD", path);
119 static struct commit_list **append_parent(struct repository *r,
120 struct commit_list **tail,
121 const struct object_id *oid)
123 struct commit *parent;
125 parent = lookup_commit_reference(r, oid);
126 if (!parent)
127 die("no such commit %s", oid_to_hex(oid));
128 return &commit_list_insert(parent, tail)->next;
131 static void append_merge_parents(struct repository *r,
132 struct commit_list **tail)
134 int merge_head;
135 struct strbuf line = STRBUF_INIT;
137 merge_head = open(git_path_merge_head(r), O_RDONLY);
138 if (merge_head < 0) {
139 if (errno == ENOENT)
140 return;
141 die("cannot open '%s' for reading",
142 git_path_merge_head(r));
145 while (!strbuf_getwholeline_fd(&line, merge_head, '\n')) {
146 struct object_id oid;
147 if (get_oid_hex(line.buf, &oid))
148 die("unknown line in '%s': %s",
149 git_path_merge_head(r), line.buf);
150 tail = append_parent(r, tail, &oid);
152 close(merge_head);
153 strbuf_release(&line);
157 * This isn't as simple as passing sb->buf and sb->len, because we
158 * want to transfer ownership of the buffer to the commit (so we
159 * must use detach).
161 static void set_commit_buffer_from_strbuf(struct repository *r,
162 struct commit *c,
163 struct strbuf *sb)
165 size_t len;
166 void *buf = strbuf_detach(sb, &len);
167 set_commit_buffer(r, c, buf, len);
171 * Prepare a dummy commit that represents the work tree (or staged) item.
172 * Note that annotating work tree item never works in the reverse.
174 static struct commit *fake_working_tree_commit(struct repository *r,
175 struct diff_options *opt,
176 const char *path,
177 const char *contents_from)
179 struct commit *commit;
180 struct blame_origin *origin;
181 struct commit_list **parent_tail, *parent;
182 struct object_id head_oid;
183 struct strbuf buf = STRBUF_INIT;
184 const char *ident;
185 time_t now;
186 int len;
187 struct cache_entry *ce;
188 unsigned mode;
189 struct strbuf msg = STRBUF_INIT;
191 repo_read_index(r);
192 time(&now);
193 commit = alloc_commit_node(r);
194 commit->object.parsed = 1;
195 commit->date = now;
196 parent_tail = &commit->parents;
198 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
199 die("no such ref: HEAD");
201 parent_tail = append_parent(r, parent_tail, &head_oid);
202 append_merge_parents(r, parent_tail);
203 verify_working_tree_path(r, commit, path);
205 origin = make_origin(commit, path);
207 ident = fmt_ident("Not Committed Yet", "not.committed.yet",
208 WANT_BLANK_IDENT, NULL, 0);
209 strbuf_addstr(&msg, "tree 0000000000000000000000000000000000000000\n");
210 for (parent = commit->parents; parent; parent = parent->next)
211 strbuf_addf(&msg, "parent %s\n",
212 oid_to_hex(&parent->item->object.oid));
213 strbuf_addf(&msg,
214 "author %s\n"
215 "committer %s\n\n"
216 "Version of %s from %s\n",
217 ident, ident, path,
218 (!contents_from ? path :
219 (!strcmp(contents_from, "-") ? "standard input" : contents_from)));
220 set_commit_buffer_from_strbuf(r, commit, &msg);
222 if (!contents_from || strcmp("-", contents_from)) {
223 struct stat st;
224 const char *read_from;
225 char *buf_ptr;
226 unsigned long buf_len;
228 if (contents_from) {
229 if (stat(contents_from, &st) < 0)
230 die_errno("Cannot stat '%s'", contents_from);
231 read_from = contents_from;
233 else {
234 if (lstat(path, &st) < 0)
235 die_errno("Cannot lstat '%s'", path);
236 read_from = path;
238 mode = canon_mode(st.st_mode);
240 switch (st.st_mode & S_IFMT) {
241 case S_IFREG:
242 if (opt->flags.allow_textconv &&
243 textconv_object(r, read_from, mode, &null_oid, 0, &buf_ptr, &buf_len))
244 strbuf_attach(&buf, buf_ptr, buf_len, buf_len + 1);
245 else if (strbuf_read_file(&buf, read_from, st.st_size) != st.st_size)
246 die_errno("cannot open or read '%s'", read_from);
247 break;
248 case S_IFLNK:
249 if (strbuf_readlink(&buf, read_from, st.st_size) < 0)
250 die_errno("cannot readlink '%s'", read_from);
251 break;
252 default:
253 die("unsupported file type %s", read_from);
256 else {
257 /* Reading from stdin */
258 mode = 0;
259 if (strbuf_read(&buf, 0, 0) < 0)
260 die_errno("failed to read from stdin");
262 convert_to_git(r->index, path, buf.buf, buf.len, &buf, 0);
263 origin->file.ptr = buf.buf;
264 origin->file.size = buf.len;
265 pretend_object_file(buf.buf, buf.len, OBJ_BLOB, &origin->blob_oid);
268 * Read the current index, replace the path entry with
269 * origin->blob_sha1 without mucking with its mode or type
270 * bits; we are not going to write this index out -- we just
271 * want to run "diff-index --cached".
273 discard_index(r->index);
274 repo_read_index(r);
276 len = strlen(path);
277 if (!mode) {
278 int pos = index_name_pos(r->index, path, len);
279 if (0 <= pos)
280 mode = r->index->cache[pos]->ce_mode;
281 else
282 /* Let's not bother reading from HEAD tree */
283 mode = S_IFREG | 0644;
285 ce = make_empty_cache_entry(r->index, len);
286 oidcpy(&ce->oid, &origin->blob_oid);
287 memcpy(ce->name, path, len);
288 ce->ce_flags = create_ce_flags(0);
289 ce->ce_namelen = len;
290 ce->ce_mode = create_ce_mode(mode);
291 add_index_entry(r->index, ce,
292 ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
294 cache_tree_invalidate_path(r->index, path);
296 return commit;
301 static int diff_hunks(mmfile_t *file_a, mmfile_t *file_b,
302 xdl_emit_hunk_consume_func_t hunk_func, void *cb_data, int xdl_opts)
304 xpparam_t xpp = {0};
305 xdemitconf_t xecfg = {0};
306 xdemitcb_t ecb = {NULL};
308 xpp.flags = xdl_opts;
309 xecfg.hunk_func = hunk_func;
310 ecb.priv = cb_data;
311 return xdi_diff(file_a, file_b, &xpp, &xecfg, &ecb);
314 static const char *get_next_line(const char *start, const char *end)
316 const char *nl = memchr(start, '\n', end - start);
318 return nl ? nl + 1 : end;
321 static int find_line_starts(int **line_starts, const char *buf,
322 unsigned long len)
324 const char *end = buf + len;
325 const char *p;
326 int *lineno;
327 int num = 0;
329 for (p = buf; p < end; p = get_next_line(p, end))
330 num++;
332 ALLOC_ARRAY(*line_starts, num + 1);
333 lineno = *line_starts;
335 for (p = buf; p < end; p = get_next_line(p, end))
336 *lineno++ = p - buf;
338 *lineno = len;
340 return num;
343 struct fingerprint_entry;
345 /* A fingerprint is intended to loosely represent a string, such that two
346 * fingerprints can be quickly compared to give an indication of the similarity
347 * of the strings that they represent.
349 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
350 * the string that it represents. Whitespace is added at each end of the
351 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
352 * For example, the string "Darth Radar" will be converted to the following
353 * fingerprint:
354 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
356 * The similarity between two fingerprints is the size of the intersection of
357 * their multisets, including repeated elements. See fingerprint_similarity for
358 * examples.
360 * For ease of implementation, the fingerprint is implemented as a map
361 * of byte pairs to the count of that byte pair in the string, instead of
362 * allowing repeated elements in a set.
364 struct fingerprint {
365 struct hashmap map;
366 /* As we know the maximum number of entries in advance, it's
367 * convenient to store the entries in a single array instead of having
368 * the hashmap manage the memory.
370 struct fingerprint_entry *entries;
373 /* A byte pair in a fingerprint. Stores the number of times the byte pair
374 * occurs in the string that the fingerprint represents.
376 struct fingerprint_entry {
377 /* The hashmap entry - the hash represents the byte pair in its
378 * entirety so we don't need to store the byte pair separately.
380 struct hashmap_entry entry;
381 /* The number of times the byte pair occurs in the string that the
382 * fingerprint represents.
384 int count;
387 /* See `struct fingerprint` for an explanation of what a fingerprint is.
388 * \param result the fingerprint of the string is stored here. This must be
389 * freed later using free_fingerprint.
390 * \param line_begin the start of the string
391 * \param line_end the end of the string
393 static void get_fingerprint(struct fingerprint *result,
394 const char *line_begin,
395 const char *line_end)
397 unsigned int hash, c0 = 0, c1;
398 const char *p;
399 int max_map_entry_count = 1 + line_end - line_begin;
400 struct fingerprint_entry *entry = xcalloc(max_map_entry_count,
401 sizeof(struct fingerprint_entry));
402 struct fingerprint_entry *found_entry;
404 hashmap_init(&result->map, NULL, NULL, max_map_entry_count);
405 result->entries = entry;
406 for (p = line_begin; p <= line_end; ++p, c0 = c1) {
407 /* Always terminate the string with whitespace.
408 * Normalise whitespace to 0, and normalise letters to
409 * lower case. This won't work for multibyte characters but at
410 * worst will match some unrelated characters.
412 if ((p == line_end) || isspace(*p))
413 c1 = 0;
414 else
415 c1 = tolower(*p);
416 hash = c0 | (c1 << 8);
417 /* Ignore whitespace pairs */
418 if (hash == 0)
419 continue;
420 hashmap_entry_init(&entry->entry, hash);
422 found_entry = hashmap_get_entry(&result->map, entry,
423 /* member name */ entry, NULL);
424 if (found_entry) {
425 found_entry->count += 1;
426 } else {
427 entry->count = 1;
428 hashmap_add(&result->map, &entry->entry);
429 ++entry;
434 static void free_fingerprint(struct fingerprint *f)
436 hashmap_free(&f->map);
437 free(f->entries);
440 /* Calculates the similarity between two fingerprints as the size of the
441 * intersection of their multisets, including repeated elements. See
442 * `struct fingerprint` for an explanation of the fingerprint representation.
443 * The similarity between "cat mat" and "father rather" is 2 because "at" is
444 * present twice in both strings while the similarity between "tim" and "mit"
445 * is 0.
447 static int fingerprint_similarity(struct fingerprint *a, struct fingerprint *b)
449 int intersection = 0;
450 struct hashmap_iter iter;
451 const struct fingerprint_entry *entry_a, *entry_b;
453 hashmap_for_each_entry(&b->map, &iter, entry_b,
454 entry /* member name */) {
455 entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
456 if (entry_a) {
457 intersection += entry_a->count < entry_b->count ?
458 entry_a->count : entry_b->count;
461 return intersection;
464 /* Subtracts byte-pair elements in B from A, modifying A in place.
466 static void fingerprint_subtract(struct fingerprint *a, struct fingerprint *b)
468 struct hashmap_iter iter;
469 struct fingerprint_entry *entry_a;
470 const struct fingerprint_entry *entry_b;
472 hashmap_iter_init(&b->map, &iter);
474 hashmap_for_each_entry(&b->map, &iter, entry_b,
475 entry /* member name */) {
476 entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
477 if (entry_a) {
478 if (entry_a->count <= entry_b->count)
479 hashmap_remove(&a->map, &entry_b->entry, NULL);
480 else
481 entry_a->count -= entry_b->count;
486 /* Calculate fingerprints for a series of lines.
487 * Puts the fingerprints in the fingerprints array, which must have been
488 * preallocated to allow storing line_count elements.
490 static void get_line_fingerprints(struct fingerprint *fingerprints,
491 const char *content, const int *line_starts,
492 long first_line, long line_count)
494 int i;
495 const char *linestart, *lineend;
497 line_starts += first_line;
498 for (i = 0; i < line_count; ++i) {
499 linestart = content + line_starts[i];
500 lineend = content + line_starts[i + 1];
501 get_fingerprint(fingerprints + i, linestart, lineend);
505 static void free_line_fingerprints(struct fingerprint *fingerprints,
506 int nr_fingerprints)
508 int i;
510 for (i = 0; i < nr_fingerprints; i++)
511 free_fingerprint(&fingerprints[i]);
514 /* This contains the data necessary to linearly map a line number in one half
515 * of a diff chunk to the line in the other half of the diff chunk that is
516 * closest in terms of its position as a fraction of the length of the chunk.
518 struct line_number_mapping {
519 int destination_start, destination_length,
520 source_start, source_length;
523 /* Given a line number in one range, offset and scale it to map it onto the
524 * other range.
525 * Essentially this mapping is a simple linear equation but the calculation is
526 * more complicated to allow performing it with integer operations.
527 * Another complication is that if a line could map onto many lines in the
528 * destination range then we want to choose the line at the center of those
529 * possibilities.
530 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
531 * first 5 lines in B will map onto the first line in the A chunk, while the
532 * last 5 lines will all map onto the second line in the A chunk.
533 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
534 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
536 static int map_line_number(int line_number,
537 const struct line_number_mapping *mapping)
539 return ((line_number - mapping->source_start) * 2 + 1) *
540 mapping->destination_length /
541 (mapping->source_length * 2) +
542 mapping->destination_start;
545 /* Get a pointer to the element storing the similarity between a line in A
546 * and a line in B.
548 * The similarities are stored in a 2-dimensional array. Each "row" in the
549 * array contains the similarities for a line in B. The similarities stored in
550 * a row are the similarities between the line in B and the nearby lines in A.
551 * To keep the length of each row the same, it is padded out with values of -1
552 * where the search range extends beyond the lines in A.
553 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
554 * look like this:
555 * a | m
556 * b | n
557 * c | o
558 * d | p
559 * e | q
560 * Then the similarity array will contain:
561 * [-1, -1, am, bm, cm,
562 * -1, an, bn, cn, dn,
563 * ao, bo, co, do, eo,
564 * bp, cp, dp, ep, -1,
565 * cq, dq, eq, -1, -1]
566 * Where similarities are denoted either by -1 for invalid, or the
567 * concatenation of the two lines in the diff being compared.
569 * \param similarities array of similarities between lines in A and B
570 * \param line_a the index of the line in A, in the same frame of reference as
571 * closest_line_a.
572 * \param local_line_b the index of the line in B, relative to the first line
573 * in B that similarities represents.
574 * \param closest_line_a the index of the line in A that is deemed to be
575 * closest to local_line_b. This must be in the same
576 * frame of reference as line_a. This value defines
577 * where similarities is centered for the line in B.
578 * \param max_search_distance_a maximum distance in lines from the closest line
579 * in A for other lines in A for which
580 * similarities may be calculated.
582 static int *get_similarity(int *similarities,
583 int line_a, int local_line_b,
584 int closest_line_a, int max_search_distance_a)
586 assert(abs(line_a - closest_line_a) <=
587 max_search_distance_a);
588 return similarities + line_a - closest_line_a +
589 max_search_distance_a +
590 local_line_b * (max_search_distance_a * 2 + 1);
593 #define CERTAIN_NOTHING_MATCHES -2
594 #define CERTAINTY_NOT_CALCULATED -1
596 /* Given a line in B, first calculate its similarities with nearby lines in A
597 * if not already calculated, then identify the most similar and second most
598 * similar lines. The "certainty" is calculated based on those two
599 * similarities.
601 * \param start_a the index of the first line of the chunk in A
602 * \param length_a the length in lines of the chunk in A
603 * \param local_line_b the index of the line in B, relative to the first line
604 * in the chunk.
605 * \param fingerprints_a array of fingerprints for the chunk in A
606 * \param fingerprints_b array of fingerprints for the chunk in B
607 * \param similarities 2-dimensional array of similarities between lines in A
608 * and B. See get_similarity() for more details.
609 * \param certainties array of values indicating how strongly a line in B is
610 * matched with some line in A.
611 * \param second_best_result array of absolute indices in A for the second
612 * closest match of a line in B.
613 * \param result array of absolute indices in A for the closest match of a line
614 * in B.
615 * \param max_search_distance_a maximum distance in lines from the closest line
616 * in A for other lines in A for which
617 * similarities may be calculated.
618 * \param map_line_number_in_b_to_a parameter to map_line_number().
620 static void find_best_line_matches(
621 int start_a,
622 int length_a,
623 int start_b,
624 int local_line_b,
625 struct fingerprint *fingerprints_a,
626 struct fingerprint *fingerprints_b,
627 int *similarities,
628 int *certainties,
629 int *second_best_result,
630 int *result,
631 const int max_search_distance_a,
632 const struct line_number_mapping *map_line_number_in_b_to_a)
635 int i, search_start, search_end, closest_local_line_a, *similarity,
636 best_similarity = 0, second_best_similarity = 0,
637 best_similarity_index = 0, second_best_similarity_index = 0;
639 /* certainty has already been calculated so no need to redo the work */
640 if (certainties[local_line_b] != CERTAINTY_NOT_CALCULATED)
641 return;
643 closest_local_line_a = map_line_number(
644 local_line_b + start_b, map_line_number_in_b_to_a) - start_a;
646 search_start = closest_local_line_a - max_search_distance_a;
647 if (search_start < 0)
648 search_start = 0;
650 search_end = closest_local_line_a + max_search_distance_a + 1;
651 if (search_end > length_a)
652 search_end = length_a;
654 for (i = search_start; i < search_end; ++i) {
655 similarity = get_similarity(similarities,
656 i, local_line_b,
657 closest_local_line_a,
658 max_search_distance_a);
659 if (*similarity == -1) {
660 /* This value will never exceed 10 but assert just in
661 * case
663 assert(abs(i - closest_local_line_a) < 1000);
664 /* scale the similarity by (1000 - distance from
665 * closest line) to act as a tie break between lines
666 * that otherwise are equally similar.
668 *similarity = fingerprint_similarity(
669 fingerprints_b + local_line_b,
670 fingerprints_a + i) *
671 (1000 - abs(i - closest_local_line_a));
673 if (*similarity > best_similarity) {
674 second_best_similarity = best_similarity;
675 second_best_similarity_index = best_similarity_index;
676 best_similarity = *similarity;
677 best_similarity_index = i;
678 } else if (*similarity > second_best_similarity) {
679 second_best_similarity = *similarity;
680 second_best_similarity_index = i;
684 if (best_similarity == 0) {
685 /* this line definitely doesn't match with anything. Mark it
686 * with this special value so it doesn't get invalidated and
687 * won't be recalculated.
689 certainties[local_line_b] = CERTAIN_NOTHING_MATCHES;
690 result[local_line_b] = -1;
691 } else {
692 /* Calculate the certainty with which this line matches.
693 * If the line matches well with two lines then that reduces
694 * the certainty. However we still want to prioritise matching
695 * a line that matches very well with two lines over matching a
696 * line that matches poorly with one line, hence doubling
697 * best_similarity.
698 * This means that if we have
699 * line X that matches only one line with a score of 3,
700 * line Y that matches two lines equally with a score of 5,
701 * and line Z that matches only one line with a score or 2,
702 * then the lines in order of certainty are X, Y, Z.
704 certainties[local_line_b] = best_similarity * 2 -
705 second_best_similarity;
707 /* We keep both the best and second best results to allow us to
708 * check at a later stage of the matching process whether the
709 * result needs to be invalidated.
711 result[local_line_b] = start_a + best_similarity_index;
712 second_best_result[local_line_b] =
713 start_a + second_best_similarity_index;
718 * This finds the line that we can match with the most confidence, and
719 * uses it as a partition. It then calls itself on the lines on either side of
720 * that partition. In this way we avoid lines appearing out of order, and
721 * retain a sensible line ordering.
722 * \param start_a index of the first line in A with which lines in B may be
723 * compared.
724 * \param start_b index of the first line in B for which matching should be
725 * done.
726 * \param length_a number of lines in A with which lines in B may be compared.
727 * \param length_b number of lines in B for which matching should be done.
728 * \param fingerprints_a mutable array of fingerprints in A. The first element
729 * corresponds to the line at start_a.
730 * \param fingerprints_b array of fingerprints in B. The first element
731 * corresponds to the line at start_b.
732 * \param similarities 2-dimensional array of similarities between lines in A
733 * and B. See get_similarity() for more details.
734 * \param certainties array of values indicating how strongly a line in B is
735 * matched with some line in A.
736 * \param second_best_result array of absolute indices in A for the second
737 * closest match of a line in B.
738 * \param result array of absolute indices in A for the closest match of a line
739 * in B.
740 * \param max_search_distance_a maximum distance in lines from the closest line
741 * in A for other lines in A for which
742 * similarities may be calculated.
743 * \param max_search_distance_b an upper bound on the greatest possible
744 * distance between lines in B such that they will
745 * both be compared with the same line in A
746 * according to max_search_distance_a.
747 * \param map_line_number_in_b_to_a parameter to map_line_number().
749 static void fuzzy_find_matching_lines_recurse(
750 int start_a, int start_b,
751 int length_a, int length_b,
752 struct fingerprint *fingerprints_a,
753 struct fingerprint *fingerprints_b,
754 int *similarities,
755 int *certainties,
756 int *second_best_result,
757 int *result,
758 int max_search_distance_a,
759 int max_search_distance_b,
760 const struct line_number_mapping *map_line_number_in_b_to_a)
762 int i, invalidate_min, invalidate_max, offset_b,
763 second_half_start_a, second_half_start_b,
764 second_half_length_a, second_half_length_b,
765 most_certain_line_a, most_certain_local_line_b = -1,
766 most_certain_line_certainty = -1,
767 closest_local_line_a;
769 for (i = 0; i < length_b; ++i) {
770 find_best_line_matches(start_a,
771 length_a,
772 start_b,
774 fingerprints_a,
775 fingerprints_b,
776 similarities,
777 certainties,
778 second_best_result,
779 result,
780 max_search_distance_a,
781 map_line_number_in_b_to_a);
783 if (certainties[i] > most_certain_line_certainty) {
784 most_certain_line_certainty = certainties[i];
785 most_certain_local_line_b = i;
789 /* No matches. */
790 if (most_certain_local_line_b == -1)
791 return;
793 most_certain_line_a = result[most_certain_local_line_b];
796 * Subtract the most certain line's fingerprint in B from the matched
797 * fingerprint in A. This means that other lines in B can't also match
798 * the same parts of the line in A.
800 fingerprint_subtract(fingerprints_a + most_certain_line_a - start_a,
801 fingerprints_b + most_certain_local_line_b);
803 /* Invalidate results that may be affected by the choice of most
804 * certain line.
806 invalidate_min = most_certain_local_line_b - max_search_distance_b;
807 invalidate_max = most_certain_local_line_b + max_search_distance_b + 1;
808 if (invalidate_min < 0)
809 invalidate_min = 0;
810 if (invalidate_max > length_b)
811 invalidate_max = length_b;
813 /* As the fingerprint in A has changed, discard previously calculated
814 * similarity values with that fingerprint.
816 for (i = invalidate_min; i < invalidate_max; ++i) {
817 closest_local_line_a = map_line_number(
818 i + start_b, map_line_number_in_b_to_a) - start_a;
820 /* Check that the lines in A and B are close enough that there
821 * is a similarity value for them.
823 if (abs(most_certain_line_a - start_a - closest_local_line_a) >
824 max_search_distance_a) {
825 continue;
828 *get_similarity(similarities, most_certain_line_a - start_a,
829 i, closest_local_line_a,
830 max_search_distance_a) = -1;
833 /* More invalidating of results that may be affected by the choice of
834 * most certain line.
835 * Discard the matches for lines in B that are currently matched with a
836 * line in A such that their ordering contradicts the ordering imposed
837 * by the choice of most certain line.
839 for (i = most_certain_local_line_b - 1; i >= invalidate_min; --i) {
840 /* In this loop we discard results for lines in B that are
841 * before most-certain-line-B but are matched with a line in A
842 * that is after most-certain-line-A.
844 if (certainties[i] >= 0 &&
845 (result[i] >= most_certain_line_a ||
846 second_best_result[i] >= most_certain_line_a)) {
847 certainties[i] = CERTAINTY_NOT_CALCULATED;
850 for (i = most_certain_local_line_b + 1; i < invalidate_max; ++i) {
851 /* In this loop we discard results for lines in B that are
852 * after most-certain-line-B but are matched with a line in A
853 * that is before most-certain-line-A.
855 if (certainties[i] >= 0 &&
856 (result[i] <= most_certain_line_a ||
857 second_best_result[i] <= most_certain_line_a)) {
858 certainties[i] = CERTAINTY_NOT_CALCULATED;
862 /* Repeat the matching process for lines before the most certain line.
864 if (most_certain_local_line_b > 0) {
865 fuzzy_find_matching_lines_recurse(
866 start_a, start_b,
867 most_certain_line_a + 1 - start_a,
868 most_certain_local_line_b,
869 fingerprints_a, fingerprints_b, similarities,
870 certainties, second_best_result, result,
871 max_search_distance_a,
872 max_search_distance_b,
873 map_line_number_in_b_to_a);
875 /* Repeat the matching process for lines after the most certain line.
877 if (most_certain_local_line_b + 1 < length_b) {
878 second_half_start_a = most_certain_line_a;
879 offset_b = most_certain_local_line_b + 1;
880 second_half_start_b = start_b + offset_b;
881 second_half_length_a =
882 length_a + start_a - second_half_start_a;
883 second_half_length_b =
884 length_b + start_b - second_half_start_b;
885 fuzzy_find_matching_lines_recurse(
886 second_half_start_a, second_half_start_b,
887 second_half_length_a, second_half_length_b,
888 fingerprints_a + second_half_start_a - start_a,
889 fingerprints_b + offset_b,
890 similarities +
891 offset_b * (max_search_distance_a * 2 + 1),
892 certainties + offset_b,
893 second_best_result + offset_b, result + offset_b,
894 max_search_distance_a,
895 max_search_distance_b,
896 map_line_number_in_b_to_a);
900 /* Find the lines in the parent line range that most closely match the lines in
901 * the target line range. This is accomplished by matching fingerprints in each
902 * blame_origin, and choosing the best matches that preserve the line ordering.
903 * See struct fingerprint for details of fingerprint matching, and
904 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
906 * The performance is believed to be O(n log n) in the typical case and O(n^2)
907 * in a pathological case, where n is the number of lines in the target range.
909 static int *fuzzy_find_matching_lines(struct blame_origin *parent,
910 struct blame_origin *target,
911 int tlno, int parent_slno, int same,
912 int parent_len)
914 /* We use the terminology "A" for the left hand side of the diff AKA
915 * parent, and "B" for the right hand side of the diff AKA target. */
916 int start_a = parent_slno;
917 int length_a = parent_len;
918 int start_b = tlno;
919 int length_b = same - tlno;
921 struct line_number_mapping map_line_number_in_b_to_a = {
922 start_a, length_a, start_b, length_b
925 struct fingerprint *fingerprints_a = parent->fingerprints;
926 struct fingerprint *fingerprints_b = target->fingerprints;
928 int i, *result, *second_best_result,
929 *certainties, *similarities, similarity_count;
932 * max_search_distance_a means that given a line in B, compare it to
933 * the line in A that is closest to its position, and the lines in A
934 * that are no greater than max_search_distance_a lines away from the
935 * closest line in A.
937 * max_search_distance_b is an upper bound on the greatest possible
938 * distance between lines in B such that they will both be compared
939 * with the same line in A according to max_search_distance_a.
941 int max_search_distance_a = 10, max_search_distance_b;
943 if (length_a <= 0)
944 return NULL;
946 if (max_search_distance_a >= length_a)
947 max_search_distance_a = length_a ? length_a - 1 : 0;
949 max_search_distance_b = ((2 * max_search_distance_a + 1) * length_b
950 - 1) / length_a;
952 result = xcalloc(sizeof(int), length_b);
953 second_best_result = xcalloc(sizeof(int), length_b);
954 certainties = xcalloc(sizeof(int), length_b);
956 /* See get_similarity() for details of similarities. */
957 similarity_count = length_b * (max_search_distance_a * 2 + 1);
958 similarities = xcalloc(sizeof(int), similarity_count);
960 for (i = 0; i < length_b; ++i) {
961 result[i] = -1;
962 second_best_result[i] = -1;
963 certainties[i] = CERTAINTY_NOT_CALCULATED;
966 for (i = 0; i < similarity_count; ++i)
967 similarities[i] = -1;
969 fuzzy_find_matching_lines_recurse(start_a, start_b,
970 length_a, length_b,
971 fingerprints_a + start_a,
972 fingerprints_b + start_b,
973 similarities,
974 certainties,
975 second_best_result,
976 result,
977 max_search_distance_a,
978 max_search_distance_b,
979 &map_line_number_in_b_to_a);
981 free(similarities);
982 free(certainties);
983 free(second_best_result);
985 return result;
988 static void fill_origin_fingerprints(struct blame_origin *o)
990 int *line_starts;
992 if (o->fingerprints)
993 return;
994 o->num_lines = find_line_starts(&line_starts, o->file.ptr,
995 o->file.size);
996 o->fingerprints = xcalloc(sizeof(struct fingerprint), o->num_lines);
997 get_line_fingerprints(o->fingerprints, o->file.ptr, line_starts,
998 0, o->num_lines);
999 free(line_starts);
1002 static void drop_origin_fingerprints(struct blame_origin *o)
1004 if (o->fingerprints) {
1005 free_line_fingerprints(o->fingerprints, o->num_lines);
1006 o->num_lines = 0;
1007 FREE_AND_NULL(o->fingerprints);
1012 * Given an origin, prepare mmfile_t structure to be used by the
1013 * diff machinery
1015 static void fill_origin_blob(struct diff_options *opt,
1016 struct blame_origin *o, mmfile_t *file,
1017 int *num_read_blob, int fill_fingerprints)
1019 if (!o->file.ptr) {
1020 enum object_type type;
1021 unsigned long file_size;
1023 (*num_read_blob)++;
1024 if (opt->flags.allow_textconv &&
1025 textconv_object(opt->repo, o->path, o->mode,
1026 &o->blob_oid, 1, &file->ptr, &file_size))
1028 else
1029 file->ptr = read_object_file(&o->blob_oid, &type,
1030 &file_size);
1031 file->size = file_size;
1033 if (!file->ptr)
1034 die("Cannot read blob %s for path %s",
1035 oid_to_hex(&o->blob_oid),
1036 o->path);
1037 o->file = *file;
1039 else
1040 *file = o->file;
1041 if (fill_fingerprints)
1042 fill_origin_fingerprints(o);
1045 static void drop_origin_blob(struct blame_origin *o)
1047 FREE_AND_NULL(o->file.ptr);
1048 drop_origin_fingerprints(o);
1052 * Any merge of blames happens on lists of blames that arrived via
1053 * different parents in a single suspect. In this case, we want to
1054 * sort according to the suspect line numbers as opposed to the final
1055 * image line numbers. The function body is somewhat longish because
1056 * it avoids unnecessary writes.
1059 static struct blame_entry *blame_merge(struct blame_entry *list1,
1060 struct blame_entry *list2)
1062 struct blame_entry *p1 = list1, *p2 = list2,
1063 **tail = &list1;
1065 if (!p1)
1066 return p2;
1067 if (!p2)
1068 return p1;
1070 if (p1->s_lno <= p2->s_lno) {
1071 do {
1072 tail = &p1->next;
1073 if ((p1 = *tail) == NULL) {
1074 *tail = p2;
1075 return list1;
1077 } while (p1->s_lno <= p2->s_lno);
1079 for (;;) {
1080 *tail = p2;
1081 do {
1082 tail = &p2->next;
1083 if ((p2 = *tail) == NULL) {
1084 *tail = p1;
1085 return list1;
1087 } while (p1->s_lno > p2->s_lno);
1088 *tail = p1;
1089 do {
1090 tail = &p1->next;
1091 if ((p1 = *tail) == NULL) {
1092 *tail = p2;
1093 return list1;
1095 } while (p1->s_lno <= p2->s_lno);
1099 static void *get_next_blame(const void *p)
1101 return ((struct blame_entry *)p)->next;
1104 static void set_next_blame(void *p1, void *p2)
1106 ((struct blame_entry *)p1)->next = p2;
1110 * Final image line numbers are all different, so we don't need a
1111 * three-way comparison here.
1114 static int compare_blame_final(const void *p1, const void *p2)
1116 return ((struct blame_entry *)p1)->lno > ((struct blame_entry *)p2)->lno
1117 ? 1 : -1;
1120 static int compare_blame_suspect(const void *p1, const void *p2)
1122 const struct blame_entry *s1 = p1, *s2 = p2;
1124 * to allow for collating suspects, we sort according to the
1125 * respective pointer value as the primary sorting criterion.
1126 * The actual relation is pretty unimportant as long as it
1127 * establishes a total order. Comparing as integers gives us
1128 * that.
1130 if (s1->suspect != s2->suspect)
1131 return (intptr_t)s1->suspect > (intptr_t)s2->suspect ? 1 : -1;
1132 if (s1->s_lno == s2->s_lno)
1133 return 0;
1134 return s1->s_lno > s2->s_lno ? 1 : -1;
1137 void blame_sort_final(struct blame_scoreboard *sb)
1139 sb->ent = llist_mergesort(sb->ent, get_next_blame, set_next_blame,
1140 compare_blame_final);
1143 static int compare_commits_by_reverse_commit_date(const void *a,
1144 const void *b,
1145 void *c)
1147 return -compare_commits_by_commit_date(a, b, c);
1151 * For debugging -- origin is refcounted, and this asserts that
1152 * we do not underflow.
1154 static void sanity_check_refcnt(struct blame_scoreboard *sb)
1156 int baa = 0;
1157 struct blame_entry *ent;
1159 for (ent = sb->ent; ent; ent = ent->next) {
1160 /* Nobody should have zero or negative refcnt */
1161 if (ent->suspect->refcnt <= 0) {
1162 fprintf(stderr, "%s in %s has negative refcnt %d\n",
1163 ent->suspect->path,
1164 oid_to_hex(&ent->suspect->commit->object.oid),
1165 ent->suspect->refcnt);
1166 baa = 1;
1169 if (baa)
1170 sb->on_sanity_fail(sb, baa);
1174 * If two blame entries that are next to each other came from
1175 * contiguous lines in the same origin (i.e. <commit, path> pair),
1176 * merge them together.
1178 void blame_coalesce(struct blame_scoreboard *sb)
1180 struct blame_entry *ent, *next;
1182 for (ent = sb->ent; ent && (next = ent->next); ent = next) {
1183 if (ent->suspect == next->suspect &&
1184 ent->s_lno + ent->num_lines == next->s_lno &&
1185 ent->ignored == next->ignored &&
1186 ent->unblamable == next->unblamable) {
1187 ent->num_lines += next->num_lines;
1188 ent->next = next->next;
1189 blame_origin_decref(next->suspect);
1190 free(next);
1191 ent->score = 0;
1192 next = ent; /* again */
1196 if (sb->debug) /* sanity */
1197 sanity_check_refcnt(sb);
1201 * Merge the given sorted list of blames into a preexisting origin.
1202 * If there were no previous blames to that commit, it is entered into
1203 * the commit priority queue of the score board.
1206 static void queue_blames(struct blame_scoreboard *sb, struct blame_origin *porigin,
1207 struct blame_entry *sorted)
1209 if (porigin->suspects)
1210 porigin->suspects = blame_merge(porigin->suspects, sorted);
1211 else {
1212 struct blame_origin *o;
1213 for (o = get_blame_suspects(porigin->commit); o; o = o->next) {
1214 if (o->suspects) {
1215 porigin->suspects = sorted;
1216 return;
1219 porigin->suspects = sorted;
1220 prio_queue_put(&sb->commits, porigin->commit);
1225 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1226 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1227 * for an origin is also used to pass the blame for the entire file to
1228 * the parent to detect the case where a child's blob is identical to
1229 * that of its parent's.
1231 * This also fills origin->mode for corresponding tree path.
1233 static int fill_blob_sha1_and_mode(struct repository *r,
1234 struct blame_origin *origin)
1236 if (!is_null_oid(&origin->blob_oid))
1237 return 0;
1238 if (get_tree_entry(r, &origin->commit->object.oid, origin->path, &origin->blob_oid, &origin->mode))
1239 goto error_out;
1240 if (oid_object_info(r, &origin->blob_oid, NULL) != OBJ_BLOB)
1241 goto error_out;
1242 return 0;
1243 error_out:
1244 oidclr(&origin->blob_oid);
1245 origin->mode = S_IFINVALID;
1246 return -1;
1250 * We have an origin -- check if the same path exists in the
1251 * parent and return an origin structure to represent it.
1253 static struct blame_origin *find_origin(struct repository *r,
1254 struct commit *parent,
1255 struct blame_origin *origin)
1257 struct blame_origin *porigin;
1258 struct diff_options diff_opts;
1259 const char *paths[2];
1261 /* First check any existing origins */
1262 for (porigin = get_blame_suspects(parent); porigin; porigin = porigin->next)
1263 if (!strcmp(porigin->path, origin->path)) {
1265 * The same path between origin and its parent
1266 * without renaming -- the most common case.
1268 return blame_origin_incref (porigin);
1271 /* See if the origin->path is different between parent
1272 * and origin first. Most of the time they are the
1273 * same and diff-tree is fairly efficient about this.
1275 repo_diff_setup(r, &diff_opts);
1276 diff_opts.flags.recursive = 1;
1277 diff_opts.detect_rename = 0;
1278 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1279 paths[0] = origin->path;
1280 paths[1] = NULL;
1282 parse_pathspec(&diff_opts.pathspec,
1283 PATHSPEC_ALL_MAGIC & ~PATHSPEC_LITERAL,
1284 PATHSPEC_LITERAL_PATH, "", paths);
1285 diff_setup_done(&diff_opts);
1287 if (is_null_oid(&origin->commit->object.oid))
1288 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1289 else
1290 diff_tree_oid(get_commit_tree_oid(parent),
1291 get_commit_tree_oid(origin->commit),
1292 "", &diff_opts);
1293 diffcore_std(&diff_opts);
1295 if (!diff_queued_diff.nr) {
1296 /* The path is the same as parent */
1297 porigin = get_origin(parent, origin->path);
1298 oidcpy(&porigin->blob_oid, &origin->blob_oid);
1299 porigin->mode = origin->mode;
1300 } else {
1302 * Since origin->path is a pathspec, if the parent
1303 * commit had it as a directory, we will see a whole
1304 * bunch of deletion of files in the directory that we
1305 * do not care about.
1307 int i;
1308 struct diff_filepair *p = NULL;
1309 for (i = 0; i < diff_queued_diff.nr; i++) {
1310 const char *name;
1311 p = diff_queued_diff.queue[i];
1312 name = p->one->path ? p->one->path : p->two->path;
1313 if (!strcmp(name, origin->path))
1314 break;
1316 if (!p)
1317 die("internal error in blame::find_origin");
1318 switch (p->status) {
1319 default:
1320 die("internal error in blame::find_origin (%c)",
1321 p->status);
1322 case 'M':
1323 porigin = get_origin(parent, origin->path);
1324 oidcpy(&porigin->blob_oid, &p->one->oid);
1325 porigin->mode = p->one->mode;
1326 break;
1327 case 'A':
1328 case 'T':
1329 /* Did not exist in parent, or type changed */
1330 break;
1333 diff_flush(&diff_opts);
1334 clear_pathspec(&diff_opts.pathspec);
1335 return porigin;
1339 * We have an origin -- find the path that corresponds to it in its
1340 * parent and return an origin structure to represent it.
1342 static struct blame_origin *find_rename(struct repository *r,
1343 struct commit *parent,
1344 struct blame_origin *origin)
1346 struct blame_origin *porigin = NULL;
1347 struct diff_options diff_opts;
1348 int i;
1350 repo_diff_setup(r, &diff_opts);
1351 diff_opts.flags.recursive = 1;
1352 diff_opts.detect_rename = DIFF_DETECT_RENAME;
1353 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
1354 diff_opts.single_follow = origin->path;
1355 diff_setup_done(&diff_opts);
1357 if (is_null_oid(&origin->commit->object.oid))
1358 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
1359 else
1360 diff_tree_oid(get_commit_tree_oid(parent),
1361 get_commit_tree_oid(origin->commit),
1362 "", &diff_opts);
1363 diffcore_std(&diff_opts);
1365 for (i = 0; i < diff_queued_diff.nr; i++) {
1366 struct diff_filepair *p = diff_queued_diff.queue[i];
1367 if ((p->status == 'R' || p->status == 'C') &&
1368 !strcmp(p->two->path, origin->path)) {
1369 porigin = get_origin(parent, p->one->path);
1370 oidcpy(&porigin->blob_oid, &p->one->oid);
1371 porigin->mode = p->one->mode;
1372 break;
1375 diff_flush(&diff_opts);
1376 clear_pathspec(&diff_opts.pathspec);
1377 return porigin;
1381 * Append a new blame entry to a given output queue.
1383 static void add_blame_entry(struct blame_entry ***queue,
1384 const struct blame_entry *src)
1386 struct blame_entry *e = xmalloc(sizeof(*e));
1387 memcpy(e, src, sizeof(*e));
1388 blame_origin_incref(e->suspect);
1390 e->next = **queue;
1391 **queue = e;
1392 *queue = &e->next;
1396 * src typically is on-stack; we want to copy the information in it to
1397 * a malloced blame_entry that gets added to the given queue. The
1398 * origin of dst loses a refcnt.
1400 static void dup_entry(struct blame_entry ***queue,
1401 struct blame_entry *dst, struct blame_entry *src)
1403 blame_origin_incref(src->suspect);
1404 blame_origin_decref(dst->suspect);
1405 memcpy(dst, src, sizeof(*src));
1406 dst->next = **queue;
1407 **queue = dst;
1408 *queue = &dst->next;
1411 const char *blame_nth_line(struct blame_scoreboard *sb, long lno)
1413 return sb->final_buf + sb->lineno[lno];
1417 * It is known that lines between tlno to same came from parent, and e
1418 * has an overlap with that range. it also is known that parent's
1419 * line plno corresponds to e's line tlno.
1421 * <---- e ----->
1422 * <------>
1423 * <------------>
1424 * <------------>
1425 * <------------------>
1427 * Split e into potentially three parts; before this chunk, the chunk
1428 * to be blamed for the parent, and after that portion.
1430 static void split_overlap(struct blame_entry *split,
1431 struct blame_entry *e,
1432 int tlno, int plno, int same,
1433 struct blame_origin *parent)
1435 int chunk_end_lno;
1436 int i;
1437 memset(split, 0, sizeof(struct blame_entry [3]));
1439 for (i = 0; i < 3; i++) {
1440 split[i].ignored = e->ignored;
1441 split[i].unblamable = e->unblamable;
1444 if (e->s_lno < tlno) {
1445 /* there is a pre-chunk part not blamed on parent */
1446 split[0].suspect = blame_origin_incref(e->suspect);
1447 split[0].lno = e->lno;
1448 split[0].s_lno = e->s_lno;
1449 split[0].num_lines = tlno - e->s_lno;
1450 split[1].lno = e->lno + tlno - e->s_lno;
1451 split[1].s_lno = plno;
1453 else {
1454 split[1].lno = e->lno;
1455 split[1].s_lno = plno + (e->s_lno - tlno);
1458 if (same < e->s_lno + e->num_lines) {
1459 /* there is a post-chunk part not blamed on parent */
1460 split[2].suspect = blame_origin_incref(e->suspect);
1461 split[2].lno = e->lno + (same - e->s_lno);
1462 split[2].s_lno = e->s_lno + (same - e->s_lno);
1463 split[2].num_lines = e->s_lno + e->num_lines - same;
1464 chunk_end_lno = split[2].lno;
1466 else
1467 chunk_end_lno = e->lno + e->num_lines;
1468 split[1].num_lines = chunk_end_lno - split[1].lno;
1471 * if it turns out there is nothing to blame the parent for,
1472 * forget about the splitting. !split[1].suspect signals this.
1474 if (split[1].num_lines < 1)
1475 return;
1476 split[1].suspect = blame_origin_incref(parent);
1480 * split_overlap() divided an existing blame e into up to three parts
1481 * in split. Any assigned blame is moved to queue to
1482 * reflect the split.
1484 static void split_blame(struct blame_entry ***blamed,
1485 struct blame_entry ***unblamed,
1486 struct blame_entry *split,
1487 struct blame_entry *e)
1489 if (split[0].suspect && split[2].suspect) {
1490 /* The first part (reuse storage for the existing entry e) */
1491 dup_entry(unblamed, e, &split[0]);
1493 /* The last part -- me */
1494 add_blame_entry(unblamed, &split[2]);
1496 /* ... and the middle part -- parent */
1497 add_blame_entry(blamed, &split[1]);
1499 else if (!split[0].suspect && !split[2].suspect)
1501 * The parent covers the entire area; reuse storage for
1502 * e and replace it with the parent.
1504 dup_entry(blamed, e, &split[1]);
1505 else if (split[0].suspect) {
1506 /* me and then parent */
1507 dup_entry(unblamed, e, &split[0]);
1508 add_blame_entry(blamed, &split[1]);
1510 else {
1511 /* parent and then me */
1512 dup_entry(blamed, e, &split[1]);
1513 add_blame_entry(unblamed, &split[2]);
1518 * After splitting the blame, the origins used by the
1519 * on-stack blame_entry should lose one refcnt each.
1521 static void decref_split(struct blame_entry *split)
1523 int i;
1525 for (i = 0; i < 3; i++)
1526 blame_origin_decref(split[i].suspect);
1530 * reverse_blame reverses the list given in head, appending tail.
1531 * That allows us to build lists in reverse order, then reverse them
1532 * afterwards. This can be faster than building the list in proper
1533 * order right away. The reason is that building in proper order
1534 * requires writing a link in the _previous_ element, while building
1535 * in reverse order just requires placing the list head into the
1536 * _current_ element.
1539 static struct blame_entry *reverse_blame(struct blame_entry *head,
1540 struct blame_entry *tail)
1542 while (head) {
1543 struct blame_entry *next = head->next;
1544 head->next = tail;
1545 tail = head;
1546 head = next;
1548 return tail;
1552 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1553 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1554 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1555 * e->num_lines). The caller needs to sort out the reference counting for the
1556 * new entry's suspect.
1558 static struct blame_entry *split_blame_at(struct blame_entry *e, int len,
1559 struct blame_origin *new_suspect)
1561 struct blame_entry *n = xcalloc(1, sizeof(struct blame_entry));
1563 n->suspect = new_suspect;
1564 n->ignored = e->ignored;
1565 n->unblamable = e->unblamable;
1566 n->lno = e->lno + len;
1567 n->s_lno = e->s_lno + len;
1568 n->num_lines = e->num_lines - len;
1569 e->num_lines = len;
1570 e->score = 0;
1571 return n;
1574 struct blame_line_tracker {
1575 int is_parent;
1576 int s_lno;
1579 static int are_lines_adjacent(struct blame_line_tracker *first,
1580 struct blame_line_tracker *second)
1582 return first->is_parent == second->is_parent &&
1583 first->s_lno + 1 == second->s_lno;
1586 static int scan_parent_range(struct fingerprint *p_fps,
1587 struct fingerprint *t_fps, int t_idx,
1588 int from, int nr_lines)
1590 int sim, p_idx;
1591 #define FINGERPRINT_FILE_THRESHOLD 10
1592 int best_sim_val = FINGERPRINT_FILE_THRESHOLD;
1593 int best_sim_idx = -1;
1595 for (p_idx = from; p_idx < from + nr_lines; p_idx++) {
1596 sim = fingerprint_similarity(&t_fps[t_idx], &p_fps[p_idx]);
1597 if (sim < best_sim_val)
1598 continue;
1599 /* Break ties with the closest-to-target line number */
1600 if (sim == best_sim_val && best_sim_idx != -1 &&
1601 abs(best_sim_idx - t_idx) < abs(p_idx - t_idx))
1602 continue;
1603 best_sim_val = sim;
1604 best_sim_idx = p_idx;
1606 return best_sim_idx;
1610 * The first pass checks the blame entry (from the target) against the parent's
1611 * diff chunk. If that fails for a line, the second pass tries to match that
1612 * line to any part of parent file. That catches cases where a change was
1613 * broken into two chunks by 'context.'
1615 static void guess_line_blames(struct blame_origin *parent,
1616 struct blame_origin *target,
1617 int tlno, int offset, int same, int parent_len,
1618 struct blame_line_tracker *line_blames)
1620 int i, best_idx, target_idx;
1621 int parent_slno = tlno + offset;
1622 int *fuzzy_matches;
1624 fuzzy_matches = fuzzy_find_matching_lines(parent, target,
1625 tlno, parent_slno, same,
1626 parent_len);
1627 for (i = 0; i < same - tlno; i++) {
1628 target_idx = tlno + i;
1629 if (fuzzy_matches && fuzzy_matches[i] >= 0) {
1630 best_idx = fuzzy_matches[i];
1631 } else {
1632 best_idx = scan_parent_range(parent->fingerprints,
1633 target->fingerprints,
1634 target_idx, 0,
1635 parent->num_lines);
1637 if (best_idx >= 0) {
1638 line_blames[i].is_parent = 1;
1639 line_blames[i].s_lno = best_idx;
1640 } else {
1641 line_blames[i].is_parent = 0;
1642 line_blames[i].s_lno = target_idx;
1645 free(fuzzy_matches);
1649 * This decides which parts of a blame entry go to the parent (added to the
1650 * ignoredp list) and which stay with the target (added to the diffp list). The
1651 * actual decision was made in a separate heuristic function, and those answers
1652 * for the lines in 'e' are in line_blames. This consumes e, essentially
1653 * putting it on a list.
1655 * Note that the blame entries on the ignoredp list are not necessarily sorted
1656 * with respect to the parent's line numbers yet.
1658 static void ignore_blame_entry(struct blame_entry *e,
1659 struct blame_origin *parent,
1660 struct blame_entry **diffp,
1661 struct blame_entry **ignoredp,
1662 struct blame_line_tracker *line_blames)
1664 int entry_len, nr_lines, i;
1667 * We carve new entries off the front of e. Each entry comes from a
1668 * contiguous chunk of lines: adjacent lines from the same origin
1669 * (either the parent or the target).
1671 entry_len = 1;
1672 nr_lines = e->num_lines; /* e changes in the loop */
1673 for (i = 0; i < nr_lines; i++) {
1674 struct blame_entry *next = NULL;
1677 * We are often adjacent to the next line - only split the blame
1678 * entry when we have to.
1680 if (i + 1 < nr_lines) {
1681 if (are_lines_adjacent(&line_blames[i],
1682 &line_blames[i + 1])) {
1683 entry_len++;
1684 continue;
1686 next = split_blame_at(e, entry_len,
1687 blame_origin_incref(e->suspect));
1689 if (line_blames[i].is_parent) {
1690 e->ignored = 1;
1691 blame_origin_decref(e->suspect);
1692 e->suspect = blame_origin_incref(parent);
1693 e->s_lno = line_blames[i - entry_len + 1].s_lno;
1694 e->next = *ignoredp;
1695 *ignoredp = e;
1696 } else {
1697 e->unblamable = 1;
1698 /* e->s_lno is already in the target's address space. */
1699 e->next = *diffp;
1700 *diffp = e;
1702 assert(e->num_lines == entry_len);
1703 e = next;
1704 entry_len = 1;
1706 assert(!e);
1710 * Process one hunk from the patch between the current suspect for
1711 * blame_entry e and its parent. This first blames any unfinished
1712 * entries before the chunk (which is where target and parent start
1713 * differing) on the parent, and then splits blame entries at the
1714 * start and at the end of the difference region. Since use of -M and
1715 * -C options may lead to overlapping/duplicate source line number
1716 * ranges, all we can rely on from sorting/merging is the order of the
1717 * first suspect line number.
1719 * tlno: line number in the target where this chunk begins
1720 * same: line number in the target where this chunk ends
1721 * offset: add to tlno to get the chunk starting point in the parent
1722 * parent_len: number of lines in the parent chunk
1724 static void blame_chunk(struct blame_entry ***dstq, struct blame_entry ***srcq,
1725 int tlno, int offset, int same, int parent_len,
1726 struct blame_origin *parent,
1727 struct blame_origin *target, int ignore_diffs)
1729 struct blame_entry *e = **srcq;
1730 struct blame_entry *samep = NULL, *diffp = NULL, *ignoredp = NULL;
1731 struct blame_line_tracker *line_blames = NULL;
1733 while (e && e->s_lno < tlno) {
1734 struct blame_entry *next = e->next;
1736 * current record starts before differing portion. If
1737 * it reaches into it, we need to split it up and
1738 * examine the second part separately.
1740 if (e->s_lno + e->num_lines > tlno) {
1741 /* Move second half to a new record */
1742 struct blame_entry *n;
1744 n = split_blame_at(e, tlno - e->s_lno, e->suspect);
1745 /* Push new record to diffp */
1746 n->next = diffp;
1747 diffp = n;
1748 } else
1749 blame_origin_decref(e->suspect);
1750 /* Pass blame for everything before the differing
1751 * chunk to the parent */
1752 e->suspect = blame_origin_incref(parent);
1753 e->s_lno += offset;
1754 e->next = samep;
1755 samep = e;
1756 e = next;
1759 * As we don't know how much of a common stretch after this
1760 * diff will occur, the currently blamed parts are all that we
1761 * can assign to the parent for now.
1764 if (samep) {
1765 **dstq = reverse_blame(samep, **dstq);
1766 *dstq = &samep->next;
1769 * Prepend the split off portions: everything after e starts
1770 * after the blameable portion.
1772 e = reverse_blame(diffp, e);
1775 * Now retain records on the target while parts are different
1776 * from the parent.
1778 samep = NULL;
1779 diffp = NULL;
1781 if (ignore_diffs && same - tlno > 0) {
1782 line_blames = xcalloc(sizeof(struct blame_line_tracker),
1783 same - tlno);
1784 guess_line_blames(parent, target, tlno, offset, same,
1785 parent_len, line_blames);
1788 while (e && e->s_lno < same) {
1789 struct blame_entry *next = e->next;
1792 * If current record extends into sameness, need to split.
1794 if (e->s_lno + e->num_lines > same) {
1796 * Move second half to a new record to be
1797 * processed by later chunks
1799 struct blame_entry *n;
1801 n = split_blame_at(e, same - e->s_lno,
1802 blame_origin_incref(e->suspect));
1803 /* Push new record to samep */
1804 n->next = samep;
1805 samep = n;
1807 if (ignore_diffs) {
1808 ignore_blame_entry(e, parent, &diffp, &ignoredp,
1809 line_blames + e->s_lno - tlno);
1810 } else {
1811 e->next = diffp;
1812 diffp = e;
1814 e = next;
1816 free(line_blames);
1817 if (ignoredp) {
1819 * Note ignoredp is not sorted yet, and thus neither is dstq.
1820 * That list must be sorted before we queue_blames(). We defer
1821 * sorting until after all diff hunks are processed, so that
1822 * guess_line_blames() can pick *any* line in the parent. The
1823 * slight drawback is that we end up sorting all blame entries
1824 * passed to the parent, including those that are unrelated to
1825 * changes made by the ignored commit.
1827 **dstq = reverse_blame(ignoredp, **dstq);
1828 *dstq = &ignoredp->next;
1830 **srcq = reverse_blame(diffp, reverse_blame(samep, e));
1831 /* Move across elements that are in the unblamable portion */
1832 if (diffp)
1833 *srcq = &diffp->next;
1836 struct blame_chunk_cb_data {
1837 struct blame_origin *parent;
1838 struct blame_origin *target;
1839 long offset;
1840 int ignore_diffs;
1841 struct blame_entry **dstq;
1842 struct blame_entry **srcq;
1845 /* diff chunks are from parent to target */
1846 static int blame_chunk_cb(long start_a, long count_a,
1847 long start_b, long count_b, void *data)
1849 struct blame_chunk_cb_data *d = data;
1850 if (start_a - start_b != d->offset)
1851 die("internal error in blame::blame_chunk_cb");
1852 blame_chunk(&d->dstq, &d->srcq, start_b, start_a - start_b,
1853 start_b + count_b, count_a, d->parent, d->target,
1854 d->ignore_diffs);
1855 d->offset = start_a + count_a - (start_b + count_b);
1856 return 0;
1860 * We are looking at the origin 'target' and aiming to pass blame
1861 * for the lines it is suspected to its parent. Run diff to find
1862 * which lines came from parent and pass blame for them.
1864 static void pass_blame_to_parent(struct blame_scoreboard *sb,
1865 struct blame_origin *target,
1866 struct blame_origin *parent, int ignore_diffs)
1868 mmfile_t file_p, file_o;
1869 struct blame_chunk_cb_data d;
1870 struct blame_entry *newdest = NULL;
1872 if (!target->suspects)
1873 return; /* nothing remains for this target */
1875 d.parent = parent;
1876 d.target = target;
1877 d.offset = 0;
1878 d.ignore_diffs = ignore_diffs;
1879 d.dstq = &newdest; d.srcq = &target->suspects;
1881 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
1882 &sb->num_read_blob, ignore_diffs);
1883 fill_origin_blob(&sb->revs->diffopt, target, &file_o,
1884 &sb->num_read_blob, ignore_diffs);
1885 sb->num_get_patch++;
1887 if (diff_hunks(&file_p, &file_o, blame_chunk_cb, &d, sb->xdl_opts))
1888 die("unable to generate diff (%s -> %s)",
1889 oid_to_hex(&parent->commit->object.oid),
1890 oid_to_hex(&target->commit->object.oid));
1891 /* The rest are the same as the parent */
1892 blame_chunk(&d.dstq, &d.srcq, INT_MAX, d.offset, INT_MAX, 0,
1893 parent, target, 0);
1894 *d.dstq = NULL;
1895 if (ignore_diffs)
1896 newdest = llist_mergesort(newdest, get_next_blame,
1897 set_next_blame,
1898 compare_blame_suspect);
1899 queue_blames(sb, parent, newdest);
1901 return;
1905 * The lines in blame_entry after splitting blames many times can become
1906 * very small and trivial, and at some point it becomes pointless to
1907 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1908 * ordinary C program, and it is not worth to say it was copied from
1909 * totally unrelated file in the parent.
1911 * Compute how trivial the lines in the blame_entry are.
1913 unsigned blame_entry_score(struct blame_scoreboard *sb, struct blame_entry *e)
1915 unsigned score;
1916 const char *cp, *ep;
1918 if (e->score)
1919 return e->score;
1921 score = 1;
1922 cp = blame_nth_line(sb, e->lno);
1923 ep = blame_nth_line(sb, e->lno + e->num_lines);
1924 while (cp < ep) {
1925 unsigned ch = *((unsigned char *)cp);
1926 if (isalnum(ch))
1927 score++;
1928 cp++;
1930 e->score = score;
1931 return score;
1935 * best_so_far[] and potential[] are both a split of an existing blame_entry
1936 * that passes blame to the parent. Maintain best_so_far the best split so
1937 * far, by comparing potential and best_so_far and copying potential into
1938 * bst_so_far as needed.
1940 static void copy_split_if_better(struct blame_scoreboard *sb,
1941 struct blame_entry *best_so_far,
1942 struct blame_entry *potential)
1944 int i;
1946 if (!potential[1].suspect)
1947 return;
1948 if (best_so_far[1].suspect) {
1949 if (blame_entry_score(sb, &potential[1]) <
1950 blame_entry_score(sb, &best_so_far[1]))
1951 return;
1954 for (i = 0; i < 3; i++)
1955 blame_origin_incref(potential[i].suspect);
1956 decref_split(best_so_far);
1957 memcpy(best_so_far, potential, sizeof(struct blame_entry[3]));
1961 * We are looking at a part of the final image represented by
1962 * ent (tlno and same are offset by ent->s_lno).
1963 * tlno is where we are looking at in the final image.
1964 * up to (but not including) same match preimage.
1965 * plno is where we are looking at in the preimage.
1967 * <-------------- final image ---------------------->
1968 * <------ent------>
1969 * ^tlno ^same
1970 * <---------preimage----->
1971 * ^plno
1973 * All line numbers are 0-based.
1975 static void handle_split(struct blame_scoreboard *sb,
1976 struct blame_entry *ent,
1977 int tlno, int plno, int same,
1978 struct blame_origin *parent,
1979 struct blame_entry *split)
1981 if (ent->num_lines <= tlno)
1982 return;
1983 if (tlno < same) {
1984 struct blame_entry potential[3];
1985 tlno += ent->s_lno;
1986 same += ent->s_lno;
1987 split_overlap(potential, ent, tlno, plno, same, parent);
1988 copy_split_if_better(sb, split, potential);
1989 decref_split(potential);
1993 struct handle_split_cb_data {
1994 struct blame_scoreboard *sb;
1995 struct blame_entry *ent;
1996 struct blame_origin *parent;
1997 struct blame_entry *split;
1998 long plno;
1999 long tlno;
2002 static int handle_split_cb(long start_a, long count_a,
2003 long start_b, long count_b, void *data)
2005 struct handle_split_cb_data *d = data;
2006 handle_split(d->sb, d->ent, d->tlno, d->plno, start_b, d->parent,
2007 d->split);
2008 d->plno = start_a + count_a;
2009 d->tlno = start_b + count_b;
2010 return 0;
2014 * Find the lines from parent that are the same as ent so that
2015 * we can pass blames to it. file_p has the blob contents for
2016 * the parent.
2018 static void find_copy_in_blob(struct blame_scoreboard *sb,
2019 struct blame_entry *ent,
2020 struct blame_origin *parent,
2021 struct blame_entry *split,
2022 mmfile_t *file_p)
2024 const char *cp;
2025 mmfile_t file_o;
2026 struct handle_split_cb_data d;
2028 memset(&d, 0, sizeof(d));
2029 d.sb = sb; d.ent = ent; d.parent = parent; d.split = split;
2031 * Prepare mmfile that contains only the lines in ent.
2033 cp = blame_nth_line(sb, ent->lno);
2034 file_o.ptr = (char *) cp;
2035 file_o.size = blame_nth_line(sb, ent->lno + ent->num_lines) - cp;
2038 * file_o is a part of final image we are annotating.
2039 * file_p partially may match that image.
2041 memset(split, 0, sizeof(struct blame_entry [3]));
2042 if (diff_hunks(file_p, &file_o, handle_split_cb, &d, sb->xdl_opts))
2043 die("unable to generate diff (%s)",
2044 oid_to_hex(&parent->commit->object.oid));
2045 /* remainder, if any, all match the preimage */
2046 handle_split(sb, ent, d.tlno, d.plno, ent->num_lines, parent, split);
2049 /* Move all blame entries from list *source that have a score smaller
2050 * than score_min to the front of list *small.
2051 * Returns a pointer to the link pointing to the old head of the small list.
2054 static struct blame_entry **filter_small(struct blame_scoreboard *sb,
2055 struct blame_entry **small,
2056 struct blame_entry **source,
2057 unsigned score_min)
2059 struct blame_entry *p = *source;
2060 struct blame_entry *oldsmall = *small;
2061 while (p) {
2062 if (blame_entry_score(sb, p) <= score_min) {
2063 *small = p;
2064 small = &p->next;
2065 p = *small;
2066 } else {
2067 *source = p;
2068 source = &p->next;
2069 p = *source;
2072 *small = oldsmall;
2073 *source = NULL;
2074 return small;
2078 * See if lines currently target is suspected for can be attributed to
2079 * parent.
2081 static void find_move_in_parent(struct blame_scoreboard *sb,
2082 struct blame_entry ***blamed,
2083 struct blame_entry **toosmall,
2084 struct blame_origin *target,
2085 struct blame_origin *parent)
2087 struct blame_entry *e, split[3];
2088 struct blame_entry *unblamed = target->suspects;
2089 struct blame_entry *leftover = NULL;
2090 mmfile_t file_p;
2092 if (!unblamed)
2093 return; /* nothing remains for this target */
2095 fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
2096 &sb->num_read_blob, 0);
2097 if (!file_p.ptr)
2098 return;
2100 /* At each iteration, unblamed has a NULL-terminated list of
2101 * entries that have not yet been tested for blame. leftover
2102 * contains the reversed list of entries that have been tested
2103 * without being assignable to the parent.
2105 do {
2106 struct blame_entry **unblamedtail = &unblamed;
2107 struct blame_entry *next;
2108 for (e = unblamed; e; e = next) {
2109 next = e->next;
2110 find_copy_in_blob(sb, e, parent, split, &file_p);
2111 if (split[1].suspect &&
2112 sb->move_score < blame_entry_score(sb, &split[1])) {
2113 split_blame(blamed, &unblamedtail, split, e);
2114 } else {
2115 e->next = leftover;
2116 leftover = e;
2118 decref_split(split);
2120 *unblamedtail = NULL;
2121 toosmall = filter_small(sb, toosmall, &unblamed, sb->move_score);
2122 } while (unblamed);
2123 target->suspects = reverse_blame(leftover, NULL);
2126 struct blame_list {
2127 struct blame_entry *ent;
2128 struct blame_entry split[3];
2132 * Count the number of entries the target is suspected for,
2133 * and prepare a list of entry and the best split.
2135 static struct blame_list *setup_blame_list(struct blame_entry *unblamed,
2136 int *num_ents_p)
2138 struct blame_entry *e;
2139 int num_ents, i;
2140 struct blame_list *blame_list = NULL;
2142 for (e = unblamed, num_ents = 0; e; e = e->next)
2143 num_ents++;
2144 if (num_ents) {
2145 blame_list = xcalloc(num_ents, sizeof(struct blame_list));
2146 for (e = unblamed, i = 0; e; e = e->next)
2147 blame_list[i++].ent = e;
2149 *num_ents_p = num_ents;
2150 return blame_list;
2154 * For lines target is suspected for, see if we can find code movement
2155 * across file boundary from the parent commit. porigin is the path
2156 * in the parent we already tried.
2158 static void find_copy_in_parent(struct blame_scoreboard *sb,
2159 struct blame_entry ***blamed,
2160 struct blame_entry **toosmall,
2161 struct blame_origin *target,
2162 struct commit *parent,
2163 struct blame_origin *porigin,
2164 int opt)
2166 struct diff_options diff_opts;
2167 int i, j;
2168 struct blame_list *blame_list;
2169 int num_ents;
2170 struct blame_entry *unblamed = target->suspects;
2171 struct blame_entry *leftover = NULL;
2173 if (!unblamed)
2174 return; /* nothing remains for this target */
2176 repo_diff_setup(sb->repo, &diff_opts);
2177 diff_opts.flags.recursive = 1;
2178 diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
2180 diff_setup_done(&diff_opts);
2182 /* Try "find copies harder" on new path if requested;
2183 * we do not want to use diffcore_rename() actually to
2184 * match things up; find_copies_harder is set only to
2185 * force diff_tree_oid() to feed all filepairs to diff_queue,
2186 * and this code needs to be after diff_setup_done(), which
2187 * usually makes find-copies-harder imply copy detection.
2189 if ((opt & PICKAXE_BLAME_COPY_HARDEST)
2190 || ((opt & PICKAXE_BLAME_COPY_HARDER)
2191 && (!porigin || strcmp(target->path, porigin->path))))
2192 diff_opts.flags.find_copies_harder = 1;
2194 if (is_null_oid(&target->commit->object.oid))
2195 do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
2196 else
2197 diff_tree_oid(get_commit_tree_oid(parent),
2198 get_commit_tree_oid(target->commit),
2199 "", &diff_opts);
2201 if (!diff_opts.flags.find_copies_harder)
2202 diffcore_std(&diff_opts);
2204 do {
2205 struct blame_entry **unblamedtail = &unblamed;
2206 blame_list = setup_blame_list(unblamed, &num_ents);
2208 for (i = 0; i < diff_queued_diff.nr; i++) {
2209 struct diff_filepair *p = diff_queued_diff.queue[i];
2210 struct blame_origin *norigin;
2211 mmfile_t file_p;
2212 struct blame_entry potential[3];
2214 if (!DIFF_FILE_VALID(p->one))
2215 continue; /* does not exist in parent */
2216 if (S_ISGITLINK(p->one->mode))
2217 continue; /* ignore git links */
2218 if (porigin && !strcmp(p->one->path, porigin->path))
2219 /* find_move already dealt with this path */
2220 continue;
2222 norigin = get_origin(parent, p->one->path);
2223 oidcpy(&norigin->blob_oid, &p->one->oid);
2224 norigin->mode = p->one->mode;
2225 fill_origin_blob(&sb->revs->diffopt, norigin, &file_p,
2226 &sb->num_read_blob, 0);
2227 if (!file_p.ptr)
2228 continue;
2230 for (j = 0; j < num_ents; j++) {
2231 find_copy_in_blob(sb, blame_list[j].ent,
2232 norigin, potential, &file_p);
2233 copy_split_if_better(sb, blame_list[j].split,
2234 potential);
2235 decref_split(potential);
2237 blame_origin_decref(norigin);
2240 for (j = 0; j < num_ents; j++) {
2241 struct blame_entry *split = blame_list[j].split;
2242 if (split[1].suspect &&
2243 sb->copy_score < blame_entry_score(sb, &split[1])) {
2244 split_blame(blamed, &unblamedtail, split,
2245 blame_list[j].ent);
2246 } else {
2247 blame_list[j].ent->next = leftover;
2248 leftover = blame_list[j].ent;
2250 decref_split(split);
2252 free(blame_list);
2253 *unblamedtail = NULL;
2254 toosmall = filter_small(sb, toosmall, &unblamed, sb->copy_score);
2255 } while (unblamed);
2256 target->suspects = reverse_blame(leftover, NULL);
2257 diff_flush(&diff_opts);
2258 clear_pathspec(&diff_opts.pathspec);
2262 * The blobs of origin and porigin exactly match, so everything
2263 * origin is suspected for can be blamed on the parent.
2265 static void pass_whole_blame(struct blame_scoreboard *sb,
2266 struct blame_origin *origin, struct blame_origin *porigin)
2268 struct blame_entry *e, *suspects;
2270 if (!porigin->file.ptr && origin->file.ptr) {
2271 /* Steal its file */
2272 porigin->file = origin->file;
2273 origin->file.ptr = NULL;
2275 suspects = origin->suspects;
2276 origin->suspects = NULL;
2277 for (e = suspects; e; e = e->next) {
2278 blame_origin_incref(porigin);
2279 blame_origin_decref(e->suspect);
2280 e->suspect = porigin;
2282 queue_blames(sb, porigin, suspects);
2286 * We pass blame from the current commit to its parents. We keep saying
2287 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2288 * exonerate ourselves.
2290 static struct commit_list *first_scapegoat(struct rev_info *revs, struct commit *commit,
2291 int reverse)
2293 if (!reverse) {
2294 if (revs->first_parent_only &&
2295 commit->parents &&
2296 commit->parents->next) {
2297 free_commit_list(commit->parents->next);
2298 commit->parents->next = NULL;
2300 return commit->parents;
2302 return lookup_decoration(&revs->children, &commit->object);
2305 static int num_scapegoats(struct rev_info *revs, struct commit *commit, int reverse)
2307 struct commit_list *l = first_scapegoat(revs, commit, reverse);
2308 return commit_list_count(l);
2311 /* Distribute collected unsorted blames to the respected sorted lists
2312 * in the various origins.
2314 static void distribute_blame(struct blame_scoreboard *sb, struct blame_entry *blamed)
2316 blamed = llist_mergesort(blamed, get_next_blame, set_next_blame,
2317 compare_blame_suspect);
2318 while (blamed)
2320 struct blame_origin *porigin = blamed->suspect;
2321 struct blame_entry *suspects = NULL;
2322 do {
2323 struct blame_entry *next = blamed->next;
2324 blamed->next = suspects;
2325 suspects = blamed;
2326 blamed = next;
2327 } while (blamed && blamed->suspect == porigin);
2328 suspects = reverse_blame(suspects, NULL);
2329 queue_blames(sb, porigin, suspects);
2333 #define MAXSG 16
2335 static void pass_blame(struct blame_scoreboard *sb, struct blame_origin *origin, int opt)
2337 struct rev_info *revs = sb->revs;
2338 int i, pass, num_sg;
2339 struct commit *commit = origin->commit;
2340 struct commit_list *sg;
2341 struct blame_origin *sg_buf[MAXSG];
2342 struct blame_origin *porigin, **sg_origin = sg_buf;
2343 struct blame_entry *toosmall = NULL;
2344 struct blame_entry *blames, **blametail = &blames;
2346 num_sg = num_scapegoats(revs, commit, sb->reverse);
2347 if (!num_sg)
2348 goto finish;
2349 else if (num_sg < ARRAY_SIZE(sg_buf))
2350 memset(sg_buf, 0, sizeof(sg_buf));
2351 else
2352 sg_origin = xcalloc(num_sg, sizeof(*sg_origin));
2355 * The first pass looks for unrenamed path to optimize for
2356 * common cases, then we look for renames in the second pass.
2358 for (pass = 0; pass < 2 - sb->no_whole_file_rename; pass++) {
2359 struct blame_origin *(*find)(struct repository *, struct commit *, struct blame_origin *);
2360 find = pass ? find_rename : find_origin;
2362 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2363 i < num_sg && sg;
2364 sg = sg->next, i++) {
2365 struct commit *p = sg->item;
2366 int j, same;
2368 if (sg_origin[i])
2369 continue;
2370 if (parse_commit(p))
2371 continue;
2372 porigin = find(sb->repo, p, origin);
2373 if (!porigin)
2374 continue;
2375 if (oideq(&porigin->blob_oid, &origin->blob_oid)) {
2376 pass_whole_blame(sb, origin, porigin);
2377 blame_origin_decref(porigin);
2378 goto finish;
2380 for (j = same = 0; j < i; j++)
2381 if (sg_origin[j] &&
2382 oideq(&sg_origin[j]->blob_oid, &porigin->blob_oid)) {
2383 same = 1;
2384 break;
2386 if (!same)
2387 sg_origin[i] = porigin;
2388 else
2389 blame_origin_decref(porigin);
2393 sb->num_commits++;
2394 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2395 i < num_sg && sg;
2396 sg = sg->next, i++) {
2397 struct blame_origin *porigin = sg_origin[i];
2398 if (!porigin)
2399 continue;
2400 if (!origin->previous) {
2401 blame_origin_incref(porigin);
2402 origin->previous = porigin;
2404 pass_blame_to_parent(sb, origin, porigin, 0);
2405 if (!origin->suspects)
2406 goto finish;
2410 * Pass remaining suspects for ignored commits to their parents.
2412 if (oidset_contains(&sb->ignore_list, &commit->object.oid)) {
2413 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2414 i < num_sg && sg;
2415 sg = sg->next, i++) {
2416 struct blame_origin *porigin = sg_origin[i];
2418 if (!porigin)
2419 continue;
2420 pass_blame_to_parent(sb, origin, porigin, 1);
2422 * Preemptively drop porigin so we can refresh the
2423 * fingerprints if we use the parent again, which can
2424 * occur if you ignore back-to-back commits.
2426 drop_origin_blob(porigin);
2427 if (!origin->suspects)
2428 goto finish;
2433 * Optionally find moves in parents' files.
2435 if (opt & PICKAXE_BLAME_MOVE) {
2436 filter_small(sb, &toosmall, &origin->suspects, sb->move_score);
2437 if (origin->suspects) {
2438 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2439 i < num_sg && sg;
2440 sg = sg->next, i++) {
2441 struct blame_origin *porigin = sg_origin[i];
2442 if (!porigin)
2443 continue;
2444 find_move_in_parent(sb, &blametail, &toosmall, origin, porigin);
2445 if (!origin->suspects)
2446 break;
2452 * Optionally find copies from parents' files.
2454 if (opt & PICKAXE_BLAME_COPY) {
2455 if (sb->copy_score > sb->move_score)
2456 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2457 else if (sb->copy_score < sb->move_score) {
2458 origin->suspects = blame_merge(origin->suspects, toosmall);
2459 toosmall = NULL;
2460 filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
2462 if (!origin->suspects)
2463 goto finish;
2465 for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
2466 i < num_sg && sg;
2467 sg = sg->next, i++) {
2468 struct blame_origin *porigin = sg_origin[i];
2469 find_copy_in_parent(sb, &blametail, &toosmall,
2470 origin, sg->item, porigin, opt);
2471 if (!origin->suspects)
2472 goto finish;
2476 finish:
2477 *blametail = NULL;
2478 distribute_blame(sb, blames);
2480 * prepend toosmall to origin->suspects
2482 * There is no point in sorting: this ends up on a big
2483 * unsorted list in the caller anyway.
2485 if (toosmall) {
2486 struct blame_entry **tail = &toosmall;
2487 while (*tail)
2488 tail = &(*tail)->next;
2489 *tail = origin->suspects;
2490 origin->suspects = toosmall;
2492 for (i = 0; i < num_sg; i++) {
2493 if (sg_origin[i]) {
2494 if (!sg_origin[i]->suspects)
2495 drop_origin_blob(sg_origin[i]);
2496 blame_origin_decref(sg_origin[i]);
2499 drop_origin_blob(origin);
2500 if (sg_buf != sg_origin)
2501 free(sg_origin);
2505 * The main loop -- while we have blobs with lines whose true origin
2506 * is still unknown, pick one blob, and allow its lines to pass blames
2507 * to its parents. */
2508 void assign_blame(struct blame_scoreboard *sb, int opt)
2510 struct rev_info *revs = sb->revs;
2511 struct commit *commit = prio_queue_get(&sb->commits);
2513 while (commit) {
2514 struct blame_entry *ent;
2515 struct blame_origin *suspect = get_blame_suspects(commit);
2517 /* find one suspect to break down */
2518 while (suspect && !suspect->suspects)
2519 suspect = suspect->next;
2521 if (!suspect) {
2522 commit = prio_queue_get(&sb->commits);
2523 continue;
2526 assert(commit == suspect->commit);
2529 * We will use this suspect later in the loop,
2530 * so hold onto it in the meantime.
2532 blame_origin_incref(suspect);
2533 parse_commit(commit);
2534 if (sb->reverse ||
2535 (!(commit->object.flags & UNINTERESTING) &&
2536 !(revs->max_age != -1 && commit->date < revs->max_age)))
2537 pass_blame(sb, suspect, opt);
2538 else {
2539 commit->object.flags |= UNINTERESTING;
2540 if (commit->object.parsed)
2541 mark_parents_uninteresting(commit);
2543 /* treat root commit as boundary */
2544 if (!commit->parents && !sb->show_root)
2545 commit->object.flags |= UNINTERESTING;
2547 /* Take responsibility for the remaining entries */
2548 ent = suspect->suspects;
2549 if (ent) {
2550 suspect->guilty = 1;
2551 for (;;) {
2552 struct blame_entry *next = ent->next;
2553 if (sb->found_guilty_entry)
2554 sb->found_guilty_entry(ent, sb->found_guilty_entry_data);
2555 if (next) {
2556 ent = next;
2557 continue;
2559 ent->next = sb->ent;
2560 sb->ent = suspect->suspects;
2561 suspect->suspects = NULL;
2562 break;
2565 blame_origin_decref(suspect);
2567 if (sb->debug) /* sanity */
2568 sanity_check_refcnt(sb);
2573 * To allow quick access to the contents of nth line in the
2574 * final image, prepare an index in the scoreboard.
2576 static int prepare_lines(struct blame_scoreboard *sb)
2578 sb->num_lines = find_line_starts(&sb->lineno, sb->final_buf,
2579 sb->final_buf_size);
2580 return sb->num_lines;
2583 static struct commit *find_single_final(struct rev_info *revs,
2584 const char **name_p)
2586 int i;
2587 struct commit *found = NULL;
2588 const char *name = NULL;
2590 for (i = 0; i < revs->pending.nr; i++) {
2591 struct object *obj = revs->pending.objects[i].item;
2592 if (obj->flags & UNINTERESTING)
2593 continue;
2594 obj = deref_tag(revs->repo, obj, NULL, 0);
2595 if (obj->type != OBJ_COMMIT)
2596 die("Non commit %s?", revs->pending.objects[i].name);
2597 if (found)
2598 die("More than one commit to dig from %s and %s?",
2599 revs->pending.objects[i].name, name);
2600 found = (struct commit *)obj;
2601 name = revs->pending.objects[i].name;
2603 if (name_p)
2604 *name_p = xstrdup_or_null(name);
2605 return found;
2608 static struct commit *dwim_reverse_initial(struct rev_info *revs,
2609 const char **name_p)
2612 * DWIM "git blame --reverse ONE -- PATH" as
2613 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2614 * when it makes sense.
2616 struct object *obj;
2617 struct commit *head_commit;
2618 struct object_id head_oid;
2620 if (revs->pending.nr != 1)
2621 return NULL;
2623 /* Is that sole rev a committish? */
2624 obj = revs->pending.objects[0].item;
2625 obj = deref_tag(revs->repo, obj, NULL, 0);
2626 if (obj->type != OBJ_COMMIT)
2627 return NULL;
2629 /* Do we have HEAD? */
2630 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING, &head_oid, NULL))
2631 return NULL;
2632 head_commit = lookup_commit_reference_gently(revs->repo,
2633 &head_oid, 1);
2634 if (!head_commit)
2635 return NULL;
2637 /* Turn "ONE" into "ONE..HEAD" then */
2638 obj->flags |= UNINTERESTING;
2639 add_pending_object(revs, &head_commit->object, "HEAD");
2641 if (name_p)
2642 *name_p = revs->pending.objects[0].name;
2643 return (struct commit *)obj;
2646 static struct commit *find_single_initial(struct rev_info *revs,
2647 const char **name_p)
2649 int i;
2650 struct commit *found = NULL;
2651 const char *name = NULL;
2654 * There must be one and only one negative commit, and it must be
2655 * the boundary.
2657 for (i = 0; i < revs->pending.nr; i++) {
2658 struct object *obj = revs->pending.objects[i].item;
2659 if (!(obj->flags & UNINTERESTING))
2660 continue;
2661 obj = deref_tag(revs->repo, obj, NULL, 0);
2662 if (obj->type != OBJ_COMMIT)
2663 die("Non commit %s?", revs->pending.objects[i].name);
2664 if (found)
2665 die("More than one commit to dig up from, %s and %s?",
2666 revs->pending.objects[i].name, name);
2667 found = (struct commit *) obj;
2668 name = revs->pending.objects[i].name;
2671 if (!name)
2672 found = dwim_reverse_initial(revs, &name);
2673 if (!name)
2674 die("No commit to dig up from?");
2676 if (name_p)
2677 *name_p = xstrdup(name);
2678 return found;
2681 void init_scoreboard(struct blame_scoreboard *sb)
2683 memset(sb, 0, sizeof(struct blame_scoreboard));
2684 sb->move_score = BLAME_DEFAULT_MOVE_SCORE;
2685 sb->copy_score = BLAME_DEFAULT_COPY_SCORE;
2688 void setup_scoreboard(struct blame_scoreboard *sb,
2689 const char *path,
2690 struct blame_origin **orig)
2692 const char *final_commit_name = NULL;
2693 struct blame_origin *o;
2694 struct commit *final_commit = NULL;
2695 enum object_type type;
2697 init_blame_suspects(&blame_suspects);
2699 if (sb->reverse && sb->contents_from)
2700 die(_("--contents and --reverse do not blend well."));
2702 if (!sb->repo)
2703 BUG("repo is NULL");
2705 if (!sb->reverse) {
2706 sb->final = find_single_final(sb->revs, &final_commit_name);
2707 sb->commits.compare = compare_commits_by_commit_date;
2708 } else {
2709 sb->final = find_single_initial(sb->revs, &final_commit_name);
2710 sb->commits.compare = compare_commits_by_reverse_commit_date;
2713 if (sb->final && sb->contents_from)
2714 die(_("cannot use --contents with final commit object name"));
2716 if (sb->reverse && sb->revs->first_parent_only)
2717 sb->revs->children.name = NULL;
2719 if (!sb->final) {
2721 * "--not A B -- path" without anything positive;
2722 * do not default to HEAD, but use the working tree
2723 * or "--contents".
2725 setup_work_tree();
2726 sb->final = fake_working_tree_commit(sb->repo,
2727 &sb->revs->diffopt,
2728 path, sb->contents_from);
2729 add_pending_object(sb->revs, &(sb->final->object), ":");
2732 if (sb->reverse && sb->revs->first_parent_only) {
2733 final_commit = find_single_final(sb->revs, NULL);
2734 if (!final_commit)
2735 die(_("--reverse and --first-parent together require specified latest commit"));
2739 * If we have bottom, this will mark the ancestors of the
2740 * bottom commits we would reach while traversing as
2741 * uninteresting.
2743 if (prepare_revision_walk(sb->revs))
2744 die(_("revision walk setup failed"));
2746 if (sb->reverse && sb->revs->first_parent_only) {
2747 struct commit *c = final_commit;
2749 sb->revs->children.name = "children";
2750 while (c->parents &&
2751 !oideq(&c->object.oid, &sb->final->object.oid)) {
2752 struct commit_list *l = xcalloc(1, sizeof(*l));
2754 l->item = c;
2755 if (add_decoration(&sb->revs->children,
2756 &c->parents->item->object, l))
2757 BUG("not unique item in first-parent chain");
2758 c = c->parents->item;
2761 if (!oideq(&c->object.oid, &sb->final->object.oid))
2762 die(_("--reverse --first-parent together require range along first-parent chain"));
2765 if (is_null_oid(&sb->final->object.oid)) {
2766 o = get_blame_suspects(sb->final);
2767 sb->final_buf = xmemdupz(o->file.ptr, o->file.size);
2768 sb->final_buf_size = o->file.size;
2770 else {
2771 o = get_origin(sb->final, path);
2772 if (fill_blob_sha1_and_mode(sb->repo, o))
2773 die(_("no such path %s in %s"), path, final_commit_name);
2775 if (sb->revs->diffopt.flags.allow_textconv &&
2776 textconv_object(sb->repo, path, o->mode, &o->blob_oid, 1, (char **) &sb->final_buf,
2777 &sb->final_buf_size))
2779 else
2780 sb->final_buf = read_object_file(&o->blob_oid, &type,
2781 &sb->final_buf_size);
2783 if (!sb->final_buf)
2784 die(_("cannot read blob %s for path %s"),
2785 oid_to_hex(&o->blob_oid),
2786 path);
2788 sb->num_read_blob++;
2789 prepare_lines(sb);
2791 if (orig)
2792 *orig = o;
2794 free((char *)final_commit_name);
2799 struct blame_entry *blame_entry_prepend(struct blame_entry *head,
2800 long start, long end,
2801 struct blame_origin *o)
2803 struct blame_entry *new_head = xcalloc(1, sizeof(struct blame_entry));
2804 new_head->lno = start;
2805 new_head->num_lines = end - start;
2806 new_head->suspect = o;
2807 new_head->s_lno = start;
2808 new_head->next = head;
2809 blame_origin_incref(o);
2810 return new_head;