1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
22 * @title: Straight lines
23 * @short_description: Line primitive management
25 * The following functions manipulate %CAIRO_PATH_LINE_TO #CpmlPrimitive.
26 * No check is made on the primitive struct, so be sure the
27 * <structname>CpmlPrimitive</structname> is effectively a line before
31 #include "cpml-line.h"
32 #include "cpml-pair.h"
37 static cairo_bool_t
intersection (const CpmlPair
*p
,
43 * cpml_line_type_get_npoints:
45 * Returns the number of point needed to properly specify a line primitive.
50 cpml_line_type_get_npoints(void)
57 * @line: the #CpmlPrimitive line data
59 * Given the @line primitive, returns the distance between its
60 * start and end points.
62 * Return value: the requested distance, that is the @line length
65 cpml_line_length(const CpmlPrimitive
*line
)
69 cpml_pair_from_cairo(&p1
, cpml_primitive_get_point(line
, 0));
70 cpml_pair_from_cairo(&p2
, cpml_primitive_get_point(line
, -1));
72 return cpml_pair_distance(&p1
, &p2
);
77 * @line: the #CpmlPrimitive line data
78 * @pair: the destination pair
79 * @pos: the position value
81 * Given the @line line, finds the coordinates at position @pos
82 * (where 0 is the start and 1 is the end) and stores the result
85 * @pos can be less than 0 or greater than 1, in which case the
86 * coordinates are interpolated.
89 cpml_line_pair_at(const CpmlPrimitive
*line
, CpmlPair
*pair
, double pos
)
91 cairo_path_data_t
*p1
, *p2
;
93 p1
= cpml_primitive_get_point(line
, 0);
94 p2
= cpml_primitive_get_point(line
, -1);
96 pair
->x
= p1
->point
.x
+ (p2
->point
.x
- p1
->point
.x
) * pos
;
97 pair
->y
= p1
->point
.y
+ (p2
->point
.y
- p1
->point
.y
) * pos
;
101 * cpml_line_vector_at:
102 * @line: the #CpmlPrimitive line data
103 * @vector: the destination vector
104 * @pos: the position value
106 * Gets the slope on @line at the position @pos. Being the
107 * line a straight segment, the vector is always the same, so
108 * @pos is not used. Mathematically speaking, the equation
111 * @vector = endpoint(@line) - startpoint(@line).
114 cpml_line_vector_at(const CpmlPrimitive
*line
, CpmlVector
*vector
, double pos
)
116 cairo_path_data_t
*p1
, *p2
;
118 p1
= cpml_primitive_get_point(line
, 0);
119 p2
= cpml_primitive_get_point(line
, -1);
121 vector
->x
= p2
->point
.x
- p1
->point
.x
;
122 vector
->y
= p2
->point
.y
- p1
->point
.y
;
126 * cpml_line_near_pos:
127 * @line: the #CpmlPrimitive line data
128 * @pair: the coordinates of the subject point
130 * Returns the pos value of the point on @line nearest to @pair.
131 * The returned value is always between 0 and 1.
133 * The point nearest to @pair is got by finding the its
134 * projection on @line, as this is when the point is closer to
137 * Return value: the pos value, always between 0 and 1
140 cpml_line_near_pos(const CpmlPrimitive
*line
, const CpmlPair
*pair
)
146 cpml_pair_from_cairo(&p
[0], cpml_primitive_get_point(line
, 0));
147 cpml_pair_from_cairo(&p
[1], cpml_primitive_get_point(line
, -1));
149 cpml_pair_sub(cpml_pair_copy(&normal
, &p
[1]), &p
[2]);
150 cpml_vector_normal(&normal
);
152 cpml_pair_copy(&p
[2], pair
);
153 cpml_pair_add(cpml_pair_copy(&p
[3], pair
), &normal
);
155 /* Ensure to return 0 if intersection() fails */
157 intersection(p
, NULL
, &pos
);
159 /* Clamp the result to 0..1 */
169 * cpml_line_intersection:
170 * @line: the first line
171 * @line2: the second line
172 * @dest: a vector of #CpmlPair
173 * @max: maximum number of intersections to return
174 * (that is, the size of @dest)
176 * Given two lines (@line and @line2), gets their intersection point
177 * and store the result in @dest.
179 * If @max is 0, the function returns 0 immediately without any
180 * further processing. If @line and @line2 are cohincident,
181 * their intersections are not considered.
183 * Return value: the number of intersections found (max 1)
184 * or 0 if the primitives do not intersect
187 cpml_line_intersection(const CpmlPrimitive
*line
, const CpmlPrimitive
*line2
,
188 CpmlPair
*dest
, int max
)
195 cpml_pair_from_cairo(&p
[0], cpml_primitive_get_point(line
, 0));
196 cpml_pair_from_cairo(&p
[1], cpml_primitive_get_point(line
, -1));
197 cpml_pair_from_cairo(&p
[2], cpml_primitive_get_point(line2
, 0));
198 cpml_pair_from_cairo(&p
[3], cpml_primitive_get_point(line2
, -1));
200 return intersection(p
, dest
, NULL
) ? 1 : 0;
205 * @line: the #CpmlPrimitive line data
206 * @offset: distance for the computed parallel line
208 * Given a line segment specified by the @line primitive data,
209 * computes the parallel line distant @offset from the original one
210 * and returns the result by changing @line.
213 cpml_line_offset(CpmlPrimitive
*line
, double offset
)
215 cairo_path_data_t
*p1
, *p2
;
218 p1
= cpml_primitive_get_point(line
, 0);
219 p2
= cpml_primitive_get_point(line
, -1);
221 cpml_line_vector_at(line
, &normal
, 0.);
222 cpml_vector_normal(&normal
);
223 cpml_vector_set_length(&normal
, offset
);
225 p1
->point
.x
+= normal
.x
;
226 p1
->point
.y
+= normal
.y
;
227 p2
->point
.x
+= normal
.x
;
228 p2
->point
.y
+= normal
.y
;
233 intersection(const CpmlPair
*p
, CpmlPair
*dest
, double *get_factor
)
238 cpml_pair_sub(cpml_pair_copy(&v
[0], &p
[1]), &p
[0]);
239 cpml_pair_sub(cpml_pair_copy(&v
[1], &p
[3]), &p
[2]);
240 factor
= v
[0].x
* v
[1].y
- v
[0].y
* v
[1].x
;
242 /* Check for equal slopes (the lines are parallel) */
246 factor
= ((p
[0].y
- p
[2].y
) * v
[1].x
-
247 (p
[0].x
- p
[2].x
) * v
[1].y
) / factor
;
250 dest
->x
= p
[0].x
+ v
[0].x
* factor
;
251 dest
->y
= p
[0].y
+ v
[0].y
* factor
;
254 if (get_factor
!= NULL
)
255 *get_factor
= factor
;