[CPML] Implemented put_extents() as a virtual method
[adg.git] / cpml / cpml-arc.c
blob3e9f26bdaa4d4fa97bdf57d857fca2240ac3831e
1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
21 /**
22 * SECTION:cpml-arc
23 * @Section_Id:CpmlArc
24 * @title: CpmlArc
25 * @short_description: Manipulation of circular arcs
27 * The following functions manipulate #CAIRO_PATH_ARC_TO #CpmlPrimitive.
28 * No validation is made on the input so use the following methods
29 * only when you are sure the <varname>primitive</varname> argument
30 * is effectively an arc-to.
32 * The arc primitive is defined by 3 points: the first one is the usual
33 * implicit point got from the previous primitive, the second point is
34 * an arbitrary intermediate point laying on the arc and the third point
35 * is the end of the arc. These points identify univocally an arc:
36 * furthermore, the intermediate point also gives the side of
37 * the arc.
39 * As a special case, when the first point is coincident with the end
40 * point the primitive is considered a circle with diameter defined by
41 * the segment between the first and the intermediate point.
43 * <important>
44 * <para>
45 * An arc is not a native cairo primitive and should be treated specially.
46 * </para>
47 * </important>
49 * Using these CPML APIs you are free to use #CAIRO_PATH_ARC_TO whenever
50 * you want but, if you are directly accessing the struct fields, you
51 * are responsible of converting arcs to curves before passing them
52 * to cairo. In other words, do not directly feed #CpmlPath struct to
53 * cairo (throught cairo_append_path() for example) or at least do not
54 * expect it will work.
56 * The conversion is provided by two APIs: cpml_arc_to_cairo() and
57 * cpml_arc_to_curves(). The former directly renders to a cairo context
58 * and is internally used by all the ..._to_cairo() functions when an
59 * arc is met. The latter provided a more powerful (and more complex)
60 * approach as it allows to specify the number of curves to use and do
61 * not need a cairo context.
62 **/
65 #include "cpml-internal.h"
66 #include "cpml-extents.h"
67 #include "cpml-segment.h"
68 #include "cpml-primitive.h"
69 #include "cpml-primitive-private.h"
70 #include "cpml-arc.h"
71 #include <stdlib.h>
72 #include <math.h>
75 /* Hardcoded max angle of the arc to be approximated by a Bézier curve:
76 * this influence the arc quality (the default value is got from cairo) */
77 #define ARC_MAX_ANGLE M_PI_2
79 /* Macro to save typing and make put_extents() code cleaner */
80 #define ANGLE_INCLUDED(d) \
81 ((start < (d) && end > (d)) || (start > (d) && end < (d)))
84 static double get_length (const CpmlPrimitive *arc);
85 static void put_extents (const CpmlPrimitive *arc,
86 CpmlExtents *extents);
87 static cairo_bool_t get_center (const CpmlPair *p,
88 CpmlPair *dest);
89 static void get_angles (const CpmlPair *p,
90 const CpmlPair *center,
91 double *start,
92 double *end);
93 static void arc_to_curve (CpmlPrimitive *curve,
94 const CpmlPair *center,
95 double r,
96 double start,
97 double end);
100 const _CpmlPrimitiveClass *
101 _cpml_arc_get_class(void)
103 static _CpmlPrimitiveClass *p_class = NULL;
105 if (p_class == NULL) {
106 static _CpmlPrimitiveClass class_data = {
107 "arc", 3,
108 get_length,
109 put_extents,
110 NULL,
111 NULL,
112 NULL,
113 NULL,
114 NULL,
115 NULL
117 p_class = &class_data;
120 return p_class;
125 * cpml_arc_info:
126 * @arc: the #CpmlPrimitive arc data
127 * @center: where to store the center coordinates (can be %NULL)
128 * @r: where to store the radius (can be %NULL)
129 * @start: where to store the starting angle (can be %NULL)
130 * @end: where to store the ending angle (can be %NULL)
132 * Given an @arc, this function calculates and returns its basic data.
133 * Any pointer can be %NULL, in which case the requested info is not
134 * returned. This function can fail (when the three points lay on a
135 * straight line, for example) in which case 0 is returned and no
136 * data can be considered valid.
138 * The radius @r can be 0 when the three points are coincidents: a
139 * circle with radius 0 is considered a valid path.
141 * When the start and end angle are returned, together with their
142 * values these angles implicitely gives another important information:
143 * the arc direction.
145 * If @start < @end the arc must be rendered with increasing angle
146 * value (clockwise direction using the ordinary cairo coordinate
147 * system) while if @start > @end the arc must be rendered in reverse
148 * order (that is counterclockwise in the cairo world). This is the
149 * reason the angle values are returned in the range
150 * { -M_PI < value < 3*M_PI } inclusive instead of the usual
151 * { -M_PI < value < M_PI } range.
153 * Returns: 1 if the function worked succesfully, 0 on errors
155 cairo_bool_t
156 cpml_arc_info(const CpmlPrimitive *arc, CpmlPair *center,
157 double *r, double *start, double *end)
159 CpmlPair p[3], l_center;
161 cpml_pair_from_cairo(&p[0], arc->org);
162 cpml_pair_from_cairo(&p[1], &arc->data[1]);
163 cpml_pair_from_cairo(&p[2], &arc->data[2]);
165 if (!get_center(p, &l_center))
166 return 0;
168 if (center)
169 *center = l_center;
171 if (r != NULL)
172 *r = cpml_pair_distance(&p[0], &l_center);
174 if (start != NULL || end != NULL) {
175 double l_start, l_end;
177 get_angles(p, &l_center, &l_start, &l_end);
179 if (start != NULL)
180 *start = l_start;
181 if (end != NULL)
182 *end = l_end;
185 return 1;
189 * cpml_arc_put_pair_at:
190 * @arc: the #CpmlPrimitive arc data
191 * @pos: the position value
192 * @pair: the destination #CpmlPair
194 * Given an @arc, finds the coordinates at position @pos (where 0 is
195 * the start and 1 is the end) and stores the result in @pair.
197 * @pos can also be outside the 0..1 limit, as interpolating on an
198 * arc is quite trivial.
200 void
201 cpml_arc_put_pair_at(const CpmlPrimitive *arc, double pos, CpmlPair *pair)
203 if (pos == 0.) {
204 cpml_pair_from_cairo(pair, arc->org);
205 } else if (pos == 1.) {
206 cpml_pair_from_cairo(pair, &arc->data[2]);
207 } else {
208 CpmlPair center;
209 double r, start, end, angle;
211 if (!cpml_arc_info(arc, &center, &r, &start, &end))
212 return;
214 angle = (end-start)*pos + start;
215 cpml_vector_from_angle(pair, angle);
216 cpml_vector_set_length(pair, r);
217 cpml_pair_add(pair, &center);
222 * cpml_arc_put_vector_at:
223 * @arc: the #CpmlPrimitive arc data
224 * @pos: the position value
225 * @vector: the destination vector
227 * Given an @arc, finds the slope at position @pos (where 0 is
228 * the start and 1 is the end) and stores the result in @vector.
230 * @pos can also be outside the 0..1 limit, as interpolating on an
231 * arc is quite trivial.
233 void
234 cpml_arc_put_vector_at(const CpmlPrimitive *arc, double pos,
235 CpmlVector *vector)
237 double start, end, angle;
239 if (!cpml_arc_info(arc, NULL, NULL, &start, &end))
240 return;
242 angle = (end-start)*pos + start;
243 cpml_vector_from_angle(vector, angle);
244 cpml_vector_normal(vector);
246 if (start > end)
247 cpml_pair_negate(vector);
251 * cpml_arc_get_closest_pos:
252 * @arc: the #CpmlPrimitive arc data
253 * @pair: the coordinates of the subject point
255 * Returns the pos value of the point on @arc nearest to @pair.
256 * The returned value is always between 0 and 1.
258 * <important>
259 * <title>TODO</title>
260 * <itemizedlist>
261 * <listitem>To be implemented...</listitem>
262 * </itemizedlist>
263 * </important>
265 * Returns: the pos value, always between 0 and 1
267 double
268 cpml_arc_get_closest_pos(const CpmlPrimitive *arc, const CpmlPair *pair)
270 /* TODO */
272 return 0;
276 * cpml_arc_put_intersections:
277 * @arc: the first arc
278 * @arc2: the second arc
279 * @max: maximum number of intersections to return
280 * (that is, the size of @dest)
281 * @dest: a vector of #CpmlPair
283 * Given two arcs (@arc and @arc2), gets their intersection points
284 * and store the result in @dest. Keep in mind two arcs can have
285 * up to 2 intersections.
287 * If @max is 0, the function returns 0 immediately without any
288 * further processing. If @arc and @arc2 are cohincident (same
289 * center and same radius), their intersections are not considered.
291 * <important>
292 * <title>TODO</title>
293 * <itemizedlist>
294 * <listitem>To be implemented...</listitem>
295 * </itemizedlist>
296 * </important>
298 * Returns: the number of intersections found (max 2)
299 * or 0 if the primitives do not intersect
302 cpml_arc_put_intersections(const CpmlPrimitive *arc, const CpmlPrimitive *arc2,
303 int max, CpmlPair *dest)
305 return 0;
309 * cpml_arc_put_intersections_with_line:
310 * @arc: an arc
311 * @line: a line
312 * @max: maximum number of intersections to return
313 * (that is, the size of @dest)
314 * @dest: a vector of #CpmlPair
316 * Given an @arc and a @line, gets their intersection points
317 * and store the result in @dest. Keep in mind an arc and a
318 * line can have up to 2 intersections.
320 * If @max is 0, the function returns 0 immediately without any
321 * further processing.
323 * <important>
324 * <title>TODO</title>
325 * <itemizedlist>
326 * <listitem>To be implemented...</listitem>
327 * </itemizedlist>
328 * </important>
330 * Returns: the number of intersections found (max 2)
331 * or 0 if the primitives do not intersect
334 cpml_arc_put_intersections_with_line(const CpmlPrimitive *arc,
335 const CpmlPrimitive *line,
336 int max, CpmlPair *dest)
338 return 0;
342 * cpml_arc_offset:
343 * @arc: the #CpmlPrimitive arc data
344 * @offset: distance for the computed parallel arc
346 * Given an @arc, this function computes the parallel arc at
347 * distance @offset. The three points needed to build the
348 * new arc are returned in the @arc data (substituting the
349 * previous ones.
351 void
352 cpml_arc_offset(CpmlPrimitive *arc, double offset)
354 CpmlPair p[3], center;
355 double r;
357 cpml_pair_from_cairo(&p[0], arc->org);
358 cpml_pair_from_cairo(&p[1], &arc->data[1]);
359 cpml_pair_from_cairo(&p[2], &arc->data[2]);
361 if (!get_center(p, &center))
362 return;
364 r = cpml_pair_distance(&p[0], &center) + offset;
366 /* Offset the three points by calculating their vector from the center,
367 * setting the new radius as length and readding the center */
368 cpml_pair_sub(&p[0], &center);
369 cpml_pair_sub(&p[1], &center);
370 cpml_pair_sub(&p[2], &center);
372 cpml_vector_set_length(&p[0], r);
373 cpml_vector_set_length(&p[1], r);
374 cpml_vector_set_length(&p[2], r);
376 cpml_pair_add(&p[0], &center);
377 cpml_pair_add(&p[1], &center);
378 cpml_pair_add(&p[2], &center);
380 cpml_pair_to_cairo(&p[0], arc->org);
381 cpml_pair_to_cairo(&p[1], &arc->data[1]);
382 cpml_pair_to_cairo(&p[2], &arc->data[2]);
386 * cpml_arc_to_cairo:
387 * @arc: the #CpmlPrimitive arc data
388 * @cr: the destination cairo context
390 * Renders @arc to the @cr cairo context. As cairo does not support
391 * arcs natively, it is approximated using one or more Bézier curves.
393 * The number of curves used is dependent from the angle of the arc.
394 * Anyway, this function uses internally the hardcoded %M_PI_2 value
395 * as threshold value. This means the maximum arc approximated by a
396 * single curve will be a quarter of a circle and, consequently, a
397 * whole circle will be approximated by 4 Bézier curves.
399 void
400 cpml_arc_to_cairo(const CpmlPrimitive *arc, cairo_t *cr)
402 CpmlPair center;
403 double r, start, end;
404 int n_curves;
405 double step, angle;
406 CpmlPrimitive curve;
407 cairo_path_data_t data[4];
409 if (!cpml_arc_info(arc, &center, &r, &start, &end))
410 return;
412 n_curves = ceil(fabs(end-start) / ARC_MAX_ANGLE);
413 step = (end-start) / (double) n_curves;
414 curve.data = data;
416 for (angle = start; n_curves--; angle += step) {
417 arc_to_curve(&curve, &center, r, angle, angle+step);
418 cairo_curve_to(cr,
419 curve.data[1].point.x, curve.data[1].point.y,
420 curve.data[2].point.x, curve.data[2].point.y,
421 curve.data[3].point.x, curve.data[3].point.y);
426 * cpml_arc_to_curves:
427 * @arc: the #CpmlPrimitive arc data
428 * @segment: the destination #CpmlSegment
429 * @n_curves: number of Bézier to use
431 * Converts @arc to a serie of @n_curves Bézier curves and puts them
432 * inside @segment. Obviously, @segment must have enough space to
433 * contain at least @n_curves curves.
435 * This function works in a similar way as cpml_arc_to_cairo() but
436 * has two important differences: it does not need a cairo context
437 * and the number of curves to be generated is explicitely defined.
438 * The latter difference allows a more specific error control from
439 * the application: in the file src/cairo-arc.c, found in the cairo
440 * tarball (at least in cairo-1.9.1), there is a table showing the
441 * magnitude of error of this curve approximation algorithm.
443 void
444 cpml_arc_to_curves(const CpmlPrimitive *arc, CpmlSegment *segment,
445 int n_curves)
447 CpmlPair center;
448 double r, start, end;
449 double step, angle;
450 CpmlPrimitive curve;
452 if (!cpml_arc_info(arc, &center, &r, &start, &end))
453 return;
455 step = (end-start) / (double) n_curves;
456 segment->num_data = n_curves*4;
457 curve.segment = segment;
458 curve.data = segment->data;
460 for (angle = start; n_curves--; angle += step) {
461 arc_to_curve(&curve, &center, r, angle, angle+step);
462 curve.data += 4;
467 static double
468 get_length(const CpmlPrimitive *arc)
470 double r, start, end, delta;
472 if (!cpml_arc_info(arc, NULL, &r, &start, &end) || start == end)
473 return 0.;
475 delta = end - start;
476 if (delta < 0)
477 delta += M_PI*2;
479 return r*delta;
482 static void
483 put_extents(const CpmlPrimitive *arc, CpmlExtents *extents)
485 double r, start, end;
486 CpmlPair center, pair;
488 extents->is_defined = 0;
490 if (!cpml_arc_info(arc, &center, &r, &start, &end))
491 return;
493 /* Add the right quadrant point if needed */
494 if (ANGLE_INCLUDED(0) || ANGLE_INCLUDED(M_PI * 2)) {
495 pair.x = center.x + r;
496 pair.y = center.y;
497 cpml_extents_pair_add(extents, &pair);
500 /* Add the bottom quadrant point if needed */
501 if (ANGLE_INCLUDED(M_PI_2) || ANGLE_INCLUDED(M_PI_2 * 5)) {
502 pair.x = center.x;
503 pair.y = center.y + r;
504 cpml_extents_pair_add(extents, &pair);
507 /* Add the left quadrant point if needed */
508 if (ANGLE_INCLUDED(M_PI)) {
509 pair.x = center.x - r;
510 pair.y = center.y;
511 cpml_extents_pair_add(extents, &pair);
514 /* Add the top quadrant point if needed */
515 if (ANGLE_INCLUDED(M_PI_2 * 3) || ANGLE_INCLUDED(-M_PI_2)) {
516 pair.x = center.x;
517 pair.y = center.y - r;
518 cpml_extents_pair_add(extents, &pair);
521 /* Add the start point */
522 cpml_pair_from_cairo(&pair, cpml_primitive_get_point(arc, 0));
523 cpml_extents_pair_add(extents, &pair);
525 /* Add the end point */
526 cpml_pair_from_cairo(&pair, cpml_primitive_get_point(arc, -1));
527 cpml_extents_pair_add(extents, &pair);
531 static cairo_bool_t
532 get_center(const CpmlPair *p, CpmlPair *dest)
534 CpmlPair b, c;
535 double d, b2, c2;
537 /* When p[0] == p[2], p[0]..p[1] is considered the diameter of a circle */
538 if (p[0].x == p[2].x && p[0].y == p[2].y) {
539 dest->x = (p[0].x + p[1].x) / 2;
540 dest->y = (p[0].y + p[1].y) / 2;
541 return 1;
544 /* Translate the 3 points of -p0, to simplify the formula */
545 cpml_pair_copy(&b, &p[1]);
546 cpml_pair_sub(&b, &p[0]);
547 cpml_pair_copy(&c, &p[2]);
548 cpml_pair_sub(&c, &p[0]);
550 /* Check for division by 0, that is the case where the 3 given points
551 * are laying on a straight line and there is no fitting circle */
552 d = (b.x*c.y - b.y*c.x) * 2;
553 if (d == 0.)
554 return 0;
556 b2 = b.x*b.x + b.y*b.y;
557 c2 = c.x*c.x + c.y*c.y;
559 dest->x = (c.y*b2 - b.y*c2) / d + p[0].x;
560 dest->y = (b.x*c2 - c.x*b2) / d + p[0].y;
562 return 1;
565 static void
566 get_angles(const CpmlPair *p, const CpmlPair *center,
567 double *start, double *end)
569 CpmlVector vector;
570 double mid;
572 /* Calculate the starting angle */
573 cpml_pair_copy(&vector, &p[0]);
574 cpml_pair_sub(&vector, center);
575 *start = cpml_vector_angle(&vector);
577 if (p[0].x == p[2].x && p[0].y == p[2].y) {
578 /* When p[0] and p[2] are cohincidents, p[0]..p[1] is the diameter
579 * of a circle: return by convention start=start end=start+2PI */
580 *end = *start + M_PI*2;
581 } else {
582 /* Calculate the mid and end angle: cpml_vector_angle()
583 * returns an angle between -M_PI and M_PI */
584 cpml_pair_copy(&vector, &p[1]);
585 cpml_pair_sub(&vector, center);
586 mid = cpml_vector_angle(&vector);
587 cpml_pair_copy(&vector, &p[2]);
588 cpml_pair_sub(&vector, center);
589 *end = cpml_vector_angle(&vector);
591 if (*end > *start) {
592 /* If the middle angle is outside the start..end range,
593 * the arc should be reversed (that is, start must
594 * be greather than end) */
595 if (mid < *start || mid > *end)
596 *start += M_PI*2;
597 } else {
598 /* Here the arc is reversed: if the middle angle is
599 * outside the end..start range, the arc should be
600 * re-reversed to get a straight arc (that is, end
601 * must be greather than start) */
602 if (mid < *end || mid > *start)
603 *end += M_PI*2;
608 static void
609 arc_to_curve(CpmlPrimitive *curve, const CpmlPair *center,
610 double r, double start, double end)
612 double r_sin1, r_cos1;
613 double r_sin2, r_cos2;
614 double h;
616 r_sin1 = r*sin(start);
617 r_cos1 = r*cos(start);
618 r_sin2 = r*sin(end);
619 r_cos2 = r*cos(end);
621 h = 4./3. * tan((end-start) / 4.);
623 curve->data[0].header.type = CAIRO_PATH_CURVE_TO;
624 curve->data[0].header.length = 4;
625 curve->data[1].point.x = center->x + r_cos1 - h*r_sin1;
626 curve->data[1].point.y = center->y + r_sin1 + h*r_cos1;
627 curve->data[2].point.x = center->x + r_cos2 + h*r_sin2;
628 curve->data[2].point.y = center->y + r_sin2 - h*r_cos2;
629 curve->data[3].point.x = center->x + r_cos2;
630 curve->data[3].point.y = center->y + r_sin2;