[CpmlPrimitive] Added support for CAIRO_PATH_ARC_TO
[adg.git] / cpml / cpml-curve.c
blob6547a49527beb5facac84d4f02463832ee398576
1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
20 /**
21 * SECTION:curve
22 * @title: Bézier curves
23 * @short_description: Bézier cubic curve primitive management
25 * The following functions manipulate %CAIRO_PATH_CURVE_TO #CpmlPrimitive.
26 * No check is made on the primitive struct, so be sure
27 * <structname>CpmlPrimitive</structname> is effectively a Bézier curve
28 * before calling these APIs.
29 **/
31 #include "cpml-curve.h"
32 #include "cpml-pair.h"
34 /**
35 * cpml_curve_type_get_npoints:
37 * Returns the number of point needed to properly specify a curve primitive.
39 * Return value: 4
40 **/
41 int
42 cpml_curve_type_get_npoints(void)
44 return 4;
47 /**
48 * cpml_curve_pair_at_time:
49 * @curve: the #CpmlPrimitive curve data
50 * @pair: the destination pair
51 * @t: the "time" value
53 * Given the @curve Bézier cubic, finds the coordinates at time @t
54 * (where 0 is the start and 1 is the end) and stores the result
55 * in @pair. Keep in mind @t is not homogeneous, so 0.5 does not
56 * necessarily means the mid point.
58 * The relation 0 < @t < 1 must be satisfied, as interpolating on
59 * cubic curves is not allowed.
60 **/
61 void
62 cpml_curve_pair_at_time(const CpmlPrimitive *curve, CpmlPair *pair, double t)
64 cairo_path_data_t *p1, *p2, *p3, *p4;
65 double t_2, t_3, t1, t1_2, t1_3;
67 p1 = cpml_primitive_get_point(curve, 0);
68 p2 = cpml_primitive_get_point(curve, 1);
69 p3 = cpml_primitive_get_point(curve, 2);
70 p4 = cpml_primitive_get_point(curve, 3);
72 t_2 = t * t;
73 t_3 = t_2 * t;
74 t1 = 1 - t;
75 t1_2 = t1 * t1;
76 t1_3 = t1_2 * t1;
78 pair->x = t1_3 * p1->point.x + 3 * t1_2 * t * p2->point.x
79 + 3 * t1 * t_2 * p3->point.x + t_3 * p4->point.x;
80 pair->y = t1_3 * p1->point.y + 3 * t1_2 * t * p2->point.y
81 + 3 * t1 * t_2 * p3->point.y + t_3 * p4->point.y;
84 /**
85 * cpml_curve_pair_at:
86 * @curve: the #CpmlPrimitive curve data
87 * @pair: the destination #AdgPair
88 * @pos: the position value
90 * Given the @curve Bézier cubic, finds the coordinates at position
91 * @pos (where 0 is the start and 1 is the end) and stores the result
92 * in @pair. It is similar to cpml_curve_pair_at_time() but the @pos
93 * value is evenly distribuited, that is 0.5 is exactly the mid point.
94 * If you do not need this feature, use cpml_curve_pair_at_time()
95 * as it is considerable faster.
97 * The relation 0 < @pos < 1 must be satisfied, as interpolating on
98 * cubic curves is not allowed.
100 * <important>
101 * <title>TODO</title>
102 * <itemizedlist>
103 * <listitem>To be implemented...</listitem>
104 * </itemizedlist>
105 * </important>
107 void
108 cpml_curve_pair_at(const CpmlPrimitive *curve, CpmlPair *pair, double pos)
113 * cpml_curve_vector_at_time:
114 * @curve: the #CpmlPrimitive curve data
115 * @vector: the destination vector
116 * @t: the "time" value
118 * Given the @curve Bézier cubic, finds the slope at time @t
119 * (where 0 is the start and 1 is the end) and stores the result
120 * in @vector. Keep in mind @t is not homogeneous, so 0.5
121 * does not necessarily means the mid point.
123 * @t must be inside the range 0 .. 1, as interpolating is not
124 * allowed.
126 void
127 cpml_curve_vector_at_time(const CpmlPrimitive *curve,
128 CpmlVector *vector, double t)
130 cairo_path_data_t *p1, *p2, *p3, *p4;
131 CpmlPair p21, p32, p43;
132 double t1, t1_2, t_2;
134 p1 = cpml_primitive_get_point(curve, 0);
135 p2 = cpml_primitive_get_point(curve, 1);
136 p3 = cpml_primitive_get_point(curve, 2);
137 p4 = cpml_primitive_get_point(curve, 3);
139 p21.x = p2->point.x - p1->point.x;
140 p21.y = p2->point.y - p1->point.y;
141 p32.x = p3->point.x - p2->point.x;
142 p32.y = p3->point.y - p2->point.y;
143 p43.x = p4->point.x - p3->point.x;
144 p43.y = p4->point.y - p3->point.y;
146 t1 = 1 - t;
147 t1_2 = t1 * t1;
148 t_2 = t * t;
150 vector->x = 3 * t1_2 * p21.x + 6 * t1 * t * p32.x + 3 * t_2 * p43.x;
151 vector->y = 3 * t1_2 * p21.y + 6 * t1 * t * p32.y + 3 * t_2 * p43.y;
155 * cpml_curve_vector_at:
156 * @curve: the #CpmlPrimitive curve data
157 * @vector: the destination vector
158 * @pos: the position value
160 * Given the @curve Bézier cubic, finds the slope at position @pos
161 * (where 0 is the start and 1 is the end) and stores the result
162 * in @vector. It is similar to cpml_curve_vector_at_time() but the
163 * @pos value is evenly distribuited, that is 0.5 is exactly the
164 * mid point. If you do not need this feature, use
165 * cpml_curve_vector_at_time() as it is considerable faster.
167 * @pos must be inside the range 0 .. 1, as interpolating is not
168 * allowed.
170 * <important>
171 * <title>TODO</title>
172 * <itemizedlist>
173 * <listitem>To be implemented...</listitem>
174 * </itemizedlist>
175 * </important>
177 void
178 cpml_curve_vector_at(const CpmlPrimitive *curve,
179 CpmlVector *vector, double pos)
184 * cpml_curve_intersection:
185 * @curve: the first curve
186 * @curve2: the second curve
187 * @dest: a vector of at least 4 #CpmlPair
189 * Given two Bézier cubic curves (@curve and @curve2), gets their
190 * intersection points and store the result in @dest. Because two
191 * curves can have 4 intersections, @dest MUST be at least an array
192 * of 4 #CpmlPair.
194 * <important>
195 * <title>TODO</title>
196 * <itemizedlist>
197 * <listitem>To be implemented...</listitem>
198 * </itemizedlist>
199 * </important>
201 * Return value: the number of intersections (max 4)
204 cpml_curve_intersection(const CpmlPrimitive *curve,
205 const CpmlPrimitive *curve2, CpmlPair *dest)
207 return 0;
211 * cpml_curve_intersection_with_arc:
212 * @curve: a curve
213 * @arc: an arc
214 * @dest: a vector of at least 4 #CpmlPair
216 * Given a Bézier cubic @curve and an @arc, gets their intersection
217 * points and store the result in @dest. Because an arc and a cubic
218 * curve can have up to 4 intersections, @dest MUST be at least an
219 * array of 4 #CpmlPair.
221 * <important>
222 * <title>TODO</title>
223 * <itemizedlist>
224 * <listitem>To be implemented...</listitem>
225 * </itemizedlist>
226 * </important>
228 * Return value: the number of intersections (max 4)
231 cpml_curve_intersection_with_arc(const CpmlPrimitive *curve,
232 const CpmlPrimitive *arc, CpmlPair *dest)
234 return 0;
238 * cpml_curve_intersection_with_line:
239 * @curve: a curve
240 * @line: a line
241 * @dest: a vector of at least 4 #CpmlPair
243 * Given a Bézier cubic @curve and a @line, gets their intersection
244 * points and store the result in @dest. Because a line and a cubic
245 * curve can have up to 4 intersections, @dest MUST be at least an
246 * array of 4 #CpmlPair.
248 * <important>
249 * <title>TODO</title>
250 * <itemizedlist>
251 * <listitem>To be implemented...</listitem>
252 * </itemizedlist>
253 * </important>
255 * Return value: the number of intersections (max 4)
258 cpml_curve_intersection_with_line(const CpmlPrimitive *curve,
259 const CpmlPrimitive *line, CpmlPair *dest)
261 return 0;
265 * cpml_curve_offset:
266 * @curve: the #CpmlPrimitive curve data
267 * @offset: distance for the computed parallel curve
269 * Given a cubic Bézier primitive in @curve, this function finds
270 * the approximated Bézier curve parallel to @curve at distance
271 * @offset (an offset curve). The four points needed to build the
272 * new curve are returned in the @curve struct.
274 * To solve the offset problem, a custom algorithm is used. First, the
275 * resulting curve MUST have the same slope at the start and end point.
276 * These constraints are not sufficient to resolve the system, so I let
277 * the curve pass thought a given point (pm, known and got from the
278 * original curve) at a given time (m, now hardcoded to 0.5).
280 * Firstly, I define some useful variables:
282 * v0 = unitvector(p[1]-p[0]) * offset;
283 * v3 = unitvector(p[3]-p[2]) * offset;
284 * p0 = p[0] + normal v0;
285 * p3 = p[3] + normal v3.
287 * Now I want the curve to have the specified slopes at the start
288 * and end point. Forcing the same slope at the start point means:
290 * p1 = p0 + k0 v0.
292 * where k0 is an arbitrary factor. Decomposing for x and y components:
294 * p1.x = p0.x + k0 v0.x;
295 * p1.y = p0.y + k0 v0.y.
297 * Doing the same for the end point gives:
299 * p2.x = p3.x + k3 v3.x;
300 * p2.y = p3.y + k3 v3.y.
302 * Now I interpolate the curve by forcing it to pass throught pm
303 * when "time" is m, where 0 < m < 1. The cubic Bézier function is:
305 * C(t) = (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3.
307 * and forcing t=m and C(t) = pm:
309 * pm = (1-m)³p0 + 3m(1-m)²p1 + 3m²(1-m)p2 + m³p3.
311 * (1-m) p1 + m p2 = (pm - (1-m)³p0 - m³p3) / (3m (1-m)).
313 * So the final system is:
315 * p1.x = p0.x + k0 v0.x;
316 * p1.y = p0.y + k0 v0.y;
317 * p2.x = p3.x + k3 v3.x;
318 * p2.y = p3.y + k3 v3.y;
319 * (1-m) p1.x + m p2.x = (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m));
320 * (1-m) p1.y + m p2.y = (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)).
322 * Substituting and resolving for k0 and k3:
324 * (1-m) k0 v0.x + m k3 v3.x =
325 * (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m)) - (1-m) p0.x - m p3.x;
326 * (1-m) k0 v0.y + m k3 v3.y =
327 * (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)) - (1-m) p0.y - m p3.y.
329 * (1-m) k0 v0.x + m k3 v3.x =
330 * (pm.x - (1-m)²(1+2m) p0.x - m²(3-2m) p3.x) / (3m (1-m));
331 * (1-m) k0 v0.y + m k3 v3.y =
332 * (pm.y - (1-m)²(1+2m) p0.y - m²(3-2m) p3.y) / (3m (1-m)).
334 * Let:
336 * pk = (pm - (1-m)²(1+2m) p0 - m²(3-2m) p3) / (3m (1-m)).
338 * gives the following system:
340 * (1-m) k0 v0.x + m k3 v3.x = pk.x;
341 * (1-m) k0 v0.y + m k3 v3.y = pk.y.
343 * Now I should avoid division by 0 troubles. If either v0.x and v3.x
344 * are 0, the first equation will be inconsistent. More in general the
345 * v0.x*v3.y = v3.x*v3.y condition should be avoided. This is the first
346 * case to check, in which case an alternative approach is used. In the
347 * other cases the above system can be used.
349 * If v0.x != 0 I can resolve for k0 and then find k3:
351 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
352 * (pk.x - m k3 v3.x) v0.y / v0.x + m k3 v3.y = pk.y.
354 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
355 * k3 m (v3.y - v3.x v0.y / v0.x) = pk.y - pk.x v0.y / v0.x.
357 * k3 = (pk.y - pk.x v0.y / v0.x) / (m (v3.y - v3.x v0.y / v0.x));
358 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x).
360 * If v3.x != 0 I can resolve for k3 and then find k0:
362 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
363 * (1-m) k0 v0.y + (pk.x - (1-m) k0 v0.x) v3.y / v3.x = pk.y.
365 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
366 * k0 (1-m) (v0.y - k0 v0.x v3.y / v3.x) = pk.y - pk.x v3.y / v3.x.
368 * k0 = (pk.y - pk.x v3.y / v3.x) / ((1-m) (v0.y - v0.x v3.y / v3.x));
369 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x).
371 * <important>
372 * <title>TODO</title>
373 * <itemizedlist>
374 * <listitem>By default, interpolation of the new curve is made by offseting
375 * the mid point: use a better candidate.</listitem>
376 * <listitem>When the equations are inconsistent, the alternative approach
377 * performs very bad if <varname>v0</varname> and
378 * <varname>v3</varname> are opposite or staggered.</listitem>
379 * </itemizedlist>
380 * </important>
382 void
383 cpml_curve_offset(CpmlPrimitive *curve, double offset)
385 double m, mm;
386 CpmlVector v0, v3, vm, vtmp;
387 CpmlPair p0, p1, p2, p3, pm;
389 m = 0.5;
390 mm = 1-m;
392 /* Firstly, convert the curve points from cairo format to cpml format
393 * and store them (temporary) in p0..p3 */
394 cpml_pair_from_cairo(&p0, curve->org);
395 cpml_pair_from_cairo(&p1, &curve->data[1]);
396 cpml_pair_from_cairo(&p2, &curve->data[2]);
397 cpml_pair_from_cairo(&p3, &curve->data[3]);
399 /* v0 = p1-p0 */
400 cpml_pair_sub(cpml_pair_copy(&v0, &p1), &p0);
402 /* v3 = p3-p2 */
403 cpml_pair_sub(cpml_pair_copy(&v3, &p3), &p2);
405 /* pm = point in C(m) offseted the requested @offset distance */
406 cpml_curve_vector_at_time(curve, &vm, m);
407 cpml_vector_set_length(&vm, offset);
408 cpml_vector_normal(&vm);
409 cpml_curve_pair_at_time(curve, &pm, m);
410 cpml_pair_add(&pm, &vm);
412 /* p0 = p0 + normal of v0 of @offset magnitude (exact value) */
413 cpml_vector_set_length(cpml_pair_copy(&vtmp, &v0), offset);
414 cpml_vector_normal(&vtmp);
415 cpml_pair_add(&p0, &vtmp);
417 /* p3 = p3 + normal of v3 of @offset magnitude, as done for p0 */
418 cpml_vector_set_length(cpml_pair_copy(&vtmp, &v3), offset);
419 cpml_vector_normal(&vtmp);
420 cpml_pair_add(&p3, &vtmp);
422 if (v0.x*v3.y == v3.x*v0.y) {
423 /* Inconsistent equations: use the alternative approach */
424 p1.x = p0.x + v0.x + vm.x * 4/3;
425 p1.y = p0.y + v0.y + vm.y * 4/3;
426 p2.x = p3.x - v3.x + vm.x * 4/3;
427 p2.y = p3.y - v3.y + vm.y * 4/3;
428 } else {
429 CpmlPair pk;
430 double k0, k3;
432 pk.x = (pm.x - mm*mm*(1+m+m)*p0.x - m*m*(1+mm+mm)*p3.x) / (3*m*(1-m));
433 pk.y = (pm.y - mm*mm*(1+m+m)*p0.y - m*m*(1+mm+mm)*p3.y) / (3*m*(1-m));
435 if (v0.x != 0) {
436 k3 = (pk.y - pk.x*v0.y / v0.x) / (m*(v3.y - v3.x*v0.y / v0.x));
437 k0 = (pk.x - m*k3*v3.x) / (mm*v0.x);
438 } else {
439 k0 = (pk.y - pk.x*v3.y / v3.x) / (mm*(v0.y - v0.x*v3.y / v3.x));
440 k3 = (pk.x - mm*k0*v0.x) / (m*v3.x);
443 p1.x = p0.x + k0*v0.x;
444 p1.y = p0.y + k0*v0.y;
445 p2.x = p3.x + k3*v3.x;
446 p2.y = p3.y + k3*v3.y;
449 /* Return the new curve in the original array */
450 cpml_pair_to_cairo(&p0, curve->org);
451 cpml_pair_to_cairo(&p1, &curve->data[1]);
452 cpml_pair_to_cairo(&p2, &curve->data[2]);
453 cpml_pair_to_cairo(&p3, &curve->data[3]);