1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
23 * @Section_Id:CpmlLine
25 * @short_description: APIs manipulating straight lines
27 * The following functions manipulate %CAIRO_PATH_LINE_TO #CpmlPrimitive.
28 * No validation is made on the input so use the following methods
29 * only when you are sure the <varname>primitive</varname> argument
30 * is effectively a straingt line.
34 #include "cpml-line.h"
35 #include "cpml-pair.h"
39 static cairo_bool_t
intersection (const CpmlPair
*p
,
45 * cpml_line_type_get_npoints:
47 * Returns the number of point needed to properly specify a line primitive.
52 cpml_line_type_get_npoints(void)
59 * @line: the #CpmlPrimitive line data
61 * Given the @line primitive, returns the distance between its
62 * start and end points.
64 * Return value: the requested distance, that is the @line length
67 cpml_line_length(const CpmlPrimitive
*line
)
71 cpml_pair_from_cairo(&p1
, cpml_primitive_get_point(line
, 0));
72 cpml_pair_from_cairo(&p2
, cpml_primitive_get_point(line
, -1));
74 return cpml_pair_distance(&p1
, &p2
);
79 * @line: the #CpmlPrimitive line data
80 * @pair: the destination pair
81 * @pos: the position value
83 * Given the @line line, finds the coordinates at position @pos
84 * (where 0 is the start and 1 is the end) and stores the result
87 * @pos can be less than 0 or greater than 1, in which case the
88 * coordinates are interpolated.
91 cpml_line_pair_at(const CpmlPrimitive
*line
, CpmlPair
*pair
, double pos
)
93 cairo_path_data_t
*p1
, *p2
;
95 p1
= cpml_primitive_get_point(line
, 0);
96 p2
= cpml_primitive_get_point(line
, -1);
98 pair
->x
= p1
->point
.x
+ (p2
->point
.x
- p1
->point
.x
) * pos
;
99 pair
->y
= p1
->point
.y
+ (p2
->point
.y
- p1
->point
.y
) * pos
;
103 * cpml_line_vector_at:
104 * @line: the #CpmlPrimitive line data
105 * @vector: the destination vector
106 * @pos: the position value
108 * Gets the slope on @line at the position @pos. Being the
109 * line a straight segment, the vector is always the same, so
110 * @pos is not used. Mathematically speaking, the equation
113 * @vector = endpoint(@line) - startpoint(@line).
116 cpml_line_vector_at(const CpmlPrimitive
*line
, CpmlVector
*vector
, double pos
)
118 cairo_path_data_t
*p1
, *p2
;
120 p1
= cpml_primitive_get_point(line
, 0);
121 p2
= cpml_primitive_get_point(line
, -1);
123 vector
->x
= p2
->point
.x
- p1
->point
.x
;
124 vector
->y
= p2
->point
.y
- p1
->point
.y
;
128 * cpml_line_near_pos:
129 * @line: the #CpmlPrimitive line data
130 * @pair: the coordinates of the subject point
132 * Returns the pos value of the point on @line nearest to @pair.
133 * The returned value is always between 0 and 1.
135 * The point nearest to @pair is got by finding the its
136 * projection on @line, as this is when the point is closer to
139 * Return value: the pos value, always between 0 and 1
142 cpml_line_near_pos(const CpmlPrimitive
*line
, const CpmlPair
*pair
)
148 cpml_pair_from_cairo(&p
[0], cpml_primitive_get_point(line
, 0));
149 cpml_pair_from_cairo(&p
[1], cpml_primitive_get_point(line
, -1));
151 cpml_pair_sub(cpml_pair_copy(&normal
, &p
[1]), &p
[2]);
152 cpml_vector_normal(&normal
);
154 cpml_pair_copy(&p
[2], pair
);
155 cpml_pair_add(cpml_pair_copy(&p
[3], pair
), &normal
);
157 /* Ensure to return 0 if intersection() fails */
159 intersection(p
, NULL
, &pos
);
161 /* Clamp the result to 0..1 */
171 * cpml_line_intersection:
172 * @line: the first line
173 * @line2: the second line
174 * @dest: a vector of #CpmlPair
175 * @max: maximum number of intersections to return
176 * (that is, the size of @dest)
178 * Given two lines (@line and @line2), gets their intersection point
179 * and store the result in @dest.
181 * If @max is 0, the function returns 0 immediately without any
182 * further processing. If @line and @line2 are cohincident,
183 * their intersections are not considered.
185 * Return value: the number of intersections found (max 1)
186 * or 0 if the primitives do not intersect
189 cpml_line_intersection(const CpmlPrimitive
*line
, const CpmlPrimitive
*line2
,
190 CpmlPair
*dest
, int max
)
197 cpml_pair_from_cairo(&p
[0], cpml_primitive_get_point(line
, 0));
198 cpml_pair_from_cairo(&p
[1], cpml_primitive_get_point(line
, -1));
199 cpml_pair_from_cairo(&p
[2], cpml_primitive_get_point(line2
, 0));
200 cpml_pair_from_cairo(&p
[3], cpml_primitive_get_point(line2
, -1));
202 return intersection(p
, dest
, NULL
) ? 1 : 0;
207 * @line: the #CpmlPrimitive line data
208 * @offset: distance for the computed parallel line
210 * Given a line segment specified by the @line primitive data,
211 * computes the parallel line distant @offset from the original one
212 * and returns the result by changing @line.
215 cpml_line_offset(CpmlPrimitive
*line
, double offset
)
217 cairo_path_data_t
*p1
, *p2
;
220 p1
= cpml_primitive_get_point(line
, 0);
221 p2
= cpml_primitive_get_point(line
, -1);
223 cpml_line_vector_at(line
, &normal
, 0.);
224 cpml_vector_normal(&normal
);
225 cpml_vector_set_length(&normal
, offset
);
227 p1
->point
.x
+= normal
.x
;
228 p1
->point
.y
+= normal
.y
;
229 p2
->point
.x
+= normal
.x
;
230 p2
->point
.y
+= normal
.y
;
235 intersection(const CpmlPair
*p
, CpmlPair
*dest
, double *get_factor
)
240 cpml_pair_sub(cpml_pair_copy(&v
[0], &p
[1]), &p
[0]);
241 cpml_pair_sub(cpml_pair_copy(&v
[1], &p
[3]), &p
[2]);
242 factor
= v
[0].x
* v
[1].y
- v
[0].y
* v
[1].x
;
244 /* Check for equal slopes (the lines are parallel) */
248 factor
= ((p
[0].y
- p
[2].y
) * v
[1].x
-
249 (p
[0].x
- p
[2].x
) * v
[1].y
) / factor
;
252 dest
->x
= p
[0].x
+ v
[0].x
* factor
;
253 dest
->y
= p
[0].y
+ v
[0].y
* factor
;
256 if (get_factor
!= NULL
)
257 *get_factor
= factor
;