1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2007,2008,2009,2010,2011,2012,2013 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
23 * @Section_Id:CpmlCurve
25 * @short_description: Bézier cubic curve primitive management
27 * The following functions manipulate %CPML_CURVE #CpmlPrimitive.
28 * No validation is made on the input so use the following methods
29 * only when you are sure the <varname>primitive</varname> argument
30 * is effectively a cubic Bézier curve.
35 * <listitem>the get_length() method must be implemented;</listitem>
36 * <listitem>actually the put_extents() method is implemented by computing
37 * the bounding box of the control polygon and this will likely
38 * include some empty space: there is room for improvements;</listitem>
39 * <listitem>the put_pair_at() method must be implemented;</listitem>
40 * <listitem>the put_vector_at() method must be implemented;</listitem>
41 * <listitem>the get_closest_pos() method must be implemented;</listitem>
42 * <listitem>the put_intersections() method must be implemented;</listitem>
43 * <listitem>by default, the offset curve is calculated by using the point
44 * at t=0.5 as reference: use a better candidate;</listitem>
45 * <listitem>in the offset() implementation, when the equations are
46 * inconsistent, the alternative approach performs very bad
47 * if <varname>v0</varname> and <varname>v3</varname> are
48 * opposite or staggered.</listitem>
52 * <refsect2 id="offset">
53 * <title>Offseting algorithm</title>
55 * Given a cubic Bézier primitive, it must be found the approximated
56 * Bézier curve parallel to the original one at a specific distance
57 * (the so called "offset curve"). The four points needed to build
58 * the new curve must be returned.
60 * To solve the offset problem, a custom algorithm is used. First, the
61 * resulting curve MUST have the same slope at the start and end point.
62 * These constraints are not sufficient to resolve the system, so I let
63 * the curve pass thought a given point (pm, known and got from the
64 * original curve) at a given time (m, now hardcoded to 0.5).
66 * Firstly, some useful variables are defined:
69 * v0 = unitvector(p[1] − p[0]) × offset;
70 * v3 = unitvector(p[3] − p[2]) × offset;
71 * p0 = p[0] + normal v0;
72 * p3 = p[3] + normal v3.
75 * The resulting curve must have the same slopes than the original
76 * one at the start and end points. Forcing the same slopes means:
82 * where %k0 is an arbitrary factor. Decomposing for %x and %y:
85 * p1.x = p0.x + k0 v0.x;
86 * p1.y = p0.y + k0 v0.y.
89 * and doing the same for the end point:
92 * p2.x = p3.x + k3 v3.x;
93 * p2.y = p3.y + k3 v3.y.
96 * This does not give a resolvable system, though. The curve will be
97 * interpolated by forcing its path to pass throught %pm when
98 * <varname>time</varname> is %m, where <code>0 ≤ m ≤ 1</code>.
99 * Knowing the function of the cubic Bézier:
102 * C(t) = (1 − t)³p0 + 3t(1 − t)²p1 + 3t²(1 − t)p2 + t³p3.
105 * and forcing <code>t = m</code> and <code>C(t) = pm</code>:
108 * pm = (1 − m)³p0 + 3m(1 − m)²p1 + 3m²(1 − m)p2 + m³p3.
110 * (1 − m) p1 + m p2 = (pm − (1 − m)³p0 − m³p3) / (3m (1 − m)).
113 * gives this final system:
116 * p1.x = p0.x + k0 v0.x;
117 * p1.y = p0.y + k0 v0.y;
118 * p2.x = p3.x + k3 v3.x;
119 * p2.y = p3.y + k3 v3.y;
120 * (1 − m) p1.x + m p2.x = (pm.x − (1 − m)³p0.x − m³p3.x) / (3m (1 − m));
121 * (1 − m) p1.y + m p2.y = (pm.y − (1 − m)³p0.y − m³p3.y) / (3m (1 − m)).
124 * Substituting and resolving for %k0 and %k3:
127 * (1 − m) k0 v0.x + m k3 v3.x = (pm.x − (1 − m)³p0.x − m³p3.x) / (3m (1 − m)) − (1 − m) p0.x − m p3.x;
128 * (1 − m) k0 v0.y + m k3 v3.y = (pm.y − (1 − m)³p0.y − m³p3.y) / (3m (1 − m)) − (1 − m) p0.y − m p3.y.
130 * (1 − m) k0 v0.x + m k3 v3.x = (pm.x − (1 − m)²(1+2m) p0.x − m²(3 − 2m) p3.x) / (3m (1 − m));
131 * (1 − m) k0 v0.y + m k3 v3.y = (pm.y − (1 − m)²(1+2m) p0.y − m²(3 − 2m) p3.y) / (3m (1 − m)).
137 * pk = (pm − (1 − m)²(1+2m) p0 − m²(3 − 2m) p3) / (3m (1 − m)).
140 * reduces the above to this final equations:
143 * (1 − m) k0 v0.x + m k3 v3.x = pk.x;
144 * (1 − m) k0 v0.y + m k3 v3.y = pk.y.
147 * If <code>v0.x ≠ 0</code>, the system can be resolved for %k0 and
148 * %k3 calculated accordingly:
151 * k0 = (pk.x − m k3 v3.x) / ((1 − m) v0.x);
152 * (pk.x − m k3 v3.x) v0.y / v0.x + m k3 v3.y = pk.y.
154 * k0 = (pk.x − m k3 v3.x) / ((1 − m) v0.x);
155 * k3 m (v3.y − v3.x v0.y / v0.x) = pk.y − pk.x v0.y / v0.x.
157 * k3 = (pk.y − pk.x v0.y / v0.x) / (m (v3.y − v3.x v0.y / v0.x));
158 * k0 = (pk.x − m k3 v3.x) / ((1 − m) v0.x).
161 * Otherwise, if <code>v3.x ≠ 0</code>, the system can be solved
162 * for %k3 and %k0 calculated accordingly:
165 * k3 = (pk.x − (1 − m) k0 v0.x) / (m v3.x);
166 * (1 − m) k0 v0.y + (pk.x − (1 − m) k0 v0.x) v3.y / v3.x = pk.y.
168 * k3 = (pk.x − (1 − m) k0 v0.x) / (m v3.x);
169 * k0 (1 − m) (v0.y − k0 v0.x v3.y / v3.x) = pk.y − pk.x v3.y / v3.x.
171 * k0 = (pk.y − pk.x v3.y / v3.x) / ((1 − m) (v0.y − v0.x v3.y / v3.x));
172 * k3 = (pk.x − (1 − m) k0 v0.x) / (m v3.x).
175 * The whole process must be guarded against division by 0 exceptions.
176 * If either <code>v0.x</code> and <code>v3.x</code> are %0, the first
177 * equation will be inconsistent. More in general, the
178 * <code>v0.x × v3.y = v3.x × v3.y</code> condition must
179 * be avoided. This is the first situation to avoid, in which case
180 * an alternative approach should be used.
190 #include "cpml-internal.h"
191 #include "cpml-extents.h"
192 #include "cpml-segment.h"
193 #include "cpml-primitive.h"
194 #include "cpml-primitive-private.h"
195 #include "cpml-curve.h"
198 static void put_extents (const CpmlPrimitive
*curve
,
199 CpmlExtents
*extents
);
200 static void offset (CpmlPrimitive
*curve
,
204 const _CpmlPrimitiveClass
*
205 _cpml_curve_get_class(void)
207 static _CpmlPrimitiveClass
*p_class
= NULL
;
209 if (p_class
== NULL
) {
210 static _CpmlPrimitiveClass class_data
= {
221 p_class
= &class_data
;
229 * cpml_curve_put_pair_at_time:
230 * @curve: the #CpmlPrimitive curve data
231 * @t: the "time" value
232 * @pair: the destination pair
234 * Given the @curve Bézier cubic, finds the coordinates at time @t
235 * (where 0 is the start and 1 is the end) and stores the result
236 * in @pair. Keep in mind @t is not homogeneous, so 0.5 does not
237 * necessarily means the mid point.
242 cpml_curve_put_pair_at_time(const CpmlPrimitive
*curve
, double t
,
245 CpmlPair p1
, p2
, p3
, p4
;
246 double t_2
, t_3
, t1
, t1_2
, t1_3
;
248 cpml_primitive_put_point(curve
, 0, &p1
);
249 cpml_primitive_put_point(curve
, 1, &p2
);
250 cpml_primitive_put_point(curve
, 2, &p3
);
251 cpml_primitive_put_point(curve
, 3, &p4
);
259 pair
->x
= t1_3
* p1
.x
+ 3 * t1_2
* t
* p2
.x
260 + 3 * t1
* t_2
* p3
.x
+ t_3
* p4
.x
;
261 pair
->y
= t1_3
* p1
.y
+ 3 * t1_2
* t
* p2
.y
262 + 3 * t1
* t_2
* p3
.y
+ t_3
* p4
.y
;
266 * cpml_curve_put_vector_at_time:
267 * @curve: the #CpmlPrimitive curve data
268 * @t: the "time" value
269 * @vector: the destination vector
271 * Given the @curve Bézier cubic, finds the slope at time @t
272 * (where 0 is the start and 1 is the end) and stores the result
273 * in @vector. Keep in mind @t is not homogeneous, so 0.5
274 * does not necessarily means the mid point.
279 cpml_curve_put_vector_at_time(const CpmlPrimitive
*curve
,
280 double t
, CpmlVector
*vector
)
282 CpmlPair p1
, p2
, p3
, p4
;
283 CpmlPair p21
, p32
, p43
;
284 double t1
, t1_2
, t_2
;
286 cpml_primitive_put_point(curve
, 0, &p1
);
287 cpml_primitive_put_point(curve
, 1, &p2
);
288 cpml_primitive_put_point(curve
, 2, &p3
);
289 cpml_primitive_put_point(curve
, 3, &p4
);
302 vector
->x
= 3 * t1_2
* p21
.x
+ 6 * t1
* t
* p32
.x
+ 3 * t_2
* p43
.x
;
303 vector
->y
= 3 * t1_2
* p21
.y
+ 6 * t1
* t
* p32
.y
+ 3 * t_2
* p43
.y
;
308 put_extents(const CpmlPrimitive
*curve
, CpmlExtents
*extents
)
310 CpmlPair p1
, p2
, p3
, p4
;
312 extents
->is_defined
= 0;
314 cpml_primitive_put_point(curve
, 0, &p1
);
315 cpml_primitive_put_point(curve
, 1, &p2
);
316 cpml_primitive_put_point(curve
, 2, &p3
);
317 cpml_primitive_put_point(curve
, 3, &p4
);
319 cpml_extents_pair_add(extents
, &p1
);
320 cpml_extents_pair_add(extents
, &p2
);
321 cpml_extents_pair_add(extents
, &p3
);
322 cpml_extents_pair_add(extents
, &p4
);
326 offset(CpmlPrimitive
*curve
, double offset
)
329 CpmlVector v0
, v3
, vm
, vtmp
;
330 CpmlPair p0
, p1
, p2
, p3
, pm
;
335 /* Firstly, convert the curve points from cairo format to cpml format
336 * and store them (temporary) in p0..p3 */
337 cpml_pair_from_cairo(&p0
, curve
->org
);
338 cpml_pair_from_cairo(&p1
, &curve
->data
[1]);
339 cpml_pair_from_cairo(&p2
, &curve
->data
[2]);
340 cpml_pair_from_cairo(&p3
, &curve
->data
[3]);
350 /* pm = point in C(m) offseted the requested @offset distance */
351 cpml_curve_put_vector_at_time(curve
, m
, &vm
);
352 cpml_vector_set_length(&vm
, offset
);
353 cpml_vector_normal(&vm
);
354 cpml_curve_put_pair_at_time(curve
, m
, &pm
);
358 /* p0 = p0 + normal of v0 of @offset magnitude (exact value) */
359 cpml_pair_copy(&vtmp
, &v0
);
360 cpml_vector_set_length(&vtmp
, offset
);
361 cpml_vector_normal(&vtmp
);
365 /* p3 = p3 + normal of v3 of @offset magnitude, as done for p0 */
366 cpml_pair_copy(&vtmp
, &v3
);
367 cpml_vector_set_length(&vtmp
, offset
);
368 cpml_vector_normal(&vtmp
);
372 if (v0
.x
*v3
.y
== v3
.x
*v0
.y
) {
373 /* Inconsistent equations: use the alternative approach */
374 p1
.x
= p0
.x
+ v0
.x
+ vm
.x
* 4/3;
375 p1
.y
= p0
.y
+ v0
.y
+ vm
.y
* 4/3;
376 p2
.x
= p3
.x
- v3
.x
+ vm
.x
* 4/3;
377 p2
.y
= p3
.y
- v3
.y
+ vm
.y
* 4/3;
382 pk
.x
= (pm
.x
- mm
*mm
*(1+m
+m
)*p0
.x
- m
*m
*(1+mm
+mm
)*p3
.x
) / (3*m
*(1-m
));
383 pk
.y
= (pm
.y
- mm
*mm
*(1+m
+m
)*p0
.y
- m
*m
*(1+mm
+mm
)*p3
.y
) / (3*m
*(1-m
));
386 k3
= (pk
.y
- pk
.x
*v0
.y
/ v0
.x
) / (m
*(v3
.y
- v3
.x
*v0
.y
/ v0
.x
));
387 k0
= (pk
.x
- m
*k3
*v3
.x
) / (mm
*v0
.x
);
389 k0
= (pk
.y
- pk
.x
*v3
.y
/ v3
.x
) / (mm
*(v0
.y
- v0
.x
*v3
.y
/ v3
.x
));
390 k3
= (pk
.x
- mm
*k0
*v0
.x
) / (m
*v3
.x
);
393 p1
.x
= p0
.x
+ k0
*v0
.x
;
394 p1
.y
= p0
.y
+ k0
*v0
.y
;
395 p2
.x
= p3
.x
+ k3
*v3
.x
;
396 p2
.y
= p3
.y
+ k3
*v3
.y
;
399 /* Return the new curve in the original array */
400 cpml_pair_to_cairo(&p0
, curve
->org
);
401 cpml_pair_to_cairo(&p1
, &curve
->data
[1]);
402 cpml_pair_to_cairo(&p2
, &curve
->data
[2]);
403 cpml_pair_to_cairo(&p3
, &curve
->data
[3]);