[AdgLDim] Quote management throught maps
[adg.git] / cpml / cpml-arc.c
blobc07a2b69ac2658bba25077547fb1550386e35b12
1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
21 /**
22 * SECTION:arc
23 * @Section_Id:CpmlArc
24 * @title: CpmlArc
25 * @short_description: Manipulation of circular arcs
27 * The following functions manipulate #CAIRO_PATH_ARC_TO #CpmlPrimitive.
28 * No validation is made on the input so use the following methods
29 * only when you are sure the <varname>primitive</varname> argument
30 * is effectively an arc-to.
32 * The arc primitive is defined by 3 points: the first one is the usual
33 * implicit point got from the previous primitive, the second point is
34 * an arbitrary intermediate point laying on the arc and the third point
35 * is the end of the arc. These points identify univocally an arc:
36 * furthermore, the intermediate point also gives the side of
37 * the arc.
39 * As a special case, when the first point is coincident with the end
40 * point the primitive is considered a circle with diameter defined by
41 * the segment between the first and the intermediate point.
43 * <important>
44 * <para>
45 * An arc is not a native cairo primitive and should be treated specially.
46 * </para>
47 * </important>
49 * Using these CPML APIs you are free to use #CAIRO_PATH_ARC_TO whenever
50 * you want but, if you are directly accessing the struct fields, you
51 * are responsible of converting arcs to curves before passing them
52 * to cairo. In other words, do not directly feed #CpmlPath struct to
53 * cairo (throught cairo_append_path() for example) or at least do not
54 * expect it will work.
56 * The conversion is provided by two APIs: cpml_arc_to_cairo() and
57 * cpml_arc_to_curves(). The former directly renders to a cairo context
58 * and is internally used by all the ..._to_cairo() functions when an
59 * arc is met. The latter provided a more powerful (and more complex)
60 * approach as it allows to specify the number of curves to use and do
61 * not need a cairo context.
62 **/
65 #include "cpml-arc.h"
66 #include "cpml-pair.h"
68 #include <stdlib.h>
69 #include <math.h>
72 /* Hardcoded max angle of the arc to be approximated by a Bézier curve:
73 * this influence the arc quality (the default value is got from cairo) */
74 #define ARC_MAX_ANGLE M_PI_2
77 static cairo_bool_t get_center (const CpmlPair *p,
78 CpmlPair *dest);
79 static void get_angles (const CpmlPair *p,
80 const CpmlPair *center,
81 double *start,
82 double *end);
83 static void arc_to_curve (CpmlPrimitive *curve,
84 const CpmlPair *center,
85 double r,
86 double start,
87 double end);
90 /**
91 * cpml_arc_type_get_npoints:
93 * Returns the number of point needed to properly specify an arc primitive.
95 * Return value: 3
96 **/
97 int
98 cpml_arc_type_get_npoints(void)
100 return 3;
104 * cpml_arc_info:
105 * @arc: the #CpmlPrimitive arc data
106 * @center: where to store the center coordinates (can be %NULL)
107 * @r: where to store the radius (can be %NULL)
108 * @start: where to store the starting angle (can be %NULL)
109 * @end: where to store the ending angle (can be %NULL)
111 * Given an @arc, this function calculates and returns its basic data.
112 * Any pointer can be %NULL, in which case the requested info is not
113 * returned. This function can fail (when the three points lay on a
114 * straight line, for example) in which case 0 is returned and no
115 * data can be considered valid.
117 * The radius @r can be 0 when the three points are coincidents: a
118 * circle with radius 0 is considered a valid path.
120 * When the start and end angle are returned, together with their
121 * values these angles implicitely gives another important information:
122 * the arc direction.
124 * If @start < @end the arc must be rendered with increasing angle
125 * value (clockwise direction using the ordinary cairo coordinate
126 * system) while if @start > @end the arc must be rendered in reverse
127 * order (that is counterclockwise in the cairo world). This is the
128 * reason the angle values are returned in the range
129 * { -M_PI < value < 3*M_PI } inclusive instead of the usual
130 * { -M_PI < value < M_PI } range.
132 * Return value: 1 if the function worked succesfully, 0 on errors
134 cairo_bool_t
135 cpml_arc_info(const CpmlPrimitive *arc, CpmlPair *center,
136 double *r, double *start, double *end)
138 CpmlPair p[3], l_center;
140 cpml_pair_from_cairo(&p[0], arc->org);
141 cpml_pair_from_cairo(&p[1], &arc->data[1]);
142 cpml_pair_from_cairo(&p[2], &arc->data[2]);
144 if (!get_center(p, &l_center))
145 return 0;
147 if (center)
148 *center = l_center;
150 if (r != NULL)
151 *r = cpml_pair_distance(&p[0], &l_center);
153 if (start != NULL || end != NULL) {
154 double l_start, l_end;
156 get_angles(p, &l_center, &l_start, &l_end);
158 if (start != NULL)
159 *start = l_start;
160 if (end != NULL)
161 *end = l_end;
164 return 1;
168 * cpml_arc_length:
169 * @arc: the #CpmlPrimitive arc data
171 * Given the @arc primitive, returns its length.
173 * Return value: the requested length or 0 on errors
175 double
176 cpml_arc_length(const CpmlPrimitive *arc)
178 double r, start, end, delta;
180 if (!cpml_arc_info(arc, NULL, &r, &start, &end) || start == end)
181 return 0.;
183 delta = end - start;
184 if (delta < 0)
185 delta += M_PI*2;
187 return r*delta;
191 * cpml_arc_pair_at:
192 * @arc: the #CpmlPrimitive arc data
193 * @pair: the destination #CpmlPair
194 * @pos: the position value
196 * Given an @arc, finds the coordinates at position @pos (where 0 is
197 * the start and 1 is the end) and stores the result in @pair.
199 * @pos can also be outside the 0..1 limit, as interpolating on an
200 * arc is quite trivial.
202 void
203 cpml_arc_pair_at(const CpmlPrimitive *arc, CpmlPair *pair, double pos)
205 if (pos == 0.) {
206 cpml_pair_from_cairo(pair, arc->org);
207 } else if (pos == 1.) {
208 cpml_pair_from_cairo(pair, &arc->data[2]);
209 } else {
210 CpmlPair center;
211 double r, start, end, angle;
213 if (!cpml_arc_info(arc, &center, &r, &start, &end))
214 return;
216 angle = (end-start)*pos + start;
217 cpml_vector_from_angle(pair, angle, r);
218 cpml_pair_add(pair, &center);
223 * cpml_arc_vector_at:
224 * @arc: the #CpmlPrimitive arc data
225 * @vector: the destination vector
226 * @pos: the position value
228 * Given an @arc, finds the slope at position @pos (where 0 is
229 * the start and 1 is the end) and stores the result in @vector.
231 * @pos can also be outside the 0..1 limit, as interpolating on an
232 * arc is quite trivial.
234 void
235 cpml_arc_vector_at(const CpmlPrimitive *arc, CpmlVector *vector, double pos)
237 double start, end, angle;
239 if (!cpml_arc_info(arc, NULL, NULL, &start, &end))
240 return;
242 angle = (end-start)*pos + start;
243 cpml_vector_from_angle(vector, angle, 1.);
244 cpml_vector_normal(vector);
248 * cpml_arc_near_pos:
249 * @arc: the #CpmlPrimitive arc data
250 * @pair: the coordinates of the subject point
252 * Returns the pos value of the point on @arc nearest to @pair.
253 * The returned value is always between 0 and 1.
255 * <important>
256 * <title>TODO</title>
257 * <itemizedlist>
258 * <listitem>To be implemented...</listitem>
259 * </itemizedlist>
260 * </important>
262 * Return value: the pos value, always between 0 and 1
264 double
265 cpml_arc_near_pos(const CpmlPrimitive *arc, const CpmlPair *pair)
267 /* TODO */
269 return 0;
273 * cpml_arc_intersection:
274 * @arc: the first arc
275 * @arc2: the second arc
276 * @dest: a vector of #CpmlPair
277 * @max: maximum number of intersections to return
278 * (that is, the size of @dest)
280 * Given two arcs (@arc and @arc2), gets their intersection points
281 * and store the result in @dest. Keep in mind two arcs can have
282 * up to 2 intersections.
284 * If @max is 0, the function returns 0 immediately without any
285 * further processing. If @arc and @arc2 are cohincident (same
286 * center and same radius), their intersections are not considered.
288 * <important>
289 * <title>TODO</title>
290 * <itemizedlist>
291 * <listitem>To be implemented...</listitem>
292 * </itemizedlist>
293 * </important>
295 * Return value: the number of intersections found (max 2)
296 * or 0 if the primitives do not intersect
299 cpml_arc_intersection(const CpmlPrimitive *arc, const CpmlPrimitive *arc2,
300 CpmlPair *dest, int max)
302 return 0;
306 * cpml_arc_intersection_with_line:
307 * @arc: an arc
308 * @line: a line
309 * @dest: a vector of #CpmlPair
310 * @max: maximum number of intersections to return
311 * (that is, the size of @dest)
313 * Given an @arc and a @line, gets their intersection points
314 * and store the result in @dest. Keep in mind an arc and a
315 * line can have up to 2 intersections.
317 * If @max is 0, the function returns 0 immediately without any
318 * further processing.
320 * <important>
321 * <title>TODO</title>
322 * <itemizedlist>
323 * <listitem>To be implemented...</listitem>
324 * </itemizedlist>
325 * </important>
327 * Return value: the number of intersections found (max 2)
328 * or 0 if the primitives do not intersect
331 cpml_arc_intersection_with_line(const CpmlPrimitive *arc,
332 const CpmlPrimitive *line,
333 CpmlPair *dest, int max)
335 return 0;
339 * cpml_arc_offset:
340 * @arc: the #CpmlPrimitive arc data
341 * @offset: distance for the computed parallel arc
343 * Given an @arc, this function computes the parallel arc at
344 * distance @offset. The three points needed to build the
345 * new arc are returned in the @arc data (substituting the
346 * previous ones.
348 void
349 cpml_arc_offset(CpmlPrimitive *arc, double offset)
351 CpmlPair p[3], center;
352 double r;
354 cpml_pair_from_cairo(&p[0], arc->org);
355 cpml_pair_from_cairo(&p[1], &arc->data[1]);
356 cpml_pair_from_cairo(&p[2], &arc->data[2]);
358 if (!get_center(p, &center))
359 return;
361 r = cpml_pair_distance(&p[0], &center) + offset;
363 /* Offset the three points by calculating their vector from the center,
364 * setting the new radius as length and readding the center */
365 cpml_pair_sub(&p[0], &center);
366 cpml_pair_sub(&p[1], &center);
367 cpml_pair_sub(&p[2], &center);
369 cpml_vector_set_length(&p[0], r);
370 cpml_vector_set_length(&p[1], r);
371 cpml_vector_set_length(&p[2], r);
373 cpml_pair_add(&p[0], &center);
374 cpml_pair_add(&p[1], &center);
375 cpml_pair_add(&p[2], &center);
377 cpml_pair_to_cairo(&p[0], arc->org);
378 cpml_pair_to_cairo(&p[1], &arc->data[1]);
379 cpml_pair_to_cairo(&p[2], &arc->data[2]);
383 * cpml_arc_to_cairo:
384 * @arc: the #CpmlPrimitive arc data
385 * @cr: the destination cairo context
387 * Renders @arc to the @cr cairo context. As cairo does not support
388 * arcs natively, it is approximated using one or more Bézier curves.
390 * The number of curves used is dependent from the angle of the arc.
391 * Anyway, this function uses internally the hardcoded %M_PI_2 value
392 * as threshold value. This means the maximum arc approximated by a
393 * single curve will be a quarter of a circle and, consequently, a
394 * whole circle will be approximated by 4 Bézier curves.
396 void
397 cpml_arc_to_cairo(const CpmlPrimitive *arc, cairo_t *cr)
399 CpmlPair center;
400 double r, start, end;
401 int n_curves;
402 double step, angle;
403 CpmlPrimitive curve;
404 cairo_path_data_t data[4];
406 if (!cpml_arc_info(arc, &center, &r, &start, &end))
407 return;
409 n_curves = ceil(fabs(end-start) / ARC_MAX_ANGLE);
410 step = (end-start) / (double) n_curves;
411 curve.data = data;
413 for (angle = start; n_curves--; angle += step) {
414 arc_to_curve(&curve, &center, r, angle, angle+step);
415 cairo_curve_to(cr,
416 curve.data[1].point.x, curve.data[1].point.y,
417 curve.data[2].point.x, curve.data[2].point.y,
418 curve.data[3].point.x, curve.data[3].point.y);
423 * cpml_arc_to_curves:
424 * @arc: the #CpmlPrimitive arc data
425 * @segment: the destination #CpmlSegment
426 * @n_curves: number of Bézier to use
428 * Converts @arc to a serie of @n_curves Bézier curves and puts them
429 * inside @segment. Obviously, @segment must have enough space to
430 * contain at least @n_curves curves.
432 * This function works in a similar way as cpml_arc_to_cairo() but
433 * has two important differences: it does not need a cairo context
434 * and the number of curves to be generated is explicitely defined.
435 * The latter difference allows a more specific error control from
436 * the application: in the file src/cairo-arc.c, found in the cairo
437 * tarball (at least in cairo-1.9.1), there is a table showing the
438 * magnitude of error of this curve approximation algorithm.
440 void
441 cpml_arc_to_curves(const CpmlPrimitive *arc, CpmlSegment *segment,
442 int n_curves)
444 CpmlPair center;
445 double r, start, end;
446 double step, angle;
447 CpmlPrimitive curve;
449 if (!cpml_arc_info(arc, &center, &r, &start, &end))
450 return;
452 step = (end-start) / (double) n_curves;
453 segment->num_data = n_curves*4;
454 curve.segment = segment;
455 curve.data = segment->data;
457 for (angle = start; n_curves--; angle += step) {
458 arc_to_curve(&curve, &center, r, angle, angle+step);
459 curve.data += 4;
464 static cairo_bool_t
465 get_center(const CpmlPair *p, CpmlPair *dest)
467 CpmlPair b, c;
468 double d, b2, c2;
470 /* When p[0] == p[2], p[0]..p[1] is considered the diameter of a circle */
471 if (p[0].x == p[2].x && p[0].y == p[2].y) {
472 dest->x = (p[0].x + p[1].x) / 2;
473 dest->y = (p[0].y + p[1].y) / 2;
474 return 1;
477 /* Translate the 3 points of -p0, to simplify the formula */
478 cpml_pair_sub(cpml_pair_copy(&b, &p[1]), &p[0]);
479 cpml_pair_sub(cpml_pair_copy(&c, &p[2]), &p[0]);
481 /* Check for division by 0, that is the case where the 3 given points
482 * are laying on a straight line and there is no fitting circle */
483 d = (b.x*c.y - b.y*c.x) * 2;
484 if (d == 0.)
485 return 0;
487 b2 = b.x*b.x + b.y*b.y;
488 c2 = c.x*c.x + c.y*c.y;
490 dest->x = (c.y*b2 - b.y*c2) / d + p[0].x;
491 dest->y = (b.x*c2 - c.x*b2) / d + p[0].y;
493 return 1;
496 static void
497 get_angles(const CpmlPair *p, const CpmlPair *center,
498 double *start, double *end)
500 CpmlVector vector;
501 double mid;
503 /* Calculate the starting angle */
504 cpml_pair_sub(cpml_pair_copy(&vector, &p[0]), center);
505 *start = cpml_vector_angle(&vector);
507 if (p[0].x == p[2].x && p[0].y == p[2].y) {
508 /* When p[0] and p[2] are cohincidents, p[0]..p[1] is the diameter
509 * of a circle: return by convention start=start end=start+2PI */
510 *end = *start + M_PI*2;
511 } else {
512 /* Calculate the mid and end angle */
513 cpml_pair_sub(cpml_pair_copy(&vector, &p[1]), center);
514 mid = cpml_vector_angle(&vector);
515 cpml_pair_sub(cpml_pair_copy(&vector, &p[2]), center);
516 *end = cpml_vector_angle(&vector);
518 if (*end > *start) {
519 if (mid > *end || mid < *start)
520 *start += M_PI*2;
521 } else {
522 if (mid < *end || mid > *start)
523 *end += M_PI*2;
528 static void
529 arc_to_curve(CpmlPrimitive *curve, const CpmlPair *center,
530 double r, double start, double end)
532 double r_sin1, r_cos1;
533 double r_sin2, r_cos2;
534 double h;
536 r_sin1 = r*sin(start);
537 r_cos1 = r*cos(start);
538 r_sin2 = r*sin(end);
539 r_cos2 = r*cos(end);
541 h = 4./3. * tan((end-start) / 4.);
543 curve->data[0].header.type = CAIRO_PATH_CURVE_TO;
544 curve->data[0].header.length = 4;
545 curve->data[1].point.x = center->x + r_cos1 - h*r_sin1;
546 curve->data[1].point.y = center->y + r_sin1 + h*r_cos1;
547 curve->data[2].point.x = center->x + r_cos2 + h*r_sin2;
548 curve->data[2].point.y = center->y + r_sin2 - h*r_cos2;
549 curve->data[3].point.x = center->x + r_cos2;
550 curve->data[3].point.y = center->y + r_sin2;