1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
25 * @short_description: Manipulation of circular arcs
27 * The following functions manipulate #CAIRO_PATH_ARC_TO #CpmlPrimitive.
28 * No validation is made on the input so use the following methods
29 * only when you are sure the <varname>primitive</varname> argument
30 * is effectively an arc-to.
32 * The arc primitive is defined by 3 points: the first one is the usual
33 * implicit point got from the previous primitive, the second point is
34 * an arbitrary intermediate point laying on the arc and the third point
35 * is the end of the arc. These points identify univocally an arc:
36 * furthermore, the intermediate point also gives the side of
39 * As a special case, when the first point is coincident with the end
40 * point the primitive is considered a circle with diameter defined by
41 * the segment between the first and the intermediate point.
45 * An arc is not a native cairo primitive and should be treated specially.
49 * Using these CPML APIs you are free to use #CAIRO_PATH_ARC_TO whenever
50 * you want but, if you are directly accessing the struct fields, you
51 * are responsible of converting arcs to curves before passing them
52 * to cairo. In other words, do not directly feed #CpmlPath struct to
53 * cairo (throught cairo_append_path() for example) or at least do not
54 * expect it will work.
56 * The conversion is provided by two APIs: cpml_arc_to_cairo() and
57 * cpml_arc_to_curves(). The former directly renders to a cairo context
58 * and is internally used by all the ..._to_cairo() functions when an
59 * arc is met. The latter provided a more powerful (and more complex)
60 * approach as it allows to specify the number of curves to use and do
61 * not need a cairo context.
66 #include "cpml-pair.h"
72 /* Hardcoded max angle of the arc to be approximated by a Bézier curve:
73 * this influence the arc quality (the default value is got from cairo) */
74 #define ARC_MAX_ANGLE M_PI_2
77 static cairo_bool_t
get_center (const CpmlPair
*p
,
79 static void get_angles (const CpmlPair
*p
,
80 const CpmlPair
*center
,
83 static void arc_to_curve (CpmlPrimitive
*curve
,
84 const CpmlPair
*center
,
91 * cpml_arc_type_get_npoints:
93 * Returns the number of point needed to properly specify an arc primitive.
98 cpml_arc_type_get_npoints(void)
105 * @arc: the #CpmlPrimitive arc data
106 * @center: where to store the center coordinates (can be %NULL)
107 * @r: where to store the radius (can be %NULL)
108 * @start: where to store the starting angle (can be %NULL)
109 * @end: where to store the ending angle (can be %NULL)
111 * Given an @arc, this function calculates and returns its basic data.
112 * Any pointer can be %NULL, in which case the requested info is not
113 * returned. This function can fail (when the three points lay on a
114 * straight line, for example) in which case 0 is returned and no
115 * data can be considered valid.
117 * The radius @r can be 0 when the three points are coincidents: a
118 * circle with radius 0 is considered a valid path.
120 * When the start and end angle are returned, together with their
121 * values these angles implicitely gives another important information:
124 * If @start < @end the arc must be rendered with increasing angle
125 * value (clockwise direction using the ordinary cairo coordinate
126 * system) while if @start > @end the arc must be rendered in reverse
127 * order (that is counterclockwise in the cairo world). This is the
128 * reason the angle values are returned in the range
129 * { -M_PI < value < 3*M_PI } inclusive instead of the usual
130 * { -M_PI < value < M_PI } range.
132 * Return value: 1 if the function worked succesfully, 0 on errors
135 cpml_arc_info(const CpmlPrimitive
*arc
, CpmlPair
*center
,
136 double *r
, double *start
, double *end
)
138 CpmlPair p
[3], l_center
;
140 cpml_pair_from_cairo(&p
[0], arc
->org
);
141 cpml_pair_from_cairo(&p
[1], &arc
->data
[1]);
142 cpml_pair_from_cairo(&p
[2], &arc
->data
[2]);
144 if (!get_center(p
, &l_center
))
151 *r
= cpml_pair_distance(&p
[0], &l_center
);
153 if (start
!= NULL
|| end
!= NULL
) {
154 double l_start
, l_end
;
156 get_angles(p
, &l_center
, &l_start
, &l_end
);
169 * @arc: the #CpmlPrimitive arc data
171 * Given the @arc primitive, returns its length.
173 * Return value: the requested length or 0 on errors
176 cpml_arc_length(const CpmlPrimitive
*arc
)
178 double r
, start
, end
, delta
;
180 if (!cpml_arc_info(arc
, NULL
, &r
, &start
, &end
) || start
== end
)
192 * @arc: the #CpmlPrimitive arc data
193 * @pair: the destination #CpmlPair
194 * @pos: the position value
196 * Given an @arc, finds the coordinates at position @pos (where 0 is
197 * the start and 1 is the end) and stores the result in @pair.
199 * @pos can also be outside the 0..1 limit, as interpolating on an
200 * arc is quite trivial.
203 cpml_arc_pair_at(const CpmlPrimitive
*arc
, CpmlPair
*pair
, double pos
)
206 cpml_pair_from_cairo(pair
, arc
->org
);
207 } else if (pos
== 1.) {
208 cpml_pair_from_cairo(pair
, &arc
->data
[2]);
211 double r
, start
, end
, angle
;
213 if (!cpml_arc_info(arc
, ¢er
, &r
, &start
, &end
))
216 angle
= (end
-start
)*pos
+ start
;
217 cpml_vector_from_angle(pair
, angle
, r
);
218 cpml_pair_add(pair
, ¢er
);
223 * cpml_arc_vector_at:
224 * @arc: the #CpmlPrimitive arc data
225 * @vector: the destination vector
226 * @pos: the position value
228 * Given an @arc, finds the slope at position @pos (where 0 is
229 * the start and 1 is the end) and stores the result in @vector.
231 * @pos can also be outside the 0..1 limit, as interpolating on an
232 * arc is quite trivial.
235 cpml_arc_vector_at(const CpmlPrimitive
*arc
, CpmlVector
*vector
, double pos
)
237 double start
, end
, angle
;
239 if (!cpml_arc_info(arc
, NULL
, NULL
, &start
, &end
))
242 angle
= (end
-start
)*pos
+ start
;
243 cpml_vector_from_angle(vector
, angle
, 1.);
244 cpml_vector_normal(vector
);
249 * @arc: the #CpmlPrimitive arc data
250 * @pair: the coordinates of the subject point
252 * Returns the pos value of the point on @arc nearest to @pair.
253 * The returned value is always between 0 and 1.
256 * <title>TODO</title>
258 * <listitem>To be implemented...</listitem>
262 * Return value: the pos value, always between 0 and 1
265 cpml_arc_near_pos(const CpmlPrimitive
*arc
, const CpmlPair
*pair
)
273 * cpml_arc_intersection:
274 * @arc: the first arc
275 * @arc2: the second arc
276 * @dest: a vector of #CpmlPair
277 * @max: maximum number of intersections to return
278 * (that is, the size of @dest)
280 * Given two arcs (@arc and @arc2), gets their intersection points
281 * and store the result in @dest. Keep in mind two arcs can have
282 * up to 2 intersections.
284 * If @max is 0, the function returns 0 immediately without any
285 * further processing. If @arc and @arc2 are cohincident (same
286 * center and same radius), their intersections are not considered.
289 * <title>TODO</title>
291 * <listitem>To be implemented...</listitem>
295 * Return value: the number of intersections found (max 2)
296 * or 0 if the primitives do not intersect
299 cpml_arc_intersection(const CpmlPrimitive
*arc
, const CpmlPrimitive
*arc2
,
300 CpmlPair
*dest
, int max
)
306 * cpml_arc_intersection_with_line:
309 * @dest: a vector of #CpmlPair
310 * @max: maximum number of intersections to return
311 * (that is, the size of @dest)
313 * Given an @arc and a @line, gets their intersection points
314 * and store the result in @dest. Keep in mind an arc and a
315 * line can have up to 2 intersections.
317 * If @max is 0, the function returns 0 immediately without any
318 * further processing.
321 * <title>TODO</title>
323 * <listitem>To be implemented...</listitem>
327 * Return value: the number of intersections found (max 2)
328 * or 0 if the primitives do not intersect
331 cpml_arc_intersection_with_line(const CpmlPrimitive
*arc
,
332 const CpmlPrimitive
*line
,
333 CpmlPair
*dest
, int max
)
340 * @arc: the #CpmlPrimitive arc data
341 * @offset: distance for the computed parallel arc
343 * Given an @arc, this function computes the parallel arc at
344 * distance @offset. The three points needed to build the
345 * new arc are returned in the @arc data (substituting the
349 cpml_arc_offset(CpmlPrimitive
*arc
, double offset
)
351 CpmlPair p
[3], center
;
354 cpml_pair_from_cairo(&p
[0], arc
->org
);
355 cpml_pair_from_cairo(&p
[1], &arc
->data
[1]);
356 cpml_pair_from_cairo(&p
[2], &arc
->data
[2]);
358 if (!get_center(p
, ¢er
))
361 r
= cpml_pair_distance(&p
[0], ¢er
) + offset
;
363 /* Offset the three points by calculating their vector from the center,
364 * setting the new radius as length and readding the center */
365 cpml_pair_sub(&p
[0], ¢er
);
366 cpml_pair_sub(&p
[1], ¢er
);
367 cpml_pair_sub(&p
[2], ¢er
);
369 cpml_vector_set_length(&p
[0], r
);
370 cpml_vector_set_length(&p
[1], r
);
371 cpml_vector_set_length(&p
[2], r
);
373 cpml_pair_add(&p
[0], ¢er
);
374 cpml_pair_add(&p
[1], ¢er
);
375 cpml_pair_add(&p
[2], ¢er
);
377 cpml_pair_to_cairo(&p
[0], arc
->org
);
378 cpml_pair_to_cairo(&p
[1], &arc
->data
[1]);
379 cpml_pair_to_cairo(&p
[2], &arc
->data
[2]);
384 * @arc: the #CpmlPrimitive arc data
385 * @cr: the destination cairo context
387 * Renders @arc to the @cr cairo context. As cairo does not support
388 * arcs natively, it is approximated using one or more Bézier curves.
390 * The number of curves used is dependent from the angle of the arc.
391 * Anyway, this function uses internally the hardcoded %M_PI_2 value
392 * as threshold value. This means the maximum arc approximated by a
393 * single curve will be a quarter of a circle and, consequently, a
394 * whole circle will be approximated by 4 Bézier curves.
397 cpml_arc_to_cairo(const CpmlPrimitive
*arc
, cairo_t
*cr
)
400 double r
, start
, end
;
404 cairo_path_data_t data
[4];
406 if (!cpml_arc_info(arc
, ¢er
, &r
, &start
, &end
))
409 n_curves
= ceil(fabs(end
-start
) / ARC_MAX_ANGLE
);
410 step
= (end
-start
) / (double) n_curves
;
413 for (angle
= start
; n_curves
--; angle
+= step
) {
414 arc_to_curve(&curve
, ¢er
, r
, angle
, angle
+step
);
416 curve
.data
[1].point
.x
, curve
.data
[1].point
.y
,
417 curve
.data
[2].point
.x
, curve
.data
[2].point
.y
,
418 curve
.data
[3].point
.x
, curve
.data
[3].point
.y
);
423 * cpml_arc_to_curves:
424 * @arc: the #CpmlPrimitive arc data
425 * @segment: the destination #CpmlSegment
426 * @n_curves: number of Bézier to use
428 * Converts @arc to a serie of @n_curves Bézier curves and puts them
429 * inside @segment. Obviously, @segment must have enough space to
430 * contain at least @n_curves curves.
432 * This function works in a similar way as cpml_arc_to_cairo() but
433 * has two important differences: it does not need a cairo context
434 * and the number of curves to be generated is explicitely defined.
435 * The latter difference allows a more specific error control from
436 * the application: in the file src/cairo-arc.c, found in the cairo
437 * tarball (at least in cairo-1.9.1), there is a table showing the
438 * magnitude of error of this curve approximation algorithm.
441 cpml_arc_to_curves(const CpmlPrimitive
*arc
, CpmlSegment
*segment
,
445 double r
, start
, end
;
449 if (!cpml_arc_info(arc
, ¢er
, &r
, &start
, &end
))
452 step
= (end
-start
) / (double) n_curves
;
453 segment
->num_data
= n_curves
*4;
454 curve
.segment
= segment
;
455 curve
.data
= segment
->data
;
457 for (angle
= start
; n_curves
--; angle
+= step
) {
458 arc_to_curve(&curve
, ¢er
, r
, angle
, angle
+step
);
465 get_center(const CpmlPair
*p
, CpmlPair
*dest
)
470 /* When p[0] == p[2], p[0]..p[1] is considered the diameter of a circle */
471 if (p
[0].x
== p
[2].x
&& p
[0].y
== p
[2].y
) {
472 dest
->x
= (p
[0].x
+ p
[1].x
) / 2;
473 dest
->y
= (p
[0].y
+ p
[1].y
) / 2;
477 /* Translate the 3 points of -p0, to simplify the formula */
478 cpml_pair_sub(cpml_pair_copy(&b
, &p
[1]), &p
[0]);
479 cpml_pair_sub(cpml_pair_copy(&c
, &p
[2]), &p
[0]);
481 /* Check for division by 0, that is the case where the 3 given points
482 * are laying on a straight line and there is no fitting circle */
483 d
= (b
.x
*c
.y
- b
.y
*c
.x
) * 2;
487 b2
= b
.x
*b
.x
+ b
.y
*b
.y
;
488 c2
= c
.x
*c
.x
+ c
.y
*c
.y
;
490 dest
->x
= (c
.y
*b2
- b
.y
*c2
) / d
+ p
[0].x
;
491 dest
->y
= (b
.x
*c2
- c
.x
*b2
) / d
+ p
[0].y
;
497 get_angles(const CpmlPair
*p
, const CpmlPair
*center
,
498 double *start
, double *end
)
503 /* Calculate the starting angle */
504 cpml_pair_sub(cpml_pair_copy(&vector
, &p
[0]), center
);
505 *start
= cpml_vector_angle(&vector
);
507 if (p
[0].x
== p
[2].x
&& p
[0].y
== p
[2].y
) {
508 /* When p[0] and p[2] are cohincidents, p[0]..p[1] is the diameter
509 * of a circle: return by convention start=start end=start+2PI */
510 *end
= *start
+ M_PI
*2;
512 /* Calculate the mid and end angle */
513 cpml_pair_sub(cpml_pair_copy(&vector
, &p
[1]), center
);
514 mid
= cpml_vector_angle(&vector
);
515 cpml_pair_sub(cpml_pair_copy(&vector
, &p
[2]), center
);
516 *end
= cpml_vector_angle(&vector
);
519 if (mid
> *end
|| mid
< *start
)
522 if (mid
< *end
|| mid
> *start
)
529 arc_to_curve(CpmlPrimitive
*curve
, const CpmlPair
*center
,
530 double r
, double start
, double end
)
532 double r_sin1
, r_cos1
;
533 double r_sin2
, r_cos2
;
536 r_sin1
= r
*sin(start
);
537 r_cos1
= r
*cos(start
);
541 h
= 4./3. * tan((end
-start
) / 4.);
543 curve
->data
[0].header
.type
= CAIRO_PATH_CURVE_TO
;
544 curve
->data
[0].header
.length
= 4;
545 curve
->data
[1].point
.x
= center
->x
+ r_cos1
- h
*r_sin1
;
546 curve
->data
[1].point
.y
= center
->y
+ r_sin1
+ h
*r_cos1
;
547 curve
->data
[2].point
.x
= center
->x
+ r_cos2
+ h
*r_sin2
;
548 curve
->data
[2].point
.y
= center
->y
+ r_sin2
- h
*r_cos2
;
549 curve
->data
[3].point
.x
= center
->x
+ r_cos2
;
550 curve
->data
[3].point
.y
= center
->y
+ r_sin2
;