[docs] Added AdgSegment to docs
[adg.git] / cpml / cpml-arc.c
blob398489fd8c9f5f485ff5dd3542f3b2d070fbcded
1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
20 /**
21 * SECTION:arc
22 * @title: Circular arcs
23 * @short_description: Functions for manipulating circular arcs
25 * The following functions manipulate %CAIRO_PATH_ARC_TO #CpmlPrimitive.
26 * No check is made on the primitive struct, so be sure
27 * <structname>CpmlPrimitive</structname> is effectively an arc
28 * before calling these APIs.
30 * The arc primitive is defined by 3 points: the first one is the usual
31 * implicit point got from the previous primitive, the second point is
32 * an arbitrary intermediate point laying on the arc and the third point
33 * is the end of the arc. These points identify univocally an arc:
34 * furthermore, the intermediate point also gives the "direction" of
35 * the arc.
37 * As a special case, when the first point is coincident with the end
38 * point, the primitive is considered a circle with diameter defined
39 * by the segment between the first and the intermediate point.
41 * <important>
42 * <para>
43 * An arc is not a native cairo primitive and should be treated specially.
44 * </para>
45 * </important>
47 * Using the CPML APIs you are free to use %CAIRO_PATH_ARC_TO whenever
48 * you want. But if you are directly accessing the struct fields you
49 * are responsible of converting arcs to curves before passing them
50 * to cairo. In other words, do not directly feed #CpmlPath struct to
51 * cairo (throught cairo_append_path() for example) or at least do not
52 * expect it will work.
54 * The conversion is provided by two APIs: cpml_arc_to_cairo() and
55 * cpml_arc_to_curves(). The former directly renders to a cairo context
56 * and is internally used by all the ..._to_cairo() functions when an
57 * arc is met. The latter provided a more powerful (and more complex)
58 * approach as it allows to specify the number of curves to use and do
59 * not need a cairo context.
60 **/
62 #include "cpml-arc.h"
63 #include "cpml-pair.h"
65 #include <stdlib.h>
66 #include <math.h>
69 /* Hardcoded max angle of the arc to be approximated by a Bézier curve:
70 * this influence the arc quality (the default value is got from cairo) */
71 #define ARC_MAX_ANGLE M_PI_2
74 static cairo_bool_t get_center (const CpmlPair *p,
75 CpmlPair *dest);
76 static void get_angles (const CpmlPair *p,
77 const CpmlPair *center,
78 double *start,
79 double *end);
80 static void arc_to_curve (CpmlPrimitive *curve,
81 const CpmlPair *center,
82 double r,
83 double start,
84 double end);
87 /**
88 * cpml_arc_type_get_npoints:
90 * Returns the number of point needed to properly specify an arc primitive.
92 * Return value: 3
93 **/
94 int
95 cpml_arc_type_get_npoints(void)
97 return 3;
101 * cpml_arc_info:
102 * @arc: the #CpmlPrimitive arc data
103 * @center: where to store the center coordinates (can be %NULL)
104 * @r: where to store the radius (can be %NULL)
105 * @start: where to store the starting angle (can be %NULL)
106 * @end: where to store the ending angle (can be %NULL)
108 * Given an @arc, this function calculates and returns its basic data.
109 * Any pointer can be %NULL, in which case the requested info is not
110 * returned. This function can fail (when the three points lay on a
111 * straight line, for example) in which case 0 is returned and no
112 * data can be considered valid.
114 * The radius @r can be 0 when the three points are coincidents: a
115 * circle with radius 0 is considered a valid path.
117 * When the start and end angle are returned, together with their
118 * values these angles implicitely gives another important information:
119 * the arc direction.
121 * If @start < @end the arc must be rendered with increasing angle
122 * value (clockwise direction using the ordinary cairo coordinate
123 * system) while if @start > @end the arc must be rendered in reverse
124 * order (that is counterclockwise in the cairo world). This is the
125 * reason the angle values are returned in the range
126 * { -M_PI < value < 3*M_PI } inclusive instead of the usual
127 * { -M_PI < value < M_PI } range.
129 * Return value: 1 if the function worked succesfully, 0 on errors
131 cairo_bool_t
132 cpml_arc_info(const CpmlPrimitive *arc, CpmlPair *center,
133 double *r, double *start, double *end)
135 CpmlPair p[3], l_center;
137 cpml_pair_from_cairo(&p[0], arc->org);
138 cpml_pair_from_cairo(&p[1], &arc->data[1]);
139 cpml_pair_from_cairo(&p[2], &arc->data[2]);
141 if (!get_center(p, &l_center))
142 return 0;
144 if (center)
145 *center = l_center;
147 if (r != NULL)
148 *r = cpml_pair_distance(&p[0], &l_center);
150 if (start != NULL || end != NULL) {
151 double l_start, l_end;
153 get_angles(p, &l_center, &l_start, &l_end);
155 if (start != NULL)
156 *start = l_start;
157 if (end != NULL)
158 *end = l_end;
161 return 1;
165 * cpml_arc_length:
166 * @arc: the #CpmlPrimitive arc data
168 * Given the @arc primitive, returns its length.
170 * Return value: the requested length or 0 on errors
172 double
173 cpml_arc_length(const CpmlPrimitive *arc)
175 double r, start, end, delta;
177 if (!cpml_arc_info(arc, NULL, &r, &start, &end) || start == end)
178 return 0.;
180 delta = end - start;
181 if (delta < 0)
182 delta += M_PI*2;
184 return r*delta;
188 * cpml_arc_pair_at:
189 * @arc: the #CpmlPrimitive arc data
190 * @pair: the destination #CpmlPair
191 * @pos: the position value
193 * Given an @arc, finds the coordinates at position @pos (where 0 is
194 * the start and 1 is the end) and stores the result in @pair.
196 * @pos can also be outside the 0..1 limit, as interpolating on an
197 * arc is quite trivial.
199 void
200 cpml_arc_pair_at(const CpmlPrimitive *arc, CpmlPair *pair, double pos)
202 if (pos == 0.) {
203 cpml_pair_from_cairo(pair, arc->org);
204 } else if (pos == 1.) {
205 cpml_pair_from_cairo(pair, &arc->data[2]);
206 } else {
207 CpmlPair center;
208 double r, start, end, angle;
210 if (!cpml_arc_info(arc, &center, &r, &start, &end))
211 return;
213 angle = (end-start)*pos + start;
214 cpml_vector_from_angle(pair, angle, r);
215 cpml_pair_add(pair, &center);
220 * cpml_arc_vector_at:
221 * @arc: the #CpmlPrimitive arc data
222 * @vector: the destination vector
223 * @pos: the position value
225 * Given an @arc, finds the slope at position @pos (where 0 is
226 * the start and 1 is the end) and stores the result in @vector.
228 * @pos can also be outside the 0..1 limit, as interpolating on an
229 * arc is quite trivial.
231 void
232 cpml_arc_vector_at(const CpmlPrimitive *arc, CpmlVector *vector, double pos)
234 double start, end, angle;
236 if (!cpml_arc_info(arc, NULL, NULL, &start, &end))
237 return;
239 angle = (end-start)*pos + start;
240 cpml_vector_from_angle(vector, angle, 1.);
241 cpml_vector_normal(vector);
245 * cpml_arc_near_pos:
246 * @arc: the #CpmlPrimitive arc data
247 * @pair: the coordinates of the subject point
249 * Returns the pos value of the point on @arc nearest to @pair.
250 * The returned value is always between 0 and 1.
252 * <important>
253 * <title>TODO</title>
254 * <itemizedlist>
255 * <listitem>To be implemented...</listitem>
256 * </itemizedlist>
257 * </important>
259 * Return value: the pos value, always between 0 and 1
261 double
262 cpml_arc_near_pos(const CpmlPrimitive *arc, const CpmlPair *pair)
264 /* TODO */
266 return 0;
270 * cpml_arc_intersection:
271 * @arc: the first arc
272 * @arc2: the second arc
273 * @dest: a vector of #CpmlPair
274 * @max: maximum number of intersections to return
275 * (that is, the size of @dest)
277 * Given two arcs (@arc and @arc2), gets their intersection points
278 * and store the result in @dest. Keep in mind two arcs can have
279 * up to 2 intersections.
281 * If @max is 0, the function returns 0 immediately without any
282 * further processing. If @arc and @arc2 are cohincident (same
283 * center and same radius), their intersections are not considered.
285 * <important>
286 * <title>TODO</title>
287 * <itemizedlist>
288 * <listitem>To be implemented...</listitem>
289 * </itemizedlist>
290 * </important>
292 * Return value: the number of intersections found (max 2)
293 * or 0 if the primitives do not intersect
296 cpml_arc_intersection(const CpmlPrimitive *arc, const CpmlPrimitive *arc2,
297 CpmlPair *dest, int max)
299 return 0;
303 * cpml_arc_intersection_with_line:
304 * @arc: an arc
305 * @line: a line
306 * @dest: a vector of #CpmlPair
307 * @max: maximum number of intersections to return
308 * (that is, the size of @dest)
310 * Given an @arc and a @line, gets their intersection points
311 * and store the result in @dest. Keep in mind an arc and a
312 * line can have up to 2 intersections.
314 * If @max is 0, the function returns 0 immediately without any
315 * further processing.
317 * <important>
318 * <title>TODO</title>
319 * <itemizedlist>
320 * <listitem>To be implemented...</listitem>
321 * </itemizedlist>
322 * </important>
324 * Return value: the number of intersections found (max 2)
325 * or 0 if the primitives do not intersect
328 cpml_arc_intersection_with_line(const CpmlPrimitive *arc,
329 const CpmlPrimitive *line,
330 CpmlPair *dest, int max)
332 return 0;
336 * cpml_arc_offset:
337 * @arc: the #CpmlPrimitive arc data
338 * @offset: distance for the computed parallel arc
340 * Given an @arc, this function computes the parallel arc at
341 * distance @offset. The three points needed to build the
342 * new arc are returned in the @arc data (substituting the
343 * previous ones.
345 void
346 cpml_arc_offset(CpmlPrimitive *arc, double offset)
348 CpmlPair p[3], center;
349 double r;
351 cpml_pair_from_cairo(&p[0], arc->org);
352 cpml_pair_from_cairo(&p[1], &arc->data[1]);
353 cpml_pair_from_cairo(&p[2], &arc->data[2]);
355 if (!get_center(p, &center))
356 return;
358 r = cpml_pair_distance(&p[0], &center) + offset;
360 /* Offset the three points by calculating their vector from the center,
361 * setting the new radius as length and readding the center */
362 cpml_pair_sub(&p[0], &center);
363 cpml_pair_sub(&p[1], &center);
364 cpml_pair_sub(&p[2], &center);
366 cpml_vector_set_length(&p[0], r);
367 cpml_vector_set_length(&p[1], r);
368 cpml_vector_set_length(&p[2], r);
370 cpml_pair_add(&p[0], &center);
371 cpml_pair_add(&p[1], &center);
372 cpml_pair_add(&p[2], &center);
374 cpml_pair_to_cairo(&p[0], arc->org);
375 cpml_pair_to_cairo(&p[1], &arc->data[1]);
376 cpml_pair_to_cairo(&p[2], &arc->data[2]);
380 * cpml_arc_to_cairo:
381 * @arc: the #CpmlPrimitive arc data
382 * @cr: the destination cairo context
384 * Renders @arc to the @cr cairo context. As cairo does not support
385 * arcs natively, it is approximated using one or more Bézier curves.
387 * The number of curves used is dependent from the angle of the arc.
388 * Anyway, this function uses internally the hardcoded %M_PI_2 value
389 * as threshold value. This means the maximum arc approximated by a
390 * single curve will be a quarter of a circle and, consequently, a
391 * whole circle will be approximated by 4 Bézier curves.
393 void
394 cpml_arc_to_cairo(const CpmlPrimitive *arc, cairo_t *cr)
396 CpmlPair center;
397 double r, start, end;
398 int n_curves;
399 double step, angle;
400 CpmlPrimitive curve;
401 cairo_path_data_t data[4];
403 if (!cpml_arc_info(arc, &center, &r, &start, &end))
404 return;
406 n_curves = ceil(fabs(end-start) / ARC_MAX_ANGLE);
407 step = (end-start) / (double) n_curves;
408 curve.data = data;
410 for (angle = start; n_curves--; angle += step) {
411 arc_to_curve(&curve, &center, r, angle, angle+step);
412 cairo_curve_to(cr,
413 curve.data[1].point.x, curve.data[1].point.y,
414 curve.data[2].point.x, curve.data[2].point.y,
415 curve.data[3].point.x, curve.data[3].point.y);
420 * cpml_arc_to_curves:
421 * @arc: the #CpmlPrimitive arc data
422 * @segment: the destination #CpmlSegment
423 * @n_curves: number of Bézier to use
425 * Converts @arc to a serie of @n_curves Bézier curves and puts them
426 * inside @segment. Obviously, @segment must have enough space to
427 * contain at least @n_curves curves.
429 * This function works in a similar way as cpml_arc_to_cairo() but
430 * has two important differences: it does not need a cairo context
431 * and the number of curves to be generated is explicitely defined.
432 * The latter difference allows a more specific error control from
433 * the application: in the file src/cairo-arc.c, found in the cairo
434 * tarball (at least in cairo-1.9.1), there is a table showing the
435 * magnitude of error of this curve approximation algorithm.
437 void
438 cpml_arc_to_curves(const CpmlPrimitive *arc, CpmlSegment *segment,
439 int n_curves)
441 CpmlPair center;
442 double r, start, end;
443 double step, angle;
444 CpmlPrimitive curve;
446 if (!cpml_arc_info(arc, &center, &r, &start, &end))
447 return;
449 step = (end-start) / (double) n_curves;
450 segment->num_data = n_curves*4;
451 curve.segment = segment;
452 curve.data = segment->data;
454 for (angle = start; n_curves--; angle += step) {
455 arc_to_curve(&curve, &center, r, angle, angle+step);
456 curve.data += 4;
461 static cairo_bool_t
462 get_center(const CpmlPair *p, CpmlPair *dest)
464 CpmlPair b, c;
465 double d, b2, c2;
467 /* When p[0] == p[2], p[0]..p[1] is considered the diameter of a circle */
468 if (p[0].x == p[2].x && p[0].y == p[2].y) {
469 dest->x = (p[0].x + p[1].x) / 2;
470 dest->y = (p[0].y + p[1].y) / 2;
471 return 1;
474 /* Translate the 3 points of -p0, to simplify the formula */
475 cpml_pair_sub(cpml_pair_copy(&b, &p[1]), &p[0]);
476 cpml_pair_sub(cpml_pair_copy(&c, &p[2]), &p[0]);
478 /* Check for division by 0, that is the case where the 3 given points
479 * are laying on a straight line and there is no fitting circle */
480 d = (b.x*c.y - b.y*c.x) * 2;
481 if (d == 0.)
482 return 0;
484 b2 = b.x*b.x + b.y*b.y;
485 c2 = c.x*c.x + c.y*c.y;
487 dest->x = (c.y*b2 - b.y*c2) / d + p[0].x;
488 dest->y = (b.x*c2 - c.x*b2) / d + p[0].y;
490 return 1;
493 static void
494 get_angles(const CpmlPair *p, const CpmlPair *center,
495 double *start, double *end)
497 CpmlVector vector;
498 double mid;
500 /* Calculate the starting angle */
501 cpml_pair_sub(cpml_pair_copy(&vector, &p[0]), center);
502 *start = cpml_vector_angle(&vector);
504 if (p[0].x == p[2].x && p[0].y == p[2].y) {
505 /* When p[0] and p[2] are cohincidents, p[0]..p[1] is the diameter
506 * of a circle: return by convention start=start end=start+2PI */
507 *end = *start + M_PI*2;
508 } else {
509 /* Calculate the mid and end angle */
510 cpml_pair_sub(cpml_pair_copy(&vector, &p[1]), center);
511 mid = cpml_vector_angle(&vector);
512 cpml_pair_sub(cpml_pair_copy(&vector, &p[2]), center);
513 *end = cpml_vector_angle(&vector);
515 if (*end > *start) {
516 if (mid > *end || mid < *start)
517 *start += M_PI*2;
518 } else {
519 if (mid < *end || mid > *start)
520 *end += M_PI*2;
525 static void
526 arc_to_curve(CpmlPrimitive *curve, const CpmlPair *center,
527 double r, double start, double end)
529 double r_sin1, r_cos1;
530 double r_sin2, r_cos2;
531 double h;
533 r_sin1 = r*sin(start);
534 r_cos1 = r*cos(start);
535 r_sin2 = r*sin(end);
536 r_cos2 = r*cos(end);
538 h = 4./3. * tan((end-start) / 4.);
540 curve->data[0].header.type = CAIRO_PATH_CURVE_TO;
541 curve->data[0].header.length = 4;
542 curve->data[1].point.x = center->x + r_cos1 - h*r_sin1;
543 curve->data[1].point.y = center->y + r_sin1 + h*r_cos1;
544 curve->data[2].point.x = center->x + r_cos2 + h*r_sin2;
545 curve->data[2].point.y = center->y + r_sin2 - h*r_cos2;
546 curve->data[3].point.x = center->x + r_cos2;
547 curve->data[3].point.y = center->y + r_sin2;