1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
22 * @Section_Id:CpmlCurve
24 * @short_description: Bézier cubic curve primitive management
26 * The following functions manipulate %CAIRO_PATH_CURVE_TO #CpmlPrimitive.
27 * No validation is made on the input so use the following methods
28 * only when you are sure the <varname>primitive</varname> argument
29 * is effectively a cubic Bézier curve.
34 * <listitem>the get_length() method must be implemented;</listitem>
35 * <listitem>actually the put_extents() method is implemented by computing
36 * the bounding box of the control polygon and this will likely
37 * include some empty space: there is room for improvements;</listitem>
38 * <listitem>the put_pair_at() method must be implemented;</listitem>
39 * <listitem>the put_vector_at() method must be implemented;</listitem>
40 * <listitem>the get_closest_pos() method must be implemented;</listitem>
46 #include "cpml-internal.h"
47 #include "cpml-extents.h"
48 #include "cpml-segment.h"
49 #include "cpml-primitive.h"
50 #include "cpml-primitive-private.h"
51 #include "cpml-curve.h"
54 static void put_extents (const CpmlPrimitive
*curve
,
55 CpmlExtents
*extents
);
58 const _CpmlPrimitiveClass
*
59 _cpml_curve_get_class(void)
61 static _CpmlPrimitiveClass
*p_class
= NULL
;
63 if (p_class
== NULL
) {
64 static _CpmlPrimitiveClass class_data
= {
75 p_class
= &class_data
;
83 * cpml_curve_put_pair_at_time:
84 * @curve: the #CpmlPrimitive curve data
85 * @t: the "time" value
86 * @pair: the destination pair
88 * Given the @curve Bézier cubic, finds the coordinates at time @t
89 * (where 0 is the start and 1 is the end) and stores the result
90 * in @pair. Keep in mind @t is not homogeneous, so 0.5 does not
91 * necessarily means the mid point.
94 cpml_curve_put_pair_at_time(const CpmlPrimitive
*curve
, double t
,
97 cairo_path_data_t
*p1
, *p2
, *p3
, *p4
;
98 double t_2
, t_3
, t1
, t1_2
, t1_3
;
100 p1
= cpml_primitive_get_point(curve
, 0);
101 p2
= cpml_primitive_get_point(curve
, 1);
102 p3
= cpml_primitive_get_point(curve
, 2);
103 p4
= cpml_primitive_get_point(curve
, 3);
111 pair
->x
= t1_3
* p1
->point
.x
+ 3 * t1_2
* t
* p2
->point
.x
112 + 3 * t1
* t_2
* p3
->point
.x
+ t_3
* p4
->point
.x
;
113 pair
->y
= t1_3
* p1
->point
.y
+ 3 * t1_2
* t
* p2
->point
.y
114 + 3 * t1
* t_2
* p3
->point
.y
+ t_3
* p4
->point
.y
;
118 * cpml_curve_put_vector_at_time:
119 * @curve: the #CpmlPrimitive curve data
120 * @t: the "time" value
121 * @vector: the destination vector
123 * Given the @curve Bézier cubic, finds the slope at time @t
124 * (where 0 is the start and 1 is the end) and stores the result
125 * in @vector. Keep in mind @t is not homogeneous, so 0.5
126 * does not necessarily means the mid point.
129 cpml_curve_put_vector_at_time(const CpmlPrimitive
*curve
,
130 double t
, CpmlVector
*vector
)
132 cairo_path_data_t
*p1
, *p2
, *p3
, *p4
;
133 CpmlPair p21
, p32
, p43
;
134 double t1
, t1_2
, t_2
;
136 p1
= cpml_primitive_get_point(curve
, 0);
137 p2
= cpml_primitive_get_point(curve
, 1);
138 p3
= cpml_primitive_get_point(curve
, 2);
139 p4
= cpml_primitive_get_point(curve
, 3);
141 p21
.x
= p2
->point
.x
- p1
->point
.x
;
142 p21
.y
= p2
->point
.y
- p1
->point
.y
;
143 p32
.x
= p3
->point
.x
- p2
->point
.x
;
144 p32
.y
= p3
->point
.y
- p2
->point
.y
;
145 p43
.x
= p4
->point
.x
- p3
->point
.x
;
146 p43
.y
= p4
->point
.y
- p3
->point
.y
;
152 vector
->x
= 3 * t1_2
* p21
.x
+ 6 * t1
* t
* p32
.x
+ 3 * t_2
* p43
.x
;
153 vector
->y
= 3 * t1_2
* p21
.y
+ 6 * t1
* t
* p32
.y
+ 3 * t_2
* p43
.y
;
157 * cpml_curve_put_intersections:
158 * @curve: the first curve
159 * @curve2: the second curve
160 * @max: maximum number of intersections to return
161 * (that is, the size of @dest)
162 * @dest: a vector of #CpmlPair
164 * Given two Bézier cubic curves (@curve and @curve2), gets their
165 * intersection points and store the result in @dest. Because two
166 * curves can have 4 intersections, @dest MUST be at least an array
169 * If @max is 0, the function returns 0 immediately without any
170 * further processing. If @curve and @curve2 are cohincident,
171 * their intersections are not considered.
174 * <title>TODO</title>
176 * <listitem>To be implemented...</listitem>
180 * Returns: the number of intersections found (max 4)
181 * or 0 if the primitives do not intersect
184 cpml_curve_put_intersections(const CpmlPrimitive
*curve
,
185 const CpmlPrimitive
*curve2
,
186 int max
, CpmlPair
*dest
)
192 * cpml_curve_put_intersections_with_arc:
195 * @max: maximum number of intersections to return
196 * (that is, the size of @dest)
197 * @dest: a vector of #CpmlPair
199 * Given a Bézier cubic @curve and an @arc, gets their intersection
200 * points and store the result in @dest. Because an arc and a cubic
201 * curve can have up to 4 intersections, @dest MUST be at least an
202 * array of 4 #CpmlPair.
204 * If @max is 0, the function returns 0 immediately without any
205 * further processing.
208 * <title>TODO</title>
210 * <listitem>To be implemented...</listitem>
214 * Returns: the number of intersections found (max 4)
215 * or 0 if the primitives do not intersect
218 cpml_curve_put_intersections_with_arc(const CpmlPrimitive
*curve
,
219 const CpmlPrimitive
*arc
,
220 int max
, CpmlPair
*dest
)
226 * cpml_curve_put_intersections_with_line:
229 * @max: maximum number of intersections to return
230 * (that is, the size of @dest)
231 * @dest: a vector of #CpmlPair
233 * Given a Bézier cubic @curve and a @line, gets their intersection
234 * points and store the result in @dest. Because a line and a cubic
235 * curve can have up to 4 intersections, @dest MUST be at least an
236 * array of 4 #CpmlPair.
238 * If @max is 0, the function returns 0 immediately without any
239 * further processing.
242 * <title>TODO</title>
244 * <listitem>To be implemented...</listitem>
248 * Returns: the number of intersections found (max 4)
249 * or 0 if the primitives do not intersect
252 cpml_curve_put_intersections_with_line(const CpmlPrimitive
*curve
,
253 const CpmlPrimitive
*line
,
254 int max
, CpmlPair
*dest
)
261 * @curve: the #CpmlPrimitive curve data
262 * @offset: distance for the computed parallel curve
264 * Given a cubic Bézier primitive in @curve, this function finds
265 * the approximated Bézier curve parallel to @curve at distance
266 * @offset (an offset curve). The four points needed to build the
267 * new curve are returned in the @curve struct.
269 * To solve the offset problem, a custom algorithm is used. First, the
270 * resulting curve MUST have the same slope at the start and end point.
271 * These constraints are not sufficient to resolve the system, so I let
272 * the curve pass thought a given point (pm, known and got from the
273 * original curve) at a given time (m, now hardcoded to 0.5).
275 * Firstly, I define some useful variables:
277 * v0 = unitvector(p[1]-p[0]) * offset;
278 * v3 = unitvector(p[3]-p[2]) * offset;
279 * p0 = p[0] + normal v0;
280 * p3 = p[3] + normal v3.
282 * Now I want the curve to have the specified slopes at the start
283 * and end point. Forcing the same slope at the start point means:
287 * where k0 is an arbitrary factor. Decomposing for x and y components:
289 * p1.x = p0.x + k0 v0.x;
290 * p1.y = p0.y + k0 v0.y.
292 * Doing the same for the end point gives:
294 * p2.x = p3.x + k3 v3.x;
295 * p2.y = p3.y + k3 v3.y.
297 * Now I interpolate the curve by forcing it to pass throught pm
298 * when "time" is m, where 0 < m < 1. The cubic Bézier function is:
300 * C(t) = (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3.
302 * and forcing t=m and C(t) = pm:
304 * pm = (1-m)³p0 + 3m(1-m)²p1 + 3m²(1-m)p2 + m³p3.
306 * (1-m) p1 + m p2 = (pm - (1-m)³p0 - m³p3) / (3m (1-m)).
308 * So the final system is:
310 * p1.x = p0.x + k0 v0.x;
311 * p1.y = p0.y + k0 v0.y;
312 * p2.x = p3.x + k3 v3.x;
313 * p2.y = p3.y + k3 v3.y;
314 * (1-m) p1.x + m p2.x = (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m));
315 * (1-m) p1.y + m p2.y = (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)).
317 * Substituting and resolving for k0 and k3:
319 * (1-m) k0 v0.x + m k3 v3.x =
320 * (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m)) - (1-m) p0.x - m p3.x;
321 * (1-m) k0 v0.y + m k3 v3.y =
322 * (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)) - (1-m) p0.y - m p3.y.
324 * (1-m) k0 v0.x + m k3 v3.x =
325 * (pm.x - (1-m)²(1+2m) p0.x - m²(3-2m) p3.x) / (3m (1-m));
326 * (1-m) k0 v0.y + m k3 v3.y =
327 * (pm.y - (1-m)²(1+2m) p0.y - m²(3-2m) p3.y) / (3m (1-m)).
331 * pk = (pm - (1-m)²(1+2m) p0 - m²(3-2m) p3) / (3m (1-m)).
333 * gives the following system:
335 * (1-m) k0 v0.x + m k3 v3.x = pk.x;
336 * (1-m) k0 v0.y + m k3 v3.y = pk.y.
338 * Now I should avoid division by 0 troubles. If either v0.x and v3.x
339 * are 0, the first equation will be inconsistent. More in general the
340 * v0.x*v3.y = v3.x*v3.y condition should be avoided. This is the first
341 * case to check, in which case an alternative approach is used. In the
342 * other cases the above system can be used.
344 * If v0.x != 0 I can resolve for k0 and then find k3:
346 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
347 * (pk.x - m k3 v3.x) v0.y / v0.x + m k3 v3.y = pk.y.
349 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
350 * k3 m (v3.y - v3.x v0.y / v0.x) = pk.y - pk.x v0.y / v0.x.
352 * k3 = (pk.y - pk.x v0.y / v0.x) / (m (v3.y - v3.x v0.y / v0.x));
353 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x).
355 * If v3.x != 0 I can resolve for k3 and then find k0:
357 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
358 * (1-m) k0 v0.y + (pk.x - (1-m) k0 v0.x) v3.y / v3.x = pk.y.
360 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
361 * k0 (1-m) (v0.y - k0 v0.x v3.y / v3.x) = pk.y - pk.x v3.y / v3.x.
363 * k0 = (pk.y - pk.x v3.y / v3.x) / ((1-m) (v0.y - v0.x v3.y / v3.x));
364 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x).
367 * <title>TODO</title>
369 * <listitem>By default, interpolation of the new curve is made by offseting
370 * the mid point: use a better candidate.</listitem>
371 * <listitem>When the equations are inconsistent, the alternative approach
372 * performs very bad if <varname>v0</varname> and
373 * <varname>v3</varname> are opposite or staggered.</listitem>
378 cpml_curve_offset(CpmlPrimitive
*curve
, double offset
)
381 CpmlVector v0
, v3
, vm
, vtmp
;
382 CpmlPair p0
, p1
, p2
, p3
, pm
;
387 /* Firstly, convert the curve points from cairo format to cpml format
388 * and store them (temporary) in p0..p3 */
389 cpml_pair_from_cairo(&p0
, curve
->org
);
390 cpml_pair_from_cairo(&p1
, &curve
->data
[1]);
391 cpml_pair_from_cairo(&p2
, &curve
->data
[2]);
392 cpml_pair_from_cairo(&p3
, &curve
->data
[3]);
395 cpml_pair_copy(&v0
, &p1
);
396 cpml_pair_sub(&v0
, &p0
);
399 cpml_pair_copy(&v3
, &p3
);
400 cpml_pair_sub(&v3
, &p2
);
402 /* pm = point in C(m) offseted the requested @offset distance */
403 cpml_curve_put_vector_at_time(curve
, m
, &vm
);
404 cpml_vector_set_length(&vm
, offset
);
405 cpml_vector_normal(&vm
);
406 cpml_curve_put_pair_at_time(curve
, m
, &pm
);
407 cpml_pair_add(&pm
, &vm
);
409 /* p0 = p0 + normal of v0 of @offset magnitude (exact value) */
410 cpml_pair_copy(&vtmp
, &v0
);
411 cpml_vector_set_length(&vtmp
, offset
);
412 cpml_vector_normal(&vtmp
);
413 cpml_pair_add(&p0
, &vtmp
);
415 /* p3 = p3 + normal of v3 of @offset magnitude, as done for p0 */
416 cpml_pair_copy(&vtmp
, &v3
);
417 cpml_vector_set_length(&vtmp
, offset
);
418 cpml_vector_normal(&vtmp
);
419 cpml_pair_add(&p3
, &vtmp
);
421 if (v0
.x
*v3
.y
== v3
.x
*v0
.y
) {
422 /* Inconsistent equations: use the alternative approach */
423 p1
.x
= p0
.x
+ v0
.x
+ vm
.x
* 4/3;
424 p1
.y
= p0
.y
+ v0
.y
+ vm
.y
* 4/3;
425 p2
.x
= p3
.x
- v3
.x
+ vm
.x
* 4/3;
426 p2
.y
= p3
.y
- v3
.y
+ vm
.y
* 4/3;
431 pk
.x
= (pm
.x
- mm
*mm
*(1+m
+m
)*p0
.x
- m
*m
*(1+mm
+mm
)*p3
.x
) / (3*m
*(1-m
));
432 pk
.y
= (pm
.y
- mm
*mm
*(1+m
+m
)*p0
.y
- m
*m
*(1+mm
+mm
)*p3
.y
) / (3*m
*(1-m
));
435 k3
= (pk
.y
- pk
.x
*v0
.y
/ v0
.x
) / (m
*(v3
.y
- v3
.x
*v0
.y
/ v0
.x
));
436 k0
= (pk
.x
- m
*k3
*v3
.x
) / (mm
*v0
.x
);
438 k0
= (pk
.y
- pk
.x
*v3
.y
/ v3
.x
) / (mm
*(v0
.y
- v0
.x
*v3
.y
/ v3
.x
));
439 k3
= (pk
.x
- mm
*k0
*v0
.x
) / (m
*v3
.x
);
442 p1
.x
= p0
.x
+ k0
*v0
.x
;
443 p1
.y
= p0
.y
+ k0
*v0
.y
;
444 p2
.x
= p3
.x
+ k3
*v3
.x
;
445 p2
.y
= p3
.y
+ k3
*v3
.y
;
448 /* Return the new curve in the original array */
449 cpml_pair_to_cairo(&p0
, curve
->org
);
450 cpml_pair_to_cairo(&p1
, &curve
->data
[1]);
451 cpml_pair_to_cairo(&p2
, &curve
->data
[2]);
452 cpml_pair_to_cairo(&p3
, &curve
->data
[3]);
457 put_extents(const CpmlPrimitive
*curve
, CpmlExtents
*extents
)
459 CpmlPair p1
, p2
, p3
, p4
;
461 extents
->is_defined
= 0;
463 cpml_pair_from_cairo(&p1
, cpml_primitive_get_point(curve
, 0));
464 cpml_pair_from_cairo(&p2
, cpml_primitive_get_point(curve
, 1));
465 cpml_pair_from_cairo(&p3
, cpml_primitive_get_point(curve
, 2));
466 cpml_pair_from_cairo(&p4
, cpml_primitive_get_point(curve
, 3));
468 cpml_extents_pair_add(extents
, &p1
);
469 cpml_extents_pair_add(extents
, &p2
);
470 cpml_extents_pair_add(extents
, &p3
);
471 cpml_extents_pair_add(extents
, &p4
);