doc: update and corrected to latest gtk-doc
[adg.git] / src / cpml / cpml-curve.c
blobe478a0c68f86256806472b688587186da1a738f8
1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2007,2008,2009,2010,2011,2012,2013 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
21 /**
22 * SECTION:cpml-curve
23 * @Section_Id:CpmlCurve
24 * @title: CpmlCurve
25 * @short_description: Bézier cubic curve primitive management
27 * The following functions manipulate %CPML_CURVE #CpmlPrimitive.
28 * No validation is made on the input so use the following methods
29 * only when you are sure the <varname>primitive</varname> argument
30 * is effectively a cubic Bézier curve.
32 * <important>
33 * <title>TODO</title>
34 * <itemizedlist>
35 * <listitem>the get_length() method must be implemented;</listitem>
36 * <listitem>actually the put_extents() method is implemented by computing
37 * the bounding box of the control polygon and this will likely
38 * include some empty space: there is room for improvements;</listitem>
39 * <listitem>the put_pair_at() method must be implemented;</listitem>
40 * <listitem>the put_vector_at() method must be implemented;</listitem>
41 * <listitem>the get_closest_pos() method must be implemented;</listitem>
42 * <listitem>the put_intersections() method must be implemented;</listitem>
43 * <listitem>by default, the offset curve is calculated by using the point
44 * at t=0.5 as reference: use a better candidate;</listitem>
45 * <listitem>in the offset() implementation, when the equations are
46 * inconsistent, the alternative approach performs very bad
47 * if <varname>v0</varname> and <varname>v3</varname> are
48 * opposite or staggered.</listitem>
49 * </itemizedlist>
50 * </important>
51 * <refsect2 id="offset">
52 * <title>Offseting algorithm</title>
53 * <para>
54 * Given a cubic Bézier primitive, it must be found the approximated
55 * Bézier curve parallel to the original one at a specific distance
56 * (the so called "offset curve"). The four points needed to build
57 * the new curve must be returned.
59 * To solve the offset problem, a custom algorithm is used. First, the
60 * resulting curve MUST have the same slope at the start and end point.
61 * These constraints are not sufficient to resolve the system, so I let
62 * the curve pass thought a given point (pm, known and got from the
63 * original curve) at a given time (m, now hardcoded to 0.5).
65 * Firstly, some useful variables are defined:
67 * |[
68 * v0 = unitvector(p[1] &minus; p[0]) &times; offset;
69 * v3 = unitvector(p[3] &minus; p[2]) &times; offset;
70 * p0 = p[0] + normal v0;
71 * p3 = p[3] + normal v3.
72 * ]|
74 * The resulting curve must have the same slopes than the original
75 * one at the start and end points. Forcing the same slopes means:
77 * |[
78 * p1 = p0 + k0 v0.
79 * ]|
81 * where %k0 is an arbitrary factor. Decomposing for %x and %y:
83 * |[
84 * p1.x = p0.x + k0 v0.x;
85 * p1.y = p0.y + k0 v0.y.
86 * ]|
88 * and doing the same for the end point:
90 * |[
91 * p2.x = p3.x + k3 v3.x;
92 * p2.y = p3.y + k3 v3.y.
93 * ]|
95 * This does not give a resolvable system, though. The curve will be
96 * interpolated by forcing its path to pass throught %pm when
97 * <varname>time</varname> is %m, where <code>0 &le; m &le; 1</code>.
98 * Knowing the function of the cubic Bézier:
100 * |[
101 * C(t) = (1 &minus; t)³p0 + 3t(1 &minus; t)²p1 + 3t²(1 &minus; t)p2 + t³p3.
102 * ]|
104 * and forcing <code>t = m</code> and <code>C(t) = pm</code>:
106 * |[
107 * pm = (1 &minus; m)³p0 + 3m(1 &minus; m)²p1 + 3m²(1 &minus; m)p2 + m³p3.
109 * (1 &minus; m) p1 + m p2 = (pm &minus; (1 &minus; m)³p0 &minus; m³p3) / (3m (1 &minus; m)).
110 * ]|
112 * gives this final system:
114 * |[
115 * p1.x = p0.x + k0 v0.x;
116 * p1.y = p0.y + k0 v0.y;
117 * p2.x = p3.x + k3 v3.x;
118 * p2.y = p3.y + k3 v3.y;
119 * (1 &minus; m) p1.x + m p2.x = (pm.x &minus; (1 &minus; m)³p0.x &minus; m³p3.x) / (3m (1 &minus; m));
120 * (1 &minus; m) p1.y + m p2.y = (pm.y &minus; (1 &minus; m)³p0.y &minus; m³p3.y) / (3m (1 &minus; m)).
121 * ]|
123 * Substituting and resolving for %k0 and %k3:
125 * |[
126 * (1 &minus; m) k0 v0.x + m k3 v3.x = (pm.x &minus; (1 &minus; m)³p0.x &minus; m³p3.x) / (3m (1 &minus; m)) &minus; (1 &minus; m) p0.x &minus; m p3.x;
127 * (1 &minus; m) k0 v0.y + m k3 v3.y = (pm.y &minus; (1 &minus; m)³p0.y &minus; m³p3.y) / (3m (1 &minus; m)) &minus; (1 &minus; m) p0.y &minus; m p3.y.
129 * (1 &minus; m) k0 v0.x + m k3 v3.x = (pm.x &minus; (1 &minus; m)²(1+2m) p0.x &minus; m²(3 &minus; 2m) p3.x) / (3m (1 &minus; m));
130 * (1 &minus; m) k0 v0.y + m k3 v3.y = (pm.y &minus; (1 &minus; m)²(1+2m) p0.y &minus; m²(3 &minus; 2m) p3.y) / (3m (1 &minus; m)).
131 * ]|
133 * Letting:
135 * |[
136 * pk = (pm &minus; (1 &minus; m)²(1+2m) p0 &minus; m²(3 &minus; 2m) p3) / (3m (1 &minus; m)).
137 * ]|
139 * reduces the above to this final equations:
141 * |[
142 * (1 &minus; m) k0 v0.x + m k3 v3.x = pk.x;
143 * (1 &minus; m) k0 v0.y + m k3 v3.y = pk.y.
144 * ]|
146 * If <code>v0.x &ne; 0</code>, the system can be resolved for %k0 and
147 * %k3 calculated accordingly:
149 * |[
150 * k0 = (pk.x &minus; m k3 v3.x) / ((1 &minus; m) v0.x);
151 * (pk.x &minus; m k3 v3.x) v0.y / v0.x + m k3 v3.y = pk.y.
153 * k0 = (pk.x &minus; m k3 v3.x) / ((1 &minus; m) v0.x);
154 * k3 m (v3.y &minus; v3.x v0.y / v0.x) = pk.y &minus; pk.x v0.y / v0.x.
156 * k3 = (pk.y &minus; pk.x v0.y / v0.x) / (m (v3.y &minus; v3.x v0.y / v0.x));
157 * k0 = (pk.x &minus; m k3 v3.x) / ((1 &minus; m) v0.x).
158 * ]|
160 * Otherwise, if <code>v3.x &ne; 0</code>, the system can be solved
161 * for %k3 and %k0 calculated accordingly:
163 * |[
164 * k3 = (pk.x &minus; (1 &minus; m) k0 v0.x) / (m v3.x);
165 * (1 &minus; m) k0 v0.y + (pk.x &minus; (1 &minus; m) k0 v0.x) v3.y / v3.x = pk.y.
167 * k3 = (pk.x &minus; (1 &minus; m) k0 v0.x) / (m v3.x);
168 * k0 (1 &minus; m) (v0.y &minus; k0 v0.x v3.y / v3.x) = pk.y &minus; pk.x v3.y / v3.x.
170 * k0 = (pk.y &minus; pk.x v3.y / v3.x) / ((1 &minus; m) (v0.y &minus; v0.x v3.y / v3.x));
171 * k3 = (pk.x &minus; (1 &minus; m) k0 v0.x) / (m v3.x).
172 * ]|
174 * The whole process must be guarded against division by 0 exceptions.
175 * If either <code>v0.x</code> and <code>v3.x</code> are %0, the first
176 * equation will be inconsistent. More in general, the
177 * <code>v0.x &times; v3.y = v3.x &times; v3.y</code> condition must
178 * be avoided. This is the first situation to avoid, in which case
179 * an alternative approach should be used.
181 * </para>
182 * </refsect2>
184 * Since: 1.0
188 #include "cpml-internal.h"
189 #include "cpml-extents.h"
190 #include "cpml-segment.h"
191 #include "cpml-primitive.h"
192 #include "cpml-primitive-private.h"
193 #include "cpml-curve.h"
196 static void put_extents (const CpmlPrimitive *curve,
197 CpmlExtents *extents);
198 static void offset (CpmlPrimitive *curve,
199 double offset);
202 const _CpmlPrimitiveClass *
203 _cpml_curve_get_class(void)
205 static _CpmlPrimitiveClass *p_class = NULL;
207 if (p_class == NULL) {
208 static _CpmlPrimitiveClass class_data = {
209 "curve to", 4,
210 NULL,
211 put_extents,
212 NULL,
213 NULL,
214 NULL,
215 NULL,
216 offset,
217 NULL
219 p_class = &class_data;
222 return p_class;
227 * cpml_curve_put_pair_at_time:
228 * @curve: the #CpmlPrimitive curve data
229 * @t: the "time" value
230 * @pair: the destination pair
232 * Given the @curve Bézier cubic, finds the coordinates at time @t
233 * (where 0 is the start and 1 is the end) and stores the result
234 * in @pair. Keep in mind @t is not homogeneous, so 0.5 does not
235 * necessarily means the mid point.
237 * Since: 1.0
239 void
240 cpml_curve_put_pair_at_time(const CpmlPrimitive *curve, double t,
241 CpmlPair *pair)
243 CpmlPair p1, p2, p3, p4;
244 double t_2, t_3, t1, t1_2, t1_3;
246 cpml_primitive_put_point(curve, 0, &p1);
247 cpml_primitive_put_point(curve, 1, &p2);
248 cpml_primitive_put_point(curve, 2, &p3);
249 cpml_primitive_put_point(curve, 3, &p4);
251 t_2 = t * t;
252 t_3 = t_2 * t;
253 t1 = 1 - t;
254 t1_2 = t1 * t1;
255 t1_3 = t1_2 * t1;
257 pair->x = t1_3 * p1.x + 3 * t1_2 * t * p2.x
258 + 3 * t1 * t_2 * p3.x + t_3 * p4.x;
259 pair->y = t1_3 * p1.y + 3 * t1_2 * t * p2.y
260 + 3 * t1 * t_2 * p3.y + t_3 * p4.y;
264 * cpml_curve_put_vector_at_time:
265 * @curve: the #CpmlPrimitive curve data
266 * @t: the "time" value
267 * @vector: the destination vector
269 * Given the @curve Bézier cubic, finds the slope at time @t
270 * (where 0 is the start and 1 is the end) and stores the result
271 * in @vector. Keep in mind @t is not homogeneous, so 0.5
272 * does not necessarily means the mid point.
274 * Since: 1.0
276 void
277 cpml_curve_put_vector_at_time(const CpmlPrimitive *curve,
278 double t, CpmlVector *vector)
280 CpmlPair p1, p2, p3, p4;
281 CpmlPair p21, p32, p43;
282 double t1, t1_2, t_2;
284 cpml_primitive_put_point(curve, 0, &p1);
285 cpml_primitive_put_point(curve, 1, &p2);
286 cpml_primitive_put_point(curve, 2, &p3);
287 cpml_primitive_put_point(curve, 3, &p4);
289 p21.x = p2.x - p1.x;
290 p21.y = p2.y - p1.y;
291 p32.x = p3.x - p2.x;
292 p32.y = p3.y - p2.y;
293 p43.x = p4.x - p3.x;
294 p43.y = p4.y - p3.y;
296 t1 = 1 - t;
297 t1_2 = t1 * t1;
298 t_2 = t * t;
300 vector->x = 3 * t1_2 * p21.x + 6 * t1 * t * p32.x + 3 * t_2 * p43.x;
301 vector->y = 3 * t1_2 * p21.y + 6 * t1 * t * p32.y + 3 * t_2 * p43.y;
305 static void
306 put_extents(const CpmlPrimitive *curve, CpmlExtents *extents)
308 CpmlPair p1, p2, p3, p4;
310 extents->is_defined = 0;
312 cpml_primitive_put_point(curve, 0, &p1);
313 cpml_primitive_put_point(curve, 1, &p2);
314 cpml_primitive_put_point(curve, 2, &p3);
315 cpml_primitive_put_point(curve, 3, &p4);
317 cpml_extents_pair_add(extents, &p1);
318 cpml_extents_pair_add(extents, &p2);
319 cpml_extents_pair_add(extents, &p3);
320 cpml_extents_pair_add(extents, &p4);
323 static void
324 offset(CpmlPrimitive *curve, double offset)
326 double m, mm;
327 CpmlVector v0, v3, vm, vtmp;
328 CpmlPair p0, p1, p2, p3, pm;
330 m = 0.5;
331 mm = 1-m;
333 /* Firstly, convert the curve points from cairo format to cpml format
334 * and store them (temporary) in p0..p3 */
335 cpml_pair_from_cairo(&p0, curve->org);
336 cpml_pair_from_cairo(&p1, &curve->data[1]);
337 cpml_pair_from_cairo(&p2, &curve->data[2]);
338 cpml_pair_from_cairo(&p3, &curve->data[3]);
340 /* v0 = p1-p0 */
341 v0.x = p1.x - p0.x;
342 v0.y = p1.y - p0.y;
344 /* v3 = p3-p2 */
345 v3.x = p3.x - p2.x;
346 v3.y = p3.y - p2.y;
348 /* pm = point in C(m) offseted the requested @offset distance */
349 cpml_curve_put_vector_at_time(curve, m, &vm);
350 cpml_vector_set_length(&vm, offset);
351 cpml_vector_normal(&vm);
352 cpml_curve_put_pair_at_time(curve, m, &pm);
353 pm.x += vm.x;
354 pm.y += vm.y;
356 /* p0 = p0 + normal of v0 of @offset magnitude (exact value) */
357 cpml_pair_copy(&vtmp, &v0);
358 cpml_vector_set_length(&vtmp, offset);
359 cpml_vector_normal(&vtmp);
360 p0.x += vtmp.x;
361 p0.y += vtmp.y;
363 /* p3 = p3 + normal of v3 of @offset magnitude, as done for p0 */
364 cpml_pair_copy(&vtmp, &v3);
365 cpml_vector_set_length(&vtmp, offset);
366 cpml_vector_normal(&vtmp);
367 p3.x += vtmp.x;
368 p3.y += vtmp.y;
370 if (v0.x*v3.y == v3.x*v0.y) {
371 /* Inconsistent equations: use the alternative approach */
372 p1.x = p0.x + v0.x + vm.x * 4/3;
373 p1.y = p0.y + v0.y + vm.y * 4/3;
374 p2.x = p3.x - v3.x + vm.x * 4/3;
375 p2.y = p3.y - v3.y + vm.y * 4/3;
376 } else {
377 CpmlPair pk;
378 double k0, k3;
380 pk.x = (pm.x - mm*mm*(1+m+m)*p0.x - m*m*(1+mm+mm)*p3.x) / (3*m*(1-m));
381 pk.y = (pm.y - mm*mm*(1+m+m)*p0.y - m*m*(1+mm+mm)*p3.y) / (3*m*(1-m));
383 if (v0.x != 0) {
384 k3 = (pk.y - pk.x*v0.y / v0.x) / (m*(v3.y - v3.x*v0.y / v0.x));
385 k0 = (pk.x - m*k3*v3.x) / (mm*v0.x);
386 } else {
387 k0 = (pk.y - pk.x*v3.y / v3.x) / (mm*(v0.y - v0.x*v3.y / v3.x));
388 k3 = (pk.x - mm*k0*v0.x) / (m*v3.x);
391 p1.x = p0.x + k0*v0.x;
392 p1.y = p0.y + k0*v0.y;
393 p2.x = p3.x + k3*v3.x;
394 p2.y = p3.y + k3*v3.y;
397 /* Return the new curve in the original array */
398 cpml_pair_to_cairo(&p0, curve->org);
399 cpml_pair_to_cairo(&p1, &curve->data[1]);
400 cpml_pair_to_cairo(&p2, &curve->data[2]);
401 cpml_pair_to_cairo(&p3, &curve->data[3]);