1 /* CPML - Cairo Path Manipulation Library
2 * Copyright (C) 2008, 2009 Nicola Fontana <ntd at entidi.it>
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17 * Boston, MA 02110-1301, USA.
22 * @title: Bézier curves
23 * @short_description: Bézier cubic curve primitive management
25 * The following functions manipulate %CAIRO_PATH_CURVE_TO #CpmlPrimitive.
26 * No check is made on the primitive struct, so be sure
27 * <structname>CpmlPrimitive</structname> is effectively a Bézier curve
28 * before calling these APIs.
31 #include "cpml-curve.h"
32 #include "cpml-pair.h"
35 * cpml_curve_type_get_npoints:
37 * Returns the number of point needed to properly specify a curve primitive.
42 cpml_curve_type_get_npoints(void)
49 * @curve: the #CpmlPrimitive curve data
51 * Given the @curve primitive, returns the approximated length of
57 * <listitem>To be implemented...</listitem>
61 * Return value: the requested length
64 cpml_curve_length(const CpmlPrimitive
*curve
)
70 * cpml_curve_pair_at_time:
71 * @curve: the #CpmlPrimitive curve data
72 * @pair: the destination pair
73 * @t: the "time" value
75 * Given the @curve Bézier cubic, finds the coordinates at time @t
76 * (where 0 is the start and 1 is the end) and stores the result
77 * in @pair. Keep in mind @t is not homogeneous, so 0.5 does not
78 * necessarily means the mid point.
80 * The relation 0 < @t < 1 must be satisfied, as interpolating on
81 * cubic curves is not allowed.
84 cpml_curve_pair_at_time(const CpmlPrimitive
*curve
, CpmlPair
*pair
, double t
)
86 cairo_path_data_t
*p1
, *p2
, *p3
, *p4
;
87 double t_2
, t_3
, t1
, t1_2
, t1_3
;
89 p1
= cpml_primitive_get_point(curve
, 0);
90 p2
= cpml_primitive_get_point(curve
, 1);
91 p3
= cpml_primitive_get_point(curve
, 2);
92 p4
= cpml_primitive_get_point(curve
, 3);
100 pair
->x
= t1_3
* p1
->point
.x
+ 3 * t1_2
* t
* p2
->point
.x
101 + 3 * t1
* t_2
* p3
->point
.x
+ t_3
* p4
->point
.x
;
102 pair
->y
= t1_3
* p1
->point
.y
+ 3 * t1_2
* t
* p2
->point
.y
103 + 3 * t1
* t_2
* p3
->point
.y
+ t_3
* p4
->point
.y
;
107 * cpml_curve_pair_at:
108 * @curve: the #CpmlPrimitive curve data
109 * @pair: the destination #AdgPair
110 * @pos: the position value
112 * Given the @curve Bézier cubic, finds the coordinates at position
113 * @pos (where 0 is the start and 1 is the end) and stores the result
114 * in @pair. It is similar to cpml_curve_pair_at_time() but the @pos
115 * value is evenly distribuited, that is 0.5 is exactly the mid point.
116 * If you do not need this feature, use cpml_curve_pair_at_time()
117 * as it is considerable faster.
119 * The relation 0 < @pos < 1 must be satisfied, as interpolating on
120 * cubic curves is not allowed.
123 * <title>TODO</title>
125 * <listitem>To be implemented...</listitem>
130 cpml_curve_pair_at(const CpmlPrimitive
*curve
, CpmlPair
*pair
, double pos
)
135 * cpml_curve_vector_at_time:
136 * @curve: the #CpmlPrimitive curve data
137 * @vector: the destination vector
138 * @t: the "time" value
140 * Given the @curve Bézier cubic, finds the slope at time @t
141 * (where 0 is the start and 1 is the end) and stores the result
142 * in @vector. Keep in mind @t is not homogeneous, so 0.5
143 * does not necessarily means the mid point.
145 * @t must be inside the range 0 .. 1, as interpolating is not
149 cpml_curve_vector_at_time(const CpmlPrimitive
*curve
,
150 CpmlVector
*vector
, double t
)
152 cairo_path_data_t
*p1
, *p2
, *p3
, *p4
;
153 CpmlPair p21
, p32
, p43
;
154 double t1
, t1_2
, t_2
;
156 p1
= cpml_primitive_get_point(curve
, 0);
157 p2
= cpml_primitive_get_point(curve
, 1);
158 p3
= cpml_primitive_get_point(curve
, 2);
159 p4
= cpml_primitive_get_point(curve
, 3);
161 p21
.x
= p2
->point
.x
- p1
->point
.x
;
162 p21
.y
= p2
->point
.y
- p1
->point
.y
;
163 p32
.x
= p3
->point
.x
- p2
->point
.x
;
164 p32
.y
= p3
->point
.y
- p2
->point
.y
;
165 p43
.x
= p4
->point
.x
- p3
->point
.x
;
166 p43
.y
= p4
->point
.y
- p3
->point
.y
;
172 vector
->x
= 3 * t1_2
* p21
.x
+ 6 * t1
* t
* p32
.x
+ 3 * t_2
* p43
.x
;
173 vector
->y
= 3 * t1_2
* p21
.y
+ 6 * t1
* t
* p32
.y
+ 3 * t_2
* p43
.y
;
177 * cpml_curve_vector_at:
178 * @curve: the #CpmlPrimitive curve data
179 * @vector: the destination vector
180 * @pos: the position value
182 * Given the @curve Bézier cubic, finds the slope at position @pos
183 * (where 0 is the start and 1 is the end) and stores the result
184 * in @vector. It is similar to cpml_curve_vector_at_time() but the
185 * @pos value is evenly distribuited, that is 0.5 is exactly the
186 * mid point. If you do not need this feature, use
187 * cpml_curve_vector_at_time() as it is considerable faster.
189 * @pos must be inside the range 0 .. 1, as interpolating is not
193 * <title>TODO</title>
195 * <listitem>To be implemented...</listitem>
200 cpml_curve_vector_at(const CpmlPrimitive
*curve
,
201 CpmlVector
*vector
, double pos
)
206 * cpml_curve_near_pos:
207 * @curve: the #CpmlPrimitive curve data
208 * @pair: the coordinates of the subject point
210 * Returns the pos value of the point on @curve nearest to @pair.
211 * The returned value is always between 0 and 1.
214 * <title>TODO</title>
216 * <listitem>To be implemented...</listitem>
220 * Return value: the pos value, always between 0 and 1
223 cpml_curve_near_pos(const CpmlPrimitive
*curve
, const CpmlPair
*pair
)
231 * cpml_curve_intersection:
232 * @curve: the first curve
233 * @curve2: the second curve
234 * @dest: a vector of #CpmlPair
235 * @max: maximum number of intersections to return
236 * (that is, the size of @dest)
238 * Given two Bézier cubic curves (@curve and @curve2), gets their
239 * intersection points and store the result in @dest. Because two
240 * curves can have 4 intersections, @dest MUST be at least an array
243 * If @max is 0, the function returns 0 immediately without any
244 * further processing. If @curve and @curve2 are cohincident,
245 * their intersections are not considered.
248 * <title>TODO</title>
250 * <listitem>To be implemented...</listitem>
254 * Return value: the number of intersections found (max 4)
255 * or 0 if the primitives do not intersect
258 cpml_curve_intersection(const CpmlPrimitive
*curve
,
259 const CpmlPrimitive
*curve2
,
260 CpmlPair
*dest
, int max
)
266 * cpml_curve_intersection_with_arc:
269 * @dest: a vector of #CpmlPair
270 * @max: maximum number of intersections to return
271 * (that is, the size of @dest)
273 * Given a Bézier cubic @curve and an @arc, gets their intersection
274 * points and store the result in @dest. Because an arc and a cubic
275 * curve can have up to 4 intersections, @dest MUST be at least an
276 * array of 4 #CpmlPair.
278 * If @max is 0, the function returns 0 immediately without any
279 * further processing.
282 * <title>TODO</title>
284 * <listitem>To be implemented...</listitem>
288 * Return value: the number of intersections found (max 4)
289 * or 0 if the primitives do not intersect
292 cpml_curve_intersection_with_arc(const CpmlPrimitive
*curve
,
293 const CpmlPrimitive
*arc
,
294 CpmlPair
*dest
, int max
)
300 * cpml_curve_intersection_with_line:
303 * @dest: a vector of #CpmlPair
304 * @max: maximum number of intersections to return
305 * (that is, the size of @dest)
307 * Given a Bézier cubic @curve and a @line, gets their intersection
308 * points and store the result in @dest. Because a line and a cubic
309 * curve can have up to 4 intersections, @dest MUST be at least an
310 * array of 4 #CpmlPair.
312 * If @max is 0, the function returns 0 immediately without any
313 * further processing.
316 * <title>TODO</title>
318 * <listitem>To be implemented...</listitem>
322 * Return value: the number of intersections found (max 4)
323 * or 0 if the primitives do not intersect
326 cpml_curve_intersection_with_line(const CpmlPrimitive
*curve
,
327 const CpmlPrimitive
*line
,
328 CpmlPair
*dest
, int max
)
335 * @curve: the #CpmlPrimitive curve data
336 * @offset: distance for the computed parallel curve
338 * Given a cubic Bézier primitive in @curve, this function finds
339 * the approximated Bézier curve parallel to @curve at distance
340 * @offset (an offset curve). The four points needed to build the
341 * new curve are returned in the @curve struct.
343 * To solve the offset problem, a custom algorithm is used. First, the
344 * resulting curve MUST have the same slope at the start and end point.
345 * These constraints are not sufficient to resolve the system, so I let
346 * the curve pass thought a given point (pm, known and got from the
347 * original curve) at a given time (m, now hardcoded to 0.5).
349 * Firstly, I define some useful variables:
351 * v0 = unitvector(p[1]-p[0]) * offset;
352 * v3 = unitvector(p[3]-p[2]) * offset;
353 * p0 = p[0] + normal v0;
354 * p3 = p[3] + normal v3.
356 * Now I want the curve to have the specified slopes at the start
357 * and end point. Forcing the same slope at the start point means:
361 * where k0 is an arbitrary factor. Decomposing for x and y components:
363 * p1.x = p0.x + k0 v0.x;
364 * p1.y = p0.y + k0 v0.y.
366 * Doing the same for the end point gives:
368 * p2.x = p3.x + k3 v3.x;
369 * p2.y = p3.y + k3 v3.y.
371 * Now I interpolate the curve by forcing it to pass throught pm
372 * when "time" is m, where 0 < m < 1. The cubic Bézier function is:
374 * C(t) = (1-t)³p0 + 3t(1-t)²p1 + 3t²(1-t)p2 + t³p3.
376 * and forcing t=m and C(t) = pm:
378 * pm = (1-m)³p0 + 3m(1-m)²p1 + 3m²(1-m)p2 + m³p3.
380 * (1-m) p1 + m p2 = (pm - (1-m)³p0 - m³p3) / (3m (1-m)).
382 * So the final system is:
384 * p1.x = p0.x + k0 v0.x;
385 * p1.y = p0.y + k0 v0.y;
386 * p2.x = p3.x + k3 v3.x;
387 * p2.y = p3.y + k3 v3.y;
388 * (1-m) p1.x + m p2.x = (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m));
389 * (1-m) p1.y + m p2.y = (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)).
391 * Substituting and resolving for k0 and k3:
393 * (1-m) k0 v0.x + m k3 v3.x =
394 * (pm.x - (1-m)³p0.x - m³p3.x) / (3m (1-m)) - (1-m) p0.x - m p3.x;
395 * (1-m) k0 v0.y + m k3 v3.y =
396 * (pm.y - (1-m)³p0.y - m³p3.y) / (3m (1-m)) - (1-m) p0.y - m p3.y.
398 * (1-m) k0 v0.x + m k3 v3.x =
399 * (pm.x - (1-m)²(1+2m) p0.x - m²(3-2m) p3.x) / (3m (1-m));
400 * (1-m) k0 v0.y + m k3 v3.y =
401 * (pm.y - (1-m)²(1+2m) p0.y - m²(3-2m) p3.y) / (3m (1-m)).
405 * pk = (pm - (1-m)²(1+2m) p0 - m²(3-2m) p3) / (3m (1-m)).
407 * gives the following system:
409 * (1-m) k0 v0.x + m k3 v3.x = pk.x;
410 * (1-m) k0 v0.y + m k3 v3.y = pk.y.
412 * Now I should avoid division by 0 troubles. If either v0.x and v3.x
413 * are 0, the first equation will be inconsistent. More in general the
414 * v0.x*v3.y = v3.x*v3.y condition should be avoided. This is the first
415 * case to check, in which case an alternative approach is used. In the
416 * other cases the above system can be used.
418 * If v0.x != 0 I can resolve for k0 and then find k3:
420 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
421 * (pk.x - m k3 v3.x) v0.y / v0.x + m k3 v3.y = pk.y.
423 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x);
424 * k3 m (v3.y - v3.x v0.y / v0.x) = pk.y - pk.x v0.y / v0.x.
426 * k3 = (pk.y - pk.x v0.y / v0.x) / (m (v3.y - v3.x v0.y / v0.x));
427 * k0 = (pk.x - m k3 v3.x) / ((1-m) v0.x).
429 * If v3.x != 0 I can resolve for k3 and then find k0:
431 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
432 * (1-m) k0 v0.y + (pk.x - (1-m) k0 v0.x) v3.y / v3.x = pk.y.
434 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x);
435 * k0 (1-m) (v0.y - k0 v0.x v3.y / v3.x) = pk.y - pk.x v3.y / v3.x.
437 * k0 = (pk.y - pk.x v3.y / v3.x) / ((1-m) (v0.y - v0.x v3.y / v3.x));
438 * k3 = (pk.x - (1-m) k0 v0.x) / (m v3.x).
441 * <title>TODO</title>
443 * <listitem>By default, interpolation of the new curve is made by offseting
444 * the mid point: use a better candidate.</listitem>
445 * <listitem>When the equations are inconsistent, the alternative approach
446 * performs very bad if <varname>v0</varname> and
447 * <varname>v3</varname> are opposite or staggered.</listitem>
452 cpml_curve_offset(CpmlPrimitive
*curve
, double offset
)
455 CpmlVector v0
, v3
, vm
, vtmp
;
456 CpmlPair p0
, p1
, p2
, p3
, pm
;
461 /* Firstly, convert the curve points from cairo format to cpml format
462 * and store them (temporary) in p0..p3 */
463 cpml_pair_from_cairo(&p0
, curve
->org
);
464 cpml_pair_from_cairo(&p1
, &curve
->data
[1]);
465 cpml_pair_from_cairo(&p2
, &curve
->data
[2]);
466 cpml_pair_from_cairo(&p3
, &curve
->data
[3]);
469 cpml_pair_sub(cpml_pair_copy(&v0
, &p1
), &p0
);
472 cpml_pair_sub(cpml_pair_copy(&v3
, &p3
), &p2
);
474 /* pm = point in C(m) offseted the requested @offset distance */
475 cpml_curve_vector_at_time(curve
, &vm
, m
);
476 cpml_vector_set_length(&vm
, offset
);
477 cpml_vector_normal(&vm
);
478 cpml_curve_pair_at_time(curve
, &pm
, m
);
479 cpml_pair_add(&pm
, &vm
);
481 /* p0 = p0 + normal of v0 of @offset magnitude (exact value) */
482 cpml_vector_set_length(cpml_pair_copy(&vtmp
, &v0
), offset
);
483 cpml_vector_normal(&vtmp
);
484 cpml_pair_add(&p0
, &vtmp
);
486 /* p3 = p3 + normal of v3 of @offset magnitude, as done for p0 */
487 cpml_vector_set_length(cpml_pair_copy(&vtmp
, &v3
), offset
);
488 cpml_vector_normal(&vtmp
);
489 cpml_pair_add(&p3
, &vtmp
);
491 if (v0
.x
*v3
.y
== v3
.x
*v0
.y
) {
492 /* Inconsistent equations: use the alternative approach */
493 p1
.x
= p0
.x
+ v0
.x
+ vm
.x
* 4/3;
494 p1
.y
= p0
.y
+ v0
.y
+ vm
.y
* 4/3;
495 p2
.x
= p3
.x
- v3
.x
+ vm
.x
* 4/3;
496 p2
.y
= p3
.y
- v3
.y
+ vm
.y
* 4/3;
501 pk
.x
= (pm
.x
- mm
*mm
*(1+m
+m
)*p0
.x
- m
*m
*(1+mm
+mm
)*p3
.x
) / (3*m
*(1-m
));
502 pk
.y
= (pm
.y
- mm
*mm
*(1+m
+m
)*p0
.y
- m
*m
*(1+mm
+mm
)*p3
.y
) / (3*m
*(1-m
));
505 k3
= (pk
.y
- pk
.x
*v0
.y
/ v0
.x
) / (m
*(v3
.y
- v3
.x
*v0
.y
/ v0
.x
));
506 k0
= (pk
.x
- m
*k3
*v3
.x
) / (mm
*v0
.x
);
508 k0
= (pk
.y
- pk
.x
*v3
.y
/ v3
.x
) / (mm
*(v0
.y
- v0
.x
*v3
.y
/ v3
.x
));
509 k3
= (pk
.x
- mm
*k0
*v0
.x
) / (m
*v3
.x
);
512 p1
.x
= p0
.x
+ k0
*v0
.x
;
513 p1
.y
= p0
.y
+ k0
*v0
.y
;
514 p2
.x
= p3
.x
+ k3
*v3
.x
;
515 p2
.y
= p3
.y
+ k3
*v3
.y
;
518 /* Return the new curve in the original array */
519 cpml_pair_to_cairo(&p0
, curve
->org
);
520 cpml_pair_to_cairo(&p1
, &curve
->data
[1]);
521 cpml_pair_to_cairo(&p2
, &curve
->data
[2]);
522 cpml_pair_to_cairo(&p3
, &curve
->data
[3]);