9 #include "puttymem.h"
\r
10 #include "marshal.h"
\r
12 #include <stdio.h> /* for FILE * */
\r
13 #include <stdarg.h> /* for va_list */
\r
14 #include <stdlib.h> /* for abort */
\r
15 #include <time.h> /* for struct tm */
\r
16 #include <limits.h> /* for INT_MAX/MIN */
\r
17 #include <assert.h> /* for assert (obviously) */
\r
19 unsigned long parse_blocksize(const char *bs);
\r
20 char ctrlparse(char *s, char **next);
\r
22 size_t host_strcspn(const char *s, const char *set);
\r
23 char *host_strchr(const char *s, int c);
\r
24 char *host_strrchr(const char *s, int c);
\r
25 char *host_strduptrim(const char *s);
\r
27 char *dupstr(const char *s);
\r
28 char *dupcat_fn(const char *s1, ...);
\r
29 #define dupcat(...) dupcat_fn(__VA_ARGS__, (const char *)NULL)
\r
30 char *dupprintf(const char *fmt, ...) PRINTF_LIKE(1, 2);
\r
31 char *dupvprintf(const char *fmt, va_list ap);
\r
32 void burnstr(char *string);
\r
35 * The visible part of a strbuf structure. There's a surrounding
\r
36 * implementation struct in misc.c, which isn't exposed to client
\r
43 BinarySink_IMPLEMENTATION;
\r
46 /* strbuf constructors: strbuf_new_nm and strbuf_new differ in that a
\r
47 * strbuf constructed using the _nm version will resize itself by
\r
48 * alloc/copy/smemclr/free instead of realloc. Use that version for
\r
49 * data sensitive enough that it's worth costing performance to
\r
50 * avoid copies of it lingering in process memory. */
\r
51 strbuf *strbuf_new(void);
\r
52 strbuf *strbuf_new_nm(void);
\r
54 void strbuf_free(strbuf *buf);
\r
55 void *strbuf_append(strbuf *buf, size_t len);
\r
56 void strbuf_shrink_to(strbuf *buf, size_t new_len);
\r
57 void strbuf_shrink_by(strbuf *buf, size_t amount_to_remove);
\r
58 char *strbuf_to_str(strbuf *buf); /* does free buf, but you must free result */
\r
59 void strbuf_catf(strbuf *buf, const char *fmt, ...) PRINTF_LIKE(2, 3);
\r
60 void strbuf_catfv(strbuf *buf, const char *fmt, va_list ap);
\r
61 static inline void strbuf_clear(strbuf *buf) { strbuf_shrink_to(buf, 0); }
\r
62 bool strbuf_chomp(strbuf *buf, char char_to_remove);
\r
64 strbuf *strbuf_new_for_agent_query(void);
\r
65 void strbuf_finalise_agent_query(strbuf *buf);
\r
67 /* String-to-Unicode converters that auto-allocate the destination and
\r
68 * work around the rather deficient interface of mb_to_wc.
\r
70 * These actually live in miscucs.c, not misc.c (the distinction being
\r
71 * that the former is only linked into tools that also have the main
\r
72 * Unicode support). */
\r
73 wchar_t *dup_mb_to_wc_c(int codepage, int flags, const char *string, int len);
\r
74 wchar_t *dup_mb_to_wc(int codepage, int flags, const char *string);
\r
76 static inline int toint(unsigned u)
\r
79 * Convert an unsigned to an int, without running into the
\r
80 * undefined behaviour which happens by the strict C standard if
\r
81 * the value overflows. You'd hope that sensible compilers would
\r
82 * do the sensible thing in response to a cast, but actually I
\r
83 * don't trust modern compilers not to do silly things like
\r
84 * assuming that _obviously_ you wouldn't have caused an overflow
\r
85 * and so they can elide an 'if (i < 0)' test immediately after
\r
88 * Sensible compilers ought of course to optimise this entire
\r
89 * function into 'just return the input value', and since it's
\r
90 * also declared inline, elide it completely in their output.
\r
92 if (u <= (unsigned)INT_MAX)
\r
94 else if (u >= (unsigned)INT_MIN) /* wrap in cast _to_ unsigned is OK */
\r
95 return INT_MIN + (int)(u - (unsigned)INT_MIN);
\r
97 return INT_MIN; /* fallback; should never occur on binary machines */
\r
100 char *fgetline(FILE *fp);
\r
101 bool read_file_into(BinarySink *bs, FILE *fp);
\r
102 char *chomp(char *str);
\r
103 bool strstartswith(const char *s, const char *t);
\r
104 bool strendswith(const char *s, const char *t);
\r
106 void base64_encode_atom(const unsigned char *data, int n, char *out);
\r
107 int base64_decode_atom(const char *atom, unsigned char *out);
\r
109 struct bufchain_granule;
\r
110 struct bufchain_tag {
\r
111 struct bufchain_granule *head, *tail;
\r
112 size_t buffersize; /* current amount of buffered data */
\r
114 void (*queue_idempotent_callback)(IdempotentCallback *ic);
\r
115 IdempotentCallback *ic;
\r
118 void bufchain_init(bufchain *ch);
\r
119 void bufchain_clear(bufchain *ch);
\r
120 size_t bufchain_size(bufchain *ch);
\r
121 void bufchain_add(bufchain *ch, const void *data, size_t len);
\r
122 ptrlen bufchain_prefix(bufchain *ch);
\r
123 void bufchain_consume(bufchain *ch, size_t len);
\r
124 void bufchain_fetch(bufchain *ch, void *data, size_t len);
\r
125 void bufchain_fetch_consume(bufchain *ch, void *data, size_t len);
\r
126 bool bufchain_try_fetch_consume(bufchain *ch, void *data, size_t len);
\r
127 size_t bufchain_fetch_consume_up_to(bufchain *ch, void *data, size_t len);
\r
128 void bufchain_set_callback_inner(
\r
129 bufchain *ch, IdempotentCallback *ic,
\r
130 void (*queue_idempotent_callback)(IdempotentCallback *ic));
\r
131 static inline void bufchain_set_callback(bufchain *ch, IdempotentCallback *ic)
\r
133 extern void queue_idempotent_callback(struct IdempotentCallback *ic);
\r
134 /* Wrapper that puts in the standard queue_idempotent_callback
\r
135 * function. Lives here rather than in utils.c so that standalone
\r
136 * programs can use the bufchain facility without this optional
\r
137 * callback feature and not need to provide a stub of
\r
138 * queue_idempotent_callback. */
\r
139 bufchain_set_callback_inner(ch, ic, queue_idempotent_callback);
\r
142 bool validate_manual_hostkey(char *key);
\r
144 struct tm ltime(void);
\r
147 * Special form of strcmp which can cope with NULL inputs. NULL is
\r
148 * defined to sort before even the empty string.
\r
150 int nullstrcmp(const char *a, const char *b);
\r
152 static inline ptrlen make_ptrlen(const void *ptr, size_t len)
\r
160 static inline ptrlen ptrlen_from_asciz(const char *str)
\r
162 return make_ptrlen(str, strlen(str));
\r
165 static inline ptrlen ptrlen_from_strbuf(strbuf *sb)
\r
167 return make_ptrlen(sb->u, sb->len);
\r
170 bool ptrlen_eq_string(ptrlen pl, const char *str);
\r
171 bool ptrlen_eq_ptrlen(ptrlen pl1, ptrlen pl2);
\r
172 int ptrlen_strcmp(ptrlen pl1, ptrlen pl2);
\r
173 /* ptrlen_startswith and ptrlen_endswith write through their 'tail'
\r
174 * argument if and only if it is non-NULL and they return true. Hence
\r
175 * you can write ptrlen_startswith(thing, prefix, &thing), writing
\r
176 * back to the same ptrlen it read from, to remove a prefix if present
\r
177 * and say whether it did so. */
\r
178 bool ptrlen_startswith(ptrlen whole, ptrlen prefix, ptrlen *tail);
\r
179 bool ptrlen_endswith(ptrlen whole, ptrlen suffix, ptrlen *tail);
\r
180 ptrlen ptrlen_get_word(ptrlen *input, const char *separators);
\r
181 char *mkstr(ptrlen pl);
\r
182 int string_length_for_printf(size_t);
\r
183 /* Derive two printf arguments from a ptrlen, suitable for "%.*s" */
\r
184 #define PTRLEN_PRINTF(pl) \
\r
185 string_length_for_printf((pl).len), (const char *)(pl).ptr
\r
186 /* Make a ptrlen out of a compile-time string literal. We try to
\r
187 * enforce that it _is_ a string literal by token-pasting "" on to it,
\r
188 * which should provoke a compile error if it's any other kind of
\r
190 #define PTRLEN_LITERAL(stringlit) \
\r
191 TYPECHECK("" stringlit "", make_ptrlen(stringlit, sizeof(stringlit)-1))
\r
192 /* Make a ptrlen out of a compile-time string literal in a way that
\r
193 * allows you to declare the ptrlen itself as a compile-time initialiser. */
\r
194 #define PTRLEN_DECL_LITERAL(stringlit) \
\r
195 { TYPECHECK("" stringlit "", stringlit), sizeof(stringlit)-1 }
\r
196 /* Make a ptrlen out of a constant byte array. */
\r
197 #define PTRLEN_FROM_CONST_BYTES(a) make_ptrlen(a, sizeof(a))
\r
199 /* Wipe sensitive data out of memory that's about to be freed. Simpler
\r
200 * than memset because we don't need the fill char parameter; also
\r
201 * attempts (by fiddly use of volatile) to inhibit the compiler from
\r
202 * over-cleverly trying to optimise the memset away because it knows
\r
203 * the variable is going out of scope. */
\r
204 void smemclr(void *b, size_t len);
\r
206 /* Compare two fixed-length chunks of memory for equality, without
\r
207 * data-dependent control flow (so an attacker with a very accurate
\r
208 * stopwatch can't try to guess where the first mismatching byte was).
\r
209 * Returns false for mismatch or true for equality (unlike memcmp),
\r
210 * hinted at by the 'eq' in the name. */
\r
211 bool smemeq(const void *av, const void *bv, size_t len);
\r
213 /* Encode a single UTF-8 character. Assumes that illegal characters
\r
214 * (such as things in the surrogate range, or > 0x10FFFF) have already
\r
216 size_t encode_utf8(void *output, unsigned long ch);
\r
218 /* Write a string out in C string-literal format. */
\r
219 void write_c_string_literal(FILE *fp, ptrlen str);
\r
221 char *buildinfo(const char *newline);
\r
224 * A function you can put at points in the code where execution should
\r
225 * never reach in the first place. Better than assert(false), or even
\r
226 * assert(false && "some explanatory message"), because some compilers
\r
227 * don't interpret assert(false) as a declaration of unreachability,
\r
228 * so they may still warn about pointless things like some variable
\r
229 * not being initialised on the unreachable code path.
\r
231 * I follow the assertion with a call to abort() just in case someone
\r
232 * compiles with -DNDEBUG, and I wrap that abort inside my own
\r
233 * function labelled NORETURN just in case some unusual kind of system
\r
234 * header wasn't foresighted enough to label abort() itself that way.
\r
236 static inline NORETURN void unreachable_internal(void) { abort(); }
\r
237 #define unreachable(msg) (assert(false && msg), unreachable_internal())
\r
240 * Debugging functions.
\r
242 * Output goes to debug.log
\r
244 * debug() is like printf().
\r
246 * dmemdump() and dmemdumpl() both do memory dumps. The difference
\r
247 * is that dmemdumpl() is more suited for when the memory address is
\r
248 * important (say because you'll be recording pointer values later
\r
249 * on). dmemdump() is more concise.
\r
253 void debug_printf(const char *fmt, ...) PRINTF_LIKE(1, 2);
\r
254 void debug_memdump(const void *buf, int len, bool L);
\r
255 #define debug(...) (debug_printf(__VA_ARGS__))
\r
256 #define dmemdump(buf,len) (debug_memdump(buf, len, false))
\r
257 #define dmemdumpl(buf,len) (debug_memdump(buf, len, true))
\r
259 #define debug(...) ((void)0)
\r
260 #define dmemdump(buf,len) ((void)0)
\r
261 #define dmemdumpl(buf,len) ((void)0)
\r
265 #define lenof(x) ( (sizeof((x))) / (sizeof(*(x))))
\r
269 #define min(x,y) ( (x) < (y) ? (x) : (y) )
\r
272 #define max(x,y) ( (x) > (y) ? (x) : (y) )
\r
275 static inline uint64_t GET_64BIT_LSB_FIRST(const void *vp)
\r
277 const uint8_t *p = (const uint8_t *)vp;
\r
278 return (((uint64_t)p[0] ) | ((uint64_t)p[1] << 8) |
\r
279 ((uint64_t)p[2] << 16) | ((uint64_t)p[3] << 24) |
\r
280 ((uint64_t)p[4] << 32) | ((uint64_t)p[5] << 40) |
\r
281 ((uint64_t)p[6] << 48) | ((uint64_t)p[7] << 56));
\r
284 static inline void PUT_64BIT_LSB_FIRST(void *vp, uint64_t value)
\r
286 uint8_t *p = (uint8_t *)vp;
\r
287 p[0] = (uint8_t)(value);
\r
288 p[1] = (uint8_t)(value >> 8);
\r
289 p[2] = (uint8_t)(value >> 16);
\r
290 p[3] = (uint8_t)(value >> 24);
\r
291 p[4] = (uint8_t)(value >> 32);
\r
292 p[5] = (uint8_t)(value >> 40);
\r
293 p[6] = (uint8_t)(value >> 48);
\r
294 p[7] = (uint8_t)(value >> 56);
\r
297 static inline uint32_t GET_32BIT_LSB_FIRST(const void *vp)
\r
299 const uint8_t *p = (const uint8_t *)vp;
\r
300 return (((uint32_t)p[0] ) | ((uint32_t)p[1] << 8) |
\r
301 ((uint32_t)p[2] << 16) | ((uint32_t)p[3] << 24));
\r
304 static inline void PUT_32BIT_LSB_FIRST(void *vp, uint32_t value)
\r
306 uint8_t *p = (uint8_t *)vp;
\r
307 p[0] = (uint8_t)(value);
\r
308 p[1] = (uint8_t)(value >> 8);
\r
309 p[2] = (uint8_t)(value >> 16);
\r
310 p[3] = (uint8_t)(value >> 24);
\r
313 static inline uint16_t GET_16BIT_LSB_FIRST(const void *vp)
\r
315 const uint8_t *p = (const uint8_t *)vp;
\r
316 return (((uint16_t)p[0] ) | ((uint16_t)p[1] << 8));
\r
319 static inline void PUT_16BIT_LSB_FIRST(void *vp, uint16_t value)
\r
321 uint8_t *p = (uint8_t *)vp;
\r
322 p[0] = (uint8_t)(value);
\r
323 p[1] = (uint8_t)(value >> 8);
\r
326 static inline uint64_t GET_64BIT_MSB_FIRST(const void *vp)
\r
328 const uint8_t *p = (const uint8_t *)vp;
\r
329 return (((uint64_t)p[7] ) | ((uint64_t)p[6] << 8) |
\r
330 ((uint64_t)p[5] << 16) | ((uint64_t)p[4] << 24) |
\r
331 ((uint64_t)p[3] << 32) | ((uint64_t)p[2] << 40) |
\r
332 ((uint64_t)p[1] << 48) | ((uint64_t)p[0] << 56));
\r
335 static inline void PUT_64BIT_MSB_FIRST(void *vp, uint64_t value)
\r
337 uint8_t *p = (uint8_t *)vp;
\r
338 p[7] = (uint8_t)(value);
\r
339 p[6] = (uint8_t)(value >> 8);
\r
340 p[5] = (uint8_t)(value >> 16);
\r
341 p[4] = (uint8_t)(value >> 24);
\r
342 p[3] = (uint8_t)(value >> 32);
\r
343 p[2] = (uint8_t)(value >> 40);
\r
344 p[1] = (uint8_t)(value >> 48);
\r
345 p[0] = (uint8_t)(value >> 56);
\r
348 static inline uint32_t GET_32BIT_MSB_FIRST(const void *vp)
\r
350 const uint8_t *p = (const uint8_t *)vp;
\r
351 return (((uint32_t)p[3] ) | ((uint32_t)p[2] << 8) |
\r
352 ((uint32_t)p[1] << 16) | ((uint32_t)p[0] << 24));
\r
355 static inline void PUT_32BIT_MSB_FIRST(void *vp, uint32_t value)
\r
357 uint8_t *p = (uint8_t *)vp;
\r
358 p[3] = (uint8_t)(value);
\r
359 p[2] = (uint8_t)(value >> 8);
\r
360 p[1] = (uint8_t)(value >> 16);
\r
361 p[0] = (uint8_t)(value >> 24);
\r
364 static inline uint16_t GET_16BIT_MSB_FIRST(const void *vp)
\r
366 const uint8_t *p = (const uint8_t *)vp;
\r
367 return (((uint16_t)p[1] ) | ((uint16_t)p[0] << 8));
\r
370 static inline void PUT_16BIT_MSB_FIRST(void *vp, uint16_t value)
\r
372 uint8_t *p = (uint8_t *)vp;
\r
373 p[1] = (uint8_t)(value);
\r
374 p[0] = (uint8_t)(value >> 8);
\r
377 /* Replace NULL with the empty string, permitting an idiom in which we
\r
378 * get a string (pointer,length) pair that might be NULL,0 and can
\r
379 * then safely say things like printf("%.*s", length, NULLTOEMPTY(ptr)) */
\r
380 static inline const char *NULLTOEMPTY(const char *s)
\r
385 /* StripCtrlChars, defined in stripctrl.c: an adapter you can put on
\r
386 * the front of one BinarySink and which functions as one in turn.
\r
387 * Interprets its input as a stream of multibyte characters in the
\r
388 * system locale, and removes any that are not either printable
\r
389 * characters or newlines. */
\r
390 struct StripCtrlChars {
\r
391 BinarySink_IMPLEMENTATION;
\r
392 /* and this is contained in a larger structure */
\r
394 StripCtrlChars *stripctrl_new(
\r
395 BinarySink *bs_out, bool permit_cr, wchar_t substitution);
\r
396 StripCtrlChars *stripctrl_new_term_fn(
\r
397 BinarySink *bs_out, bool permit_cr, wchar_t substitution,
\r
398 Terminal *term, unsigned long (*translate)(
\r
399 Terminal *, term_utf8_decode *, unsigned char));
\r
400 #define stripctrl_new_term(bs, cr, sub, term) \
\r
401 stripctrl_new_term_fn(bs, cr, sub, term, term_translate)
\r
402 void stripctrl_retarget(StripCtrlChars *sccpub, BinarySink *new_bs_out);
\r
403 void stripctrl_reset(StripCtrlChars *sccpub);
\r
404 void stripctrl_free(StripCtrlChars *sanpub);
\r
405 void stripctrl_enable_line_limiting(StripCtrlChars *sccpub);
\r
406 char *stripctrl_string_ptrlen(StripCtrlChars *sccpub, ptrlen str);
\r
407 static inline char *stripctrl_string(StripCtrlChars *sccpub, const char *str)
\r
409 return stripctrl_string_ptrlen(sccpub, ptrlen_from_asciz(str));
\r
413 * A mechanism for loading a file from disk into a memory buffer where
\r
414 * it can be picked apart as a BinarySource.
\r
416 struct LoadedFile {
\r
418 size_t len, max_size;
\r
419 BinarySource_IMPLEMENTATION;
\r
422 LF_OK, /* file loaded successfully */
\r
423 LF_TOO_BIG, /* file didn't fit in buffer */
\r
424 LF_ERROR, /* error from stdio layer */
\r
426 LoadedFile *lf_new(size_t max_size);
\r
427 void lf_free(LoadedFile *lf);
\r
428 LoadFileStatus lf_load_fp(LoadedFile *lf, FILE *fp);
\r
429 LoadFileStatus lf_load(LoadedFile *lf, const Filename *filename);
\r
430 static inline ptrlen ptrlen_from_lf(LoadedFile *lf)
\r
431 { return make_ptrlen(lf->data, lf->len); }
\r
433 /* Set the memory block of 'size' bytes at 'out' to the bitwise XOR of
\r
434 * the two blocks of the same size at 'in1' and 'in2'.
\r
436 * 'out' may point to exactly the same address as one of the inputs,
\r
437 * but if the input and output blocks overlap in any other way, the
\r
438 * result of this function is not guaranteed. No memmove-style effort
\r
439 * is made to handle difficult overlap cases. */
\r
440 void memxor(uint8_t *out, const uint8_t *in1, const uint8_t *in2, size_t size);
\r