All the code for reading in the registy is done, but I have a malloc'd
[Samba/wip.git] / source3 / utils / editreg.c
blobf95ec29727951c01c39bd295f46891679637f049
1 /*
2 Samba Unix/Linux SMB client utility editreg.c
3 Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19 /*************************************************************************
21 A utility to edit a Windows NT/2K etc registry file.
23 Many of the ideas in here come from other people and software.
24 I first looked in Wine in misc/registry.c and was also influenced by
25 http://www.wednesday.demon.co.uk/dosreg.html
27 Which seems to contain comments from someone else. I reproduce them here
28 incase the site above disappears. It actually comes from
29 http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt.
31 The goal here is to read the registry into memory, manipulate it, and then
32 write it out if it was changed by any actions of the user.
34 The windows NT registry has 2 different blocks, where one can occur many
35 times...
37 the "regf"-Block
38 ================
40 "regf" is obviosly the abbreviation for "Registry file". "regf" is the
41 signature of the header-block which is always 4kb in size, although only
42 the first 64 bytes seem to be used and a checksum is calculated over
43 the first 0x200 bytes only!
45 Offset Size Contents
46 0x00000000 D-Word ID: ASCII-"regf" = 0x66676572
47 0x00000004 D-Word ???? //see struct REGF
48 0x00000008 D-Word ???? Always the same value as at 0x00000004
49 0x0000000C Q-Word last modify date in WinNT date-format
50 0x00000014 D-Word 1
51 0x00000018 D-Word 3
52 0x0000001C D-Word 0
53 0x00000020 D-Word 1
54 0x00000024 D-Word Offset of 1st key record
55 0x00000028 D-Word Size of the data-blocks (Filesize-4kb)
56 0x0000002C D-Word 1
57 0x000001FC D-Word Sum of all D-Words from 0x00000000 to
58 0x000001FB //XOR of all words. Nigel
60 I have analyzed more registry files (from multiple machines running
61 NT 4.0 german version) and could not find an explanation for the values
62 marked with ???? the rest of the first 4kb page is not important...
64 the "hbin"-Block
65 ================
66 I don't know what "hbin" stands for, but this block is always a multiple
67 of 4kb in size.
69 Inside these hbin-blocks the different records are placed. The memory-
70 management looks like a C-compiler heap management to me...
72 hbin-Header
73 ===========
74 Offset Size Contents
75 0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268
76 0x0004 D-Word Offset from the 1st hbin-Block
77 0x0008 D-Word Offset to the next hbin-Block
78 0x001C D-Word Block-size
80 The values in 0x0008 and 0x001C should be the same, so I don't know
81 if they are correct or swapped...
83 From offset 0x0020 inside a hbin-block data is stored with the following
84 format:
86 Offset Size Contents
87 0x0000 D-Word Data-block size //this size must be a
88 multiple of 8. Nigel
89 0x0004 ???? Data
91 If the size field is negative (bit 31 set), the corresponding block
92 is free and has a size of -blocksize!
94 That does not seem to be true. All block lengths seem to be negative! (Richard Sharpe)
96 The data is stored as one record per block. Block size is a multiple
97 of 4 and the last block reaches the next hbin-block, leaving no room.
99 Records in the hbin-blocks
100 ==========================
102 nk-Record
104 The nk-record can be treated as a kombination of tree-record and
105 key-record of the win 95 registry.
107 lf-Record
109 The lf-record is the counterpart to the RGKN-record (the
110 hash-function)
112 vk-Record
114 The vk-record consists information to a single value.
116 sk-Record
118 sk (? Security Key ?) is the ACL of the registry.
120 Value-Lists
122 The value-lists contain information about which values are inside a
123 sub-key and don't have a header.
125 Datas
127 The datas of the registry are (like the value-list) stored without a
128 header.
130 All offset-values are relative to the first hbin-block and point to the
131 block-size field of the record-entry. to get the file offset, you have to add
132 the header size (4kb) and the size field (4 bytes)...
134 the nk-Record
135 =============
136 Offset Size Contents
137 0x0000 Word ID: ASCII-"nk" = 0x6B6E
138 0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel
139 0x0004 Q-Word write-date/time in windows nt notation
140 0x0010 D-Word Offset of Owner/Parent key
141 0x0014 D-Word number of sub-Keys
142 0x001C D-Word Offset of the sub-key lf-Records
143 0x0024 D-Word number of values
144 0x0028 D-Word Offset of the Value-List
145 0x002C D-Word Offset of the sk-Record
147 0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel
148 0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel
149 0x0048 Word name-length
150 0x004A Word class-name length
151 0x004C ???? key-name
153 the Value-List
154 ==============
155 Offset Size Contents
156 0x0000 D-Word Offset 1st Value
157 0x0004 D-Word Offset 2nd Value
158 0x???? D-Word Offset nth Value
160 To determine the number of values, you have to look at the owner-nk-record!
162 Der vk-Record
163 =============
164 Offset Size Contents
165 0x0000 Word ID: ASCII-"vk" = 0x6B76
166 0x0002 Word name length
167 0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel
168 0x0008 D-Word Offset of Data
169 0x000C D-Word Type of value
170 0x0010 Word Flag
171 0x0012 Word Unused (data-trash)
172 0x0014 ???? Name
174 If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default)
176 If the data-size is lower 5, the data-offset value is used to store the data itself!
178 The data-types
179 ==============
180 Wert Beteutung
181 0x0001 RegSZ: character string (in UNICODE!)
182 0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!)
183 0x0003 RegBin: raw-binary value
184 0x0004 RegDWord: Dword
185 0x0007 RegMultiSZ: multiple strings, seperated with 0
186 (UNICODE!)
188 The "lf"-record
189 ===============
190 Offset Size Contents
191 0x0000 Word ID: ASCII-"lf" = 0x666C
192 0x0002 Word number of keys
193 0x0004 ???? Hash-Records
195 Hash-Record
196 ===========
197 Offset Size Contents
198 0x0000 D-Word Offset of corresponding "nk"-Record
199 0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0's. Case sensitiv!
201 Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the
202 key-name you have to change the hash-value too!
204 //These hashrecords must be sorted low to high within the lf record. Nigel.
206 The "sk"-block
207 ==============
208 (due to the complexity of the SAM-info, not clear jet)
209 (This is just a security descriptor in the data. R Sharpe.)
212 Offset Size Contents
213 0x0000 Word ID: ASCII-"sk" = 0x6B73
214 0x0002 Word Unused
215 0x0004 D-Word Offset of previous "sk"-Record
216 0x0008 D-Word Offset of next "sk"-Record
217 0x000C D-Word usage-counter
218 0x0010 D-Word Size of "sk"-record in bytes
219 ???? //standard self
220 relative security desciptor. Nigel
221 ???? ???? Security and auditing settings...
222 ????
224 The usage counter counts the number of references to this
225 "sk"-record. You can use one "sk"-record for the entire registry!
227 Windows nt date/time format
228 ===========================
229 The time-format is a 64-bit integer which is incremented every
230 0,0000001 seconds by 1 (I don't know how accurate it realy is!)
231 It starts with 0 at the 1st of january 1601 0:00! All values are
232 stored in GMT time! The time-zone is important to get the real
233 time!
235 Common values for win95 and win-nt
236 ==================================
237 Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF).
238 If a value has no name (length=0, flag(bit 0)=0), it is treated as the
239 "Default" entry...
240 If a value has no data (length=0), it is displayed as empty.
242 simplyfied win-3.?? registry:
243 =============================
245 +-----------+
246 | next rec. |---+ +----->+------------+
247 | first sub | | | | Usage cnt. |
248 | name | | +-->+------------+ | | length |
249 | value | | | | next rec. | | | text |------->+-------+
250 +-----------+ | | | name rec. |--+ +------------+ | xxxxx |
251 +------------+ | | value rec. |-------->+------------+ +-------+
252 v | +------------+ | Usage cnt. |
253 +-----------+ | | length |
254 | next rec. | | | text |------->+-------+
255 | first sub |------+ +------------+ | xxxxx |
256 | name | +-------+
257 | value |
258 +-----------+
260 Greatly simplyfied structure of the nt-registry:
261 ================================================
263 +---------------------------------------------------------------+
266 +---------+ +---------->+-----------+ +----->+---------+ |
267 | "nk" | | | lf-rec. | | | nk-rec. | |
268 | ID | | | # of keys | | | parent |---+
269 | Date | | | 1st key |--+ | .... |
270 | parent | | +-----------+ +---------+
271 | suk-keys|-----+
272 | values |--------------------->+----------+
273 | SK-rec. |---------------+ | 1. value |--> +----------+
274 | class |--+ | +----------+ | vk-rec. |
275 +---------+ | | | .... |
276 v | | data |--> +-------+
277 +------------+ | +----------+ | xxxxx |
278 | Class name | | +-------+
279 +------------+ |
281 +---------+ +---------+
282 +----->| next sk |--->| Next sk |--+
283 | +---| prev sk |<---| prev sk | |
284 | | | .... | | ... | |
285 | | +---------+ +---------+ |
286 | | ^ |
287 | | | |
288 | +--------------------+ |
289 +----------------------------------+
291 ---------------------------------------------------------------------------
293 Hope this helps.... (Although it was "fun" for me to uncover this things,
294 it took me several sleepless nights ;)
296 B.D.
298 *************************************************************************/
300 #include <stdio.h>
301 #include <stdlib.h>
302 #include <errno.h>
303 #include <assert.h>
304 #include <sys/types.h>
305 #include <sys/stat.h>
306 #include <unistd.h>
307 #include <sys/mman.h>
308 #include <string.h>
309 #include <fcntl.h>
311 static int verbose = 0;
314 * These definitions are for the in-memory registry structure.
315 * It is a tree structure that mimics what you see with tools like regedit
319 * DateTime struct for Windows
322 typedef struct date_time_s {
323 unsigned int low, high;
324 } NTTIME;
327 * Definition of a Key. It has a name, classname, date/time last modified,
328 * sub-keys, values, and a security descriptor
331 #define REG_ROOT_KEY 1
332 #define REG_SUB_KEY 2
333 #define REG_SYM_LINK 3
335 typedef struct reg_key_s {
336 char *name; /* Name of the key */
337 char *class_name;
338 int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */
339 NTTIME last_mod; /* Time last modified */
340 struct reg_key_s *owner;
341 struct key_list_s *sub_keys;
342 struct val_list_s *values;
343 struct key_sec_desc_s *security;
344 } REG_KEY;
347 * The KEY_LIST struct lists sub-keys.
350 typedef struct key_list_s {
351 int key_count;
352 REG_KEY *keys[1];
353 } KEY_LIST;
355 typedef struct val_key_s {
356 char *name;
357 int has_name;
358 int data_type;
359 int data_len;
360 void *data_blk; /* Might want a separate block */
361 } VAL_KEY;
363 typedef struct val_list_s {
364 int val_count;
365 VAL_KEY *vals[1];
366 } VAL_LIST;
368 #ifndef MAXSUBAUTHS
369 #define MAXSUBAUTHS 15
370 #endif
372 typedef struct dom_sid_s {
373 unsigned char ver, auths;
374 unsigned char auth[6];
375 unsigned int sub_auths[MAXSUBAUTHS];
376 } DOM_SID;
378 typedef struct ace_struct_s {
379 unsigned char type, flags;
380 unsigned int perms; /* Perhaps a better def is in order */
381 DOM_SID *trustee;
382 } ACE;
384 typedef struct acl_struct_s {
385 unsigned short rev, refcnt;
386 unsigned short num_aces;
387 ACE *aces[1];
388 } ACL;
390 typedef struct sec_desc_s {
391 unsigned int rev, type;
392 DOM_SID *owner, *group;
393 ACL *sacl, *dacl;
394 } SEC_DESC;
396 #define SEC_DESC_NON 0
397 #define SEC_DESC_RES 1
398 #define SEC_DESC_OCU 2
400 typedef struct key_sec_desc_s {
401 struct key_sec_desc_s *prev, *next;
402 int ref_cnt;
403 int state;
404 SEC_DESC *sec_desc;
405 } KEY_SEC_DESC;
409 * An API for accessing/creating/destroying items above
413 * Iterate over the keys, depth first, calling a function for each key
414 * and indicating if it is terminal or non-terminal and if it has values.
416 * In addition, for each value in the list, call a value list function
420 * There should eventually be one to deal with security keys as well
423 typedef int (*key_print_f)(char *path, char *key_name, char *class_name,
424 int root, int terminal, int values);
426 typedef int (*val_print_f)(char *path, char *val_name, int val_type,
427 int data_len, void *data_blk, int terminal,
428 int first, int last);
430 typedef int (*sec_print_f)(SEC_DESC *sec_desc);
432 typedef struct regf_struct_s REGF;
434 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, char *path,
435 key_print_f key_print, sec_print_f sec_print,
436 val_print_f val_print);
438 int nt_val_list_iterator(REGF *regf, VAL_LIST *val_list, int bf, char *path,
439 int terminal, val_print_f val_print)
441 int i;
443 if (!val_list) return 1;
445 if (!val_print) return 1;
447 for (i=0; i<val_list->val_count; i++) {
448 if (!val_print(path, val_list->vals[i]->name, val_list->vals[i]->data_type,
449 val_list->vals[i]->data_len, val_list->vals[i]->data_blk,
450 terminal,
451 (i == 0),
452 (i == val_list->val_count))) {
454 return 0;
459 return 1;
462 int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf, char *path,
463 key_print_f key_print, sec_print_f sec_print,
464 val_print_f val_print)
466 int i;
468 if (!key_list) return 1;
470 for (i=0; i< key_list->key_count; i++) {
471 if (!nt_key_iterator(regf, key_list->keys[i], bf, path, key_print,
472 sec_print, val_print)) {
473 return 0;
476 return 1;
479 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, char *path,
480 key_print_f key_print, sec_print_f sec_print,
481 val_print_f val_print)
483 int path_len = strlen(path);
484 char *new_path;
486 if (!regf || !key_tree)
487 return -1;
489 /* List the key first, then the values, then the sub-keys */
491 if (key_print) {
493 if (!(*key_print)(path, key_tree->name,
494 key_tree->class_name,
495 (key_tree->type == REG_ROOT_KEY),
496 (key_tree->sub_keys == NULL),
497 (key_tree->values?(key_tree->values->val_count):0)))
498 return 0;
502 * If we have a security print routine, call it
504 if (sec_print) {
505 if (key_tree->security && !(*sec_print)(key_tree->security->sec_desc))
506 return 0;
509 new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1);
510 if (!new_path) return 0; /* Errors? */
511 new_path[0] = '\0';
512 strcat(new_path, path);
513 strcat(new_path, "\\");
514 strcat(new_path, key_tree->name);
517 * Now, iterate through the values in the val_list
520 if (key_tree->values &&
521 !nt_val_list_iterator(regf, key_tree->values, bf, new_path,
522 (key_tree->values!=NULL),
523 val_print)) {
525 free(new_path);
526 return 0;
530 * Now, iterate through the keys in the key list
533 if (key_tree->sub_keys &&
534 !nt_key_list_iterator(regf, key_tree->sub_keys, bf, new_path, key_print,
535 sec_print, val_print)) {
536 free(new_path);
537 return 0;
540 free(new_path);
541 return 1;
544 /* Make, delete keys */
546 int nt_delete_val_list(VAL_LIST *vl)
549 return 1;
552 int nt_delete_reg_key(REG_KEY *key)
555 return 1;
559 * Create/delete key lists and add delete keys to/from a list, count the keys
564 * Create/delete value lists, add/delete values, count them
569 * Create/delete security descriptors, add/delete SIDS, count SIDS, etc.
570 * We reference count the security descriptors. Any new reference increments
571 * the ref count. If we modify an SD, we copy the old one, dec the ref count
572 * and make the change. We also want to be able to check for equality so
573 * we can reduce the number of SDs in use.
578 * Load and unload a registry file.
580 * Load, loads it into memory as a tree, while unload sealizes/flattens it
584 * Get the starting record for NT Registry file
587 /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */
588 typedef struct sk_map_s {
589 int sk_off;
590 KEY_SEC_DESC *key_sec_desc;
591 } SK_MAP;
594 * Where we keep all the regf stuff for one registry.
595 * This is the structure that we use to tie the in memory tree etc
596 * together. By keeping separate structs, we can operate on different
597 * registries at the same time.
598 * Currently, the SK_MAP is an array of mapping structure.
599 * Since we only need this on input and output, we fill in the structure
600 * as we go on input. On output, we know how many SK items we have, so
601 * we can allocate the structure as we need to.
602 * If you add stuff here that is dynamically allocated, add the
603 * appropriate free statements below.
606 #define REGF_REGTYPE_NONE 0
607 #define REGF_REGTYPE_NT 1
608 #define REGF_REGTYPE_W9X 2
610 #define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \
611 (r)->last_mod_time.high = (t2);
613 #define REGF_HDR_BLKSIZ 0x1000
615 struct regf_struct_s {
616 int reg_type;
617 char *regfile_name, *outfile_name;
618 int fd;
619 struct stat sbuf;
620 char *base;
621 int modified;
622 NTTIME last_mod_time;
623 REG_KEY *root; /* Root of the tree for this file */
624 int sk_count, sk_map_size;
625 SK_MAP *sk_map;
629 * Structures for dealing with the on-disk format of the registry
632 #define IVAL(buf) ((unsigned int) \
633 (unsigned int)*((unsigned char *)(buf)+3)<<24| \
634 (unsigned int)*((unsigned char *)(buf)+2)<<16| \
635 (unsigned int)*((unsigned char *)(buf)+1)<<8| \
636 (unsigned int)*((unsigned char *)(buf)+0))
638 #define SVAL(buf) ((unsigned short) \
639 (unsigned short)*((unsigned char *)(buf)+1)<<8| \
640 (unsigned short)*((unsigned char *)(buf)+0))
642 #define CVAL(buf) ((unsigned char)*((unsigned char *)(buf)))
644 #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4)
645 #define LOCN(base, f) ((base) + OFF(f))
648 * All of the structures below actually have a four-byte lenght before them
649 * which always seems to be negative. The following macro retrieves that
650 * size as an integer
653 #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1))
655 typedef unsigned int DWORD;
656 typedef unsigned short WORD;
658 #define REG_REGF_ID 0x66676572
660 typedef struct regf_block {
661 DWORD REGF_ID; /* regf */
662 DWORD uk1;
663 DWORD uk2;
664 DWORD tim1, tim2;
665 DWORD uk3; /* 1 */
666 DWORD uk4; /* 3 */
667 DWORD uk5; /* 0 */
668 DWORD uk6; /* 1 */
669 DWORD first_key; /* offset */
670 unsigned int dblk_size;
671 DWORD uk7[116]; /* 1 */
672 DWORD chksum;
673 } REGF_HDR;
675 typedef struct hbin_sub_struct {
676 DWORD dblocksize;
677 char data[1];
678 } HBIN_SUB_HDR;
680 #define REG_HBIN_ID 0x6E696268
682 typedef struct hbin_struct {
683 DWORD HBIN_ID; /* hbin */
684 DWORD next_off;
685 DWORD prev_off;
686 DWORD uk1;
687 DWORD uk2;
688 DWORD uk3;
689 DWORD uk4;
690 DWORD blk_size;
691 HBIN_SUB_HDR hbin_sub_hdr;
692 } HBIN_HDR;
694 #define REG_NK_ID 0x6B6E
696 typedef struct nk_struct {
697 WORD NK_ID;
698 WORD type;
699 DWORD t1, t2;
700 DWORD uk1;
701 DWORD own_off;
702 DWORD subk_num;
703 DWORD uk2;
704 DWORD lf_off;
705 DWORD uk3;
706 DWORD val_cnt;
707 DWORD val_off;
708 DWORD sk_off;
709 DWORD clsnam_off;
710 DWORD unk4[4];
711 DWORD unk5;
712 WORD nam_len;
713 WORD clsnam_len;
714 char key_nam[1]; /* Actual length determined by nam_len */
715 } NK_HDR;
717 #define REG_SK_ID 0x6B73
719 typedef struct sk_struct {
720 WORD SK_ID;
721 WORD uk1;
722 DWORD prev_off;
723 DWORD next_off;
724 DWORD ref_cnt;
725 DWORD rec_size;
726 char sec_desc[1];
727 } SK_HDR;
729 typedef struct ace_struct {
730 unsigned char type;
731 unsigned char flags;
732 unsigned short length;
733 unsigned int perms;
734 DOM_SID trustee;
735 } REG_ACE;
737 typedef struct acl_struct {
738 WORD rev;
739 WORD size;
740 DWORD num_aces;
741 REG_ACE *aces; /* One or more ACEs */
742 } REG_ACL;
744 typedef struct sec_desc_rec {
745 WORD rev;
746 WORD type;
747 DWORD owner_off;
748 DWORD group_off;
749 DWORD sacl_off;
750 DWORD dacl_off;
751 } REG_SEC_DESC;
753 typedef struct hash_struct {
754 DWORD nk_off;
755 char hash[4];
756 } HASH_REC;
758 #define REG_LF_ID 0x666C
760 typedef struct lf_struct {
761 WORD LF_ID;
762 WORD key_count;
763 struct hash_struct hr[1]; /* Array of hash records, depending on key_count */
764 } LF_HDR;
766 typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */
768 #define REG_VK_ID 0x6B76
770 typedef struct vk_struct {
771 WORD VK_ID;
772 WORD nam_len;
773 DWORD dat_len; /* If top-bit set, offset contains the data */
774 DWORD dat_off;
775 DWORD dat_type;
776 WORD flag; /* =1, has name, else no name (=Default). */
777 WORD unk1;
778 char dat_name[1]; /* Name starts here ... */
779 } VK_HDR;
781 #define REG_TYPE_REGSZ 1
782 #define REG_TYPE_EXPANDSZ 2
783 #define REG_TYPE_BIN 3
784 #define REG_TYPE_DWORD 4
785 #define REG_TYPE_MULTISZ 7
787 typedef struct _val_str {
788 unsigned int val;
789 char * str;
790 } VAL_STR;
792 VAL_STR reg_type_names[] = {
793 { 1, "REG_SZ" },
794 { 2, "REG_EXPAND_SZ" },
795 { 3, "REG_BIN" },
796 { 4, "REG_DWORD" },
797 { 7, "REG_MULTI_SZ" },
798 { 0, NULL },
801 char *val_to_str(unsigned int val, VAL_STR *val_array)
803 int i = 0;
805 if (!val_array) return NULL;
807 while (val_array[i].val && val_array[i].str) {
809 if (val_array[i].val == val) return val_array[i].str;
810 i++;
814 return NULL;
818 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size);
820 int nt_set_regf_input_file(REGF *regf, char *filename)
822 return ((regf->regfile_name = strdup(filename)) != NULL);
825 int nt_set_regf_output_file(REGF *regf, char *filename)
827 return ((regf->outfile_name = strdup(filename)) != NULL);
830 /* Create a regf structure and init it */
832 REGF *nt_create_regf(void)
834 REGF *tmp = (REGF *)malloc(sizeof(REGF));
835 if (!tmp) return tmp;
836 bzero(tmp, sizeof(REGF));
837 return tmp;
840 /* Free all the bits and pieces ... Assumes regf was malloc'd */
841 /* If you add stuff to REGF, add the relevant free bits here */
842 int nt_free_regf(REGF *regf)
844 if (!regf) return 0;
846 if (regf->regfile_name) free(regf->regfile_name);
847 if (regf->outfile_name) free(regf->outfile_name);
849 /* Free the mmap'd area */
851 if (regf->base) munmap(regf->base, regf->sbuf.st_size);
852 regf->base = NULL;
853 close(regf->fd); /* Ignore the error :-) */
855 nt_delete_reg_key(regf->root); /* Free the tree */
856 free(regf->sk_map);
857 regf->sk_count = regf->sk_map_size = 0;
859 free(regf);
861 return 1;
865 * Convert from UniCode to Ascii ... Does not take into account other lang
866 * Restrict by ascii_max if > 0
868 int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max,
869 int uni_max)
871 int i = 0;
873 while (i < ascii_max && !(!uni[i*2] && !uni[i*2+1])) {
874 if (uni_max > 0 && (i*2) >= uni_max) break;
875 ascii[i] = uni[i*2];
876 i++;
880 ascii[i] = '\0';
882 return i;
885 /* Get the header of the registry. Return a pointer to the structure
886 * If the mmap'd area has not been allocated, then mmap the input file
888 REGF_HDR *nt_get_regf_hdr(REGF *regf)
890 if (!regf)
891 return NULL; /* What about errors */
893 if (!regf->regfile_name)
894 return NULL; /* What about errors */
896 if (!regf->base) { /* Try to mmap etc the file */
898 if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) {
899 return NULL; /* What about errors? */
902 if (fstat(regf->fd, &regf->sbuf) < 0) {
903 return NULL;
906 regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0);
908 if ((int)regf->base == 1) {
909 fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name,
910 strerror(errno));
911 return NULL;
916 * At this point, regf->base != NULL, and we should be able to read the
917 * header
920 assert(regf->base != NULL);
922 return (REGF_HDR *)regf->base;
926 * Validate a regf header
927 * For now, do nothing, but we should check the checksum
929 int valid_regf_hdr(REGF_HDR *regf_hdr)
931 if (!regf_hdr) return 0;
933 return 1;
937 * Process an SK header ...
938 * Every time we see a new one, add it to the map. Otherwise, just look it up.
939 * We will do a simple linear search for the moment, since many KEYs have the
940 * same security descriptor.
941 * We allocate the map in increments of 10 entries.
945 * Create a new entry in the map, and increase the size of the map if needed
948 SK_MAP *alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off)
950 if (!regf->sk_map) { /* Allocate a block of 10 */
951 regf->sk_map = (SK_MAP *)malloc(sizeof(SK_MAP) * 10);
952 if (!regf->sk_map) {
953 free(tmp);
954 return NULL;
956 regf->sk_map_size = 10;
957 regf->sk_count = 1;
958 (regf->sk_map)[0].sk_off = sk_off;
959 (regf->sk_map)[0].key_sec_desc = tmp;
961 else { /* Simply allocate a new slot, unless we have to expand the list */
962 int index = regf->sk_count;
963 if (regf->sk_count == regf->sk_map_size) {
964 regf->sk_map = (SK_MAP *)realloc(regf->sk_map, regf->sk_map_size + 10);
965 if (!regf->sk_map) {
966 free(tmp);
967 return NULL;
969 index++;
971 (regf->sk_map)[index].sk_off = sk_off;
972 (regf->sk_map)[index].key_sec_desc = tmp;
973 regf->sk_count++;
975 return regf->sk_map;
979 * Search for a KEY_SEC_DESC in the sk_map, but dont create one if not
980 * found
983 KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off)
985 int i;
987 if (!sk_map) return NULL;
989 for (i = 0; i < count; i++) {
991 if (sk_map[i].sk_off == sk_off)
992 return sk_map[i].key_sec_desc;
996 return NULL;
1001 * Allocate a KEY_SEC_DESC if we can't find one in the map
1004 KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off)
1006 KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off);
1008 if (tmp) {
1009 return tmp;
1011 else { /* Allocate a new one */
1012 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1013 if (!tmp) {
1014 return NULL;
1016 tmp->state = SEC_DESC_RES;
1017 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1018 return NULL;
1020 return tmp;
1025 * Allocate storage and uplicate a SID
1026 * We could allocate the SID to be only the size needed, but I am too lazy.
1028 DOM_SID *dup_sid(DOM_SID *sid)
1030 DOM_SID *tmp = (DOM_SID *)malloc(sizeof(DOM_SID));
1031 int i;
1033 if (!tmp) return NULL;
1034 tmp->ver = sid->ver;
1035 tmp->auths = sid->auths;
1036 for (i=0; i<6; i++) {
1037 tmp->auth[i] = sid->auth[i];
1039 for (i=0; i<tmp->auths; i++) {
1040 tmp->sub_auths[i] = sid->sub_auths[i];
1042 return tmp;
1046 * Allocate space for an ACE and duplicate the registry encoded one passed in
1048 ACE *dup_ace(REG_ACE *ace)
1050 ACE *tmp = NULL;
1052 tmp = (ACE *)malloc(sizeof(ACE));
1054 if (!tmp) return NULL;
1056 tmp->type = CVAL(&ace->flags);
1057 tmp->flags = CVAL(&ace->flags);
1058 tmp->perms = IVAL(&ace->perms);
1059 tmp->trustee = dup_sid(&ace->trustee);
1060 return tmp;
1064 * Allocate space for an ACL and duplicate the registry encoded one passed in
1066 ACL *dup_acl(REG_ACL *acl)
1068 ACL *tmp = NULL;
1069 REG_ACE* ace;
1070 int i, num_aces;
1072 num_aces = IVAL(&acl->num_aces);
1074 tmp = (ACL *)malloc(sizeof(ACL) + (num_aces - 1)*sizeof(ACE *));
1075 if (!tmp) return NULL;
1077 tmp->num_aces = num_aces;
1078 tmp->refcnt = 1;
1079 tmp->rev = SVAL(&acl->rev);
1080 ace = (REG_ACE *)&acl->aces;
1081 for (i=0; i<num_aces; i++) {
1082 tmp->aces[i] = dup_ace(ace);
1083 /* XXX: FIXME, should handle malloc errors */
1086 return tmp;
1089 SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc)
1091 SEC_DESC *tmp = NULL;
1093 tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC));
1095 if (!tmp) {
1096 return NULL;
1099 tmp->rev = SVAL(&sec_desc->rev);
1100 tmp->type = SVAL(&sec_desc->type);
1101 tmp->owner = dup_sid((DOM_SID *)(sec_desc + IVAL(&sec_desc->owner_off)));
1102 if (!tmp->owner) {
1103 free(tmp);
1104 return NULL;
1106 tmp->group = dup_sid((DOM_SID *)(sec_desc + IVAL(&sec_desc->owner_off)));
1107 if (!tmp->group) {
1108 free(tmp);
1109 return NULL;
1112 /* Now pick up the SACL and DACL */
1114 if (sec_desc->sacl_off)
1115 tmp->sacl = dup_acl((REG_ACL *)(sec_desc + IVAL(&sec_desc->sacl_off)));
1116 else
1117 tmp->sacl = NULL;
1119 if (sec_desc->dacl_off)
1120 tmp->dacl = dup_acl((REG_ACL *)(sec_desc + IVAL(&sec_desc->dacl_off)));
1121 else
1122 tmp->dacl = NULL;
1124 return tmp;
1127 KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size)
1129 KEY_SEC_DESC *tmp = NULL;
1130 int sk_next_off, sk_prev_off, sk_size;
1131 REG_SEC_DESC *sec_desc;
1133 if (!sk_hdr) return NULL;
1135 if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) {
1136 fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr,
1137 regf->regfile_name);
1138 return NULL;
1141 if (-size < (sk_size = IVAL(&sk_hdr->rec_size))) {
1142 fprintf(stderr, "Incorrect SK record size: %d vs %d. %s\n",
1143 -size, sk_size, regf->regfile_name);
1144 return NULL;
1148 * Now, we need to look up the SK Record in the map, and return it
1149 * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can
1150 * use that
1153 if (regf->sk_map &&
1154 ((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL)
1155 && (tmp->state == SEC_DESC_OCU)) {
1156 tmp->ref_cnt++;
1157 return tmp;
1160 /* Here, we have an item in the map that has been reserved, or tmp==NULL. */
1162 assert(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON));
1165 * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the
1166 * new KEY_SEC_DESC to the mapping structure, since the offset supplied is
1167 * the actual offset of structure. The same offset will be used by all
1168 * all future references to this structure
1169 * We chould put all this unpleasantness in a function.
1172 if (!tmp) {
1173 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1174 if (!tmp) return NULL;
1175 bzero(tmp, sizeof(KEY_SEC_DESC));
1178 * Allocate an entry in the SK_MAP ...
1179 * We don't need to free tmp, because that is done for us if the
1180 * sm_map entry can't be expanded when we need more space in the map.
1183 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1184 return NULL;
1188 tmp->ref_cnt++;
1189 tmp->state = SEC_DESC_OCU;
1192 * Now, process the actual sec desc and plug the values in
1195 sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0];
1196 tmp->sec_desc = process_sec_desc(regf, sec_desc);
1199 * Now forward and back links. Here we allocate an entry in the sk_map
1200 * if it does not exist, and mark it reserved
1203 sk_prev_off = IVAL(&sk_hdr->prev_off);
1204 tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off);
1205 assert(tmp->prev != NULL);
1206 sk_next_off = IVAL(&sk_hdr->prev_off);
1207 tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off);
1208 assert(tmp->next != NULL);
1210 return tmp;
1214 * Process a VK header and return a value
1216 VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size)
1218 char val_name[1024];
1219 int nam_len, dat_len, flag, dat_type, dat_off, vk_id;
1220 char *val_type;
1221 VAL_KEY *tmp = NULL;
1223 if (!vk_hdr) return NULL;
1225 if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) {
1226 fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n",
1227 vk_id, (int)vk_hdr, regf->regfile_name);
1228 return NULL;
1231 nam_len = SVAL(&vk_hdr->nam_len);
1232 val_name[nam_len] = '\0';
1233 flag = SVAL(&vk_hdr->flag);
1234 dat_type = IVAL(&vk_hdr->dat_type);
1235 dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */
1236 dat_off = IVAL(&vk_hdr->dat_off);
1238 tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
1239 if (!tmp) {
1240 goto error;
1242 bzero(tmp, sizeof(VAL_KEY));
1243 tmp->has_name = flag;
1244 tmp->data_type = dat_type;
1246 if (flag & 0x01) {
1247 strncpy(val_name, vk_hdr->dat_name, nam_len);
1248 tmp->name = strdup(val_name);
1249 if (!tmp->name) {
1250 goto error;
1253 else
1254 strncpy(val_name, "<No Name>", 10);
1257 * Allocate space and copy the data as a BLOB
1260 if (dat_len) {
1262 char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF);
1264 if (!dtmp) {
1265 goto error;
1268 tmp->data_blk = dtmp;
1270 if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */
1271 char *dat_ptr = LOCN(regf->base, dat_off);
1272 bcopy(dat_ptr, dtmp, dat_len);
1274 else { /* The data is in the offset */
1275 dat_len = dat_len & 0x7FFFFFFF;
1276 bcopy(&dat_off, dtmp, dat_len);
1281 val_type = val_to_str(dat_type, reg_type_names);
1284 * We need to save the data area as well
1287 if (verbose) fprintf(stdout, " %s : %s : \n", val_name, val_type);
1289 return tmp;
1291 error:
1292 /* XXX: FIXME, free the partially allocated struct */
1293 return NULL;
1298 * Process a VL Header and return a list of values
1300 VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size)
1302 int i, vk_off;
1303 VK_HDR *vk_hdr;
1304 VAL_LIST *tmp = NULL;
1306 if (!vl) return NULL;
1308 if (-size < (count+1)*sizeof(int)){
1309 fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size);
1310 return NULL;
1313 tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *));
1314 if (!tmp) {
1315 goto error;
1318 for (i=0; i<count; i++) {
1319 vk_off = IVAL(&vl[i]);
1320 vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off);
1321 tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr));
1322 if (!tmp->vals[i]){
1323 goto error;
1327 tmp->val_count = count;
1329 return tmp;
1331 error:
1332 /* XXX: FIXME, free the partially allocated structure */
1333 return NULL;
1337 * Process an LF Header and return a list of sub-keys
1339 KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size)
1341 int count, i, nk_off;
1342 unsigned int lf_id;
1343 KEY_LIST *tmp;
1345 if (!lf_hdr) return NULL;
1347 if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) {
1348 fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n",
1349 lf_id, (int)lf_hdr, regf->regfile_name);
1350 return NULL;
1353 assert(size < 0);
1355 count = SVAL(&lf_hdr->key_count);
1357 if (count <= 0) return NULL;
1359 /* Now, we should allocate a KEY_LIST struct and fill it in ... */
1361 tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *));
1362 if (!tmp) {
1363 goto error;
1366 tmp->key_count = count;
1368 for (i=0; i<count; i++) {
1369 NK_HDR *nk_hdr;
1371 nk_off = IVAL(&lf_hdr->hr[i].nk_off);
1372 nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off);
1373 tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr));
1374 if (!tmp->keys[i]) {
1375 goto error;
1379 return tmp;
1381 error:
1382 /* XXX: FIXME, free the partially allocated structure */
1383 return NULL;
1387 * This routine is passed a NK_HDR pointer and retrieves the entire tree
1388 * from there down. It return a REG_KEY *.
1390 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size)
1392 REG_KEY *tmp = NULL;
1393 int name_len, clsname_len, lf_off, val_off, val_count, sk_off;
1394 unsigned int nk_id;
1395 LF_HDR *lf_hdr;
1396 VL_TYPE *vl;
1397 SK_HDR *sk_hdr;
1398 char key_name[1024], cls_name[1024];
1400 if (!nk_hdr) return NULL;
1402 if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) {
1403 fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n",
1404 nk_id, (int)nk_hdr, regf->regfile_name);
1405 return NULL;
1408 assert(size < 0);
1410 name_len = SVAL(&nk_hdr->nam_len);
1411 clsname_len = SVAL(&nk_hdr->clsnam_len);
1414 * The value of -size should be ge
1415 * (sizeof(NK_HDR) - 1 + name_len)
1416 * The -1 accounts for the fact that we included the first byte of
1417 * the name in the structure. clsname_len is the length of the thing
1418 * pointed to by clsnam_off
1421 if (-size < (sizeof(NK_HDR) - 1 + name_len)) {
1422 fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr);
1423 fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n",
1424 sizeof(NK_HDR), name_len, clsname_len);
1425 /*return NULL;*/
1428 if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n",
1429 name_len, clsname_len);
1431 /* Fish out the key name and process the LF list */
1433 assert(name_len < sizeof(key_name));
1435 /* Allocate the key struct now */
1436 tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
1437 if (!tmp) return tmp;
1438 bzero(tmp, sizeof(REG_KEY));
1440 tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY);
1442 strncpy(key_name, nk_hdr->key_nam, name_len);
1443 key_name[name_len] = '\0';
1445 if (verbose) fprintf(stdout, "Key name: %s\n", key_name);
1447 tmp->name = strdup(key_name);
1448 if (!tmp->name) {
1449 goto error;
1453 * Fish out the class name, it is in UNICODE, while the key name is
1454 * ASCII :-)
1457 if (clsname_len) { /* Just print in Ascii for now */
1458 char *clsnamep;
1459 int clsnam_off;
1461 clsnam_off = IVAL(&nk_hdr->clsnam_off);
1462 clsnamep = LOCN(regf->base, clsnam_off);
1464 bzero(cls_name, clsname_len);
1465 uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len);
1468 * I am keeping class name as an ascii string for the moment.
1469 * That means it needs to be converted on output.
1470 * XXX: FIXME
1473 tmp->class_name = strdup(cls_name);
1474 if (!tmp->class_name) {
1475 goto error;
1478 if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name);
1483 * If there are any values, process them here
1486 val_count = IVAL(&nk_hdr->val_cnt);
1488 if (val_count) {
1490 val_off = IVAL(&nk_hdr->val_off);
1491 vl = (VL_TYPE *)LOCN(regf->base, val_off);
1493 tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl));
1494 if (!tmp->values) {
1495 goto error;
1501 * Also handle the SK header ...
1504 sk_off = IVAL(&nk_hdr->sk_off);
1505 sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off);
1507 if (sk_off != -1) {
1509 tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr));
1513 lf_off = IVAL(&nk_hdr->lf_off);
1516 * No more subkeys if lf_off == -1
1519 if (lf_off != -1) {
1521 lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off);
1523 tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr));
1524 if (!tmp->sub_keys){
1525 goto error;
1530 return tmp;
1532 error:
1533 if (tmp) nt_delete_reg_key(tmp);
1534 return NULL;
1537 int nt_load_registry(REGF *regf)
1539 REGF_HDR *regf_hdr;
1540 unsigned int regf_id, hbin_id;
1541 HBIN_HDR *hbin_hdr;
1542 NK_HDR *first_key;
1544 /* Get the header */
1546 if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) {
1547 return -1;
1550 /* Now process that header and start to read the rest in */
1552 if ((regf_id = IVAL(&regf_hdr->REGF_ID)) != REG_REGF_ID) {
1553 fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n",
1554 regf_id, regf->regfile_name);
1555 return -1;
1559 * Validate the header ...
1561 if (!valid_regf_hdr(regf_hdr)) {
1562 fprintf(stderr, "Registry file header does not validate: %s\n",
1563 regf->regfile_name);
1564 return -1;
1567 /* Update the last mod date, and then go get the first NK record and on */
1569 TTTONTTIME(regf, IVAL(&regf_hdr->tim1), IVAL(&regf_hdr->tim2));
1572 * The hbin hdr seems to be just uninteresting garbage. Check that
1573 * it is there, but that is all.
1576 hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ);
1578 if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) {
1579 fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n",
1580 hbin_id, regf->regfile_name);
1581 return -1;
1585 * Get a pointer to the first key from the hreg_hdr
1588 first_key = (NK_HDR *)LOCN(regf->base, IVAL(&regf_hdr->first_key));
1591 * Now, get the registry tree by processing that NK recursively
1594 regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key));
1596 assert(regf->root != NULL);
1598 return 1;
1602 * Main code from here on ...
1606 * key print function here ...
1609 int print_key(char *path, char *name, char *class_name, int root,
1610 int terminal, int vals)
1613 if (terminal) fprintf(stdout, "%s\\%s\n", path, name);
1615 return 1;
1619 * Sec Desc print functions
1622 void print_sid(DOM_SID *sid)
1624 int i, comps = sid->auths;
1625 fprintf(stdout, "S-%u-%u", sid->ver, sid->auth[5]);
1627 for (i = 0; i < comps; i++) {
1629 fprintf(stdout, "-%u", sid->sub_auths[i]);
1632 fprintf(stdout, "\n");
1635 int print_sec(SEC_DESC *sec_desc)
1638 fprintf(stdout, " SECURITY\n");
1639 fprintf(stdout, " Owner: \n");
1640 print_sid(sec_desc->owner);
1641 fprintf(stdout, " Group: \n");
1642 print_sid(sec_desc->group);
1643 return 1;
1647 * Value print function here ...
1649 int print_val(char *path, char *val_name, int val_type, int data_len,
1650 void *data_blk, int terminal, int first, int last)
1652 if (!terminal && first)
1653 fprintf(stdout, "%s\n", path);
1654 fprintf(stdout, " %s : %s : \n", (val_name?val_name:"<No Name>"),
1655 val_to_str(val_type, reg_type_names));
1656 return 1;
1659 void usage(void)
1661 fprintf(stderr, "Usage: editreg [-v] [-k] <registryfile>\n");
1662 fprintf(stderr, "Version: 0.1\n\n");
1663 fprintf(stderr, "\n\t-v\t sets verbose mode");
1666 int main(int argc, char *argv[])
1668 REGF *regf;
1669 extern char *optarg;
1670 extern int optind;
1671 int opt;
1673 if (argc < 2) {
1674 usage();
1675 exit(1);
1679 * Now, process the arguments
1682 while ((opt = getopt(argc, argv, "vk")) != EOF) {
1683 switch (opt) {
1684 case 'v':
1685 verbose++;
1686 break;
1688 case 'k':
1689 break;
1691 default:
1692 usage();
1693 exit(1);
1694 break;
1698 if ((regf = nt_create_regf()) == NULL) {
1699 fprintf(stderr, "Could not create registry object: %s\n", strerror(errno));
1700 exit(2);
1703 if (!nt_set_regf_input_file(regf, argv[optind])) {
1704 fprintf(stderr, "Could not set name of registry file: %s, %s\n",
1705 argv[1], strerror(errno));
1706 exit(3);
1709 /* Now, open it, and bring it into memory :-) */
1711 if (nt_load_registry(regf) < 0) {
1712 fprintf(stderr, "Could not load registry: %s\n", argv[1]);
1713 exit(4);
1717 * At this point, we should have a registry in memory and should be able
1718 * to iterate over it.
1721 nt_key_iterator(regf, regf->root, 0, "", print_key, print_sec, print_val);
1722 return 0;