1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2005 Jean-loup Gailly.
3 * For conditions of distribution and use, see copyright notice in zlib.h
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://www.ietf.org/rfc/rfc1951.txt
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
54 const char deflate_copyright
[] =
55 " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
63 /* ===========================================================================
64 * Function prototypes.
67 need_more
, /* block not completed, need more input or more output */
68 block_done
, /* block flush performed */
69 finish_started
, /* finish started, need only more output at next deflate */
70 finish_done
/* finish done, accept no more input or output */
73 typedef block_state (*compress_func
) OF((deflate_state
*s
, int flush
));
74 /* Compression function. Returns the block state after the call. */
76 local
void fill_window
OF((deflate_state
*s
));
77 local block_state deflate_stored
OF((deflate_state
*s
, int flush
));
78 local block_state deflate_fast
OF((deflate_state
*s
, int flush
));
80 local block_state deflate_slow
OF((deflate_state
*s
, int flush
));
82 local
void lm_init
OF((deflate_state
*s
));
83 local
void putShortMSB
OF((deflate_state
*s
, uInt b
));
84 local
void flush_pending
OF((z_streamp strm
));
85 local
int read_buf
OF((z_streamp strm
, Bytef
*buf
, unsigned size
));
88 void match_init
OF((void)); /* asm code initialization */
89 uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
91 local uInt longest_match
OF((deflate_state
*s
, IPos cur_match
));
94 local uInt longest_match_fast
OF((deflate_state
*s
, IPos cur_match
));
97 local
void check_match
OF((deflate_state
*s
, IPos start
, IPos match
,
101 /* ===========================================================================
106 /* Tail of hash chains */
109 # define TOO_FAR 4096
111 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
113 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
114 /* Minimum amount of lookahead, except at the end of the input file.
115 * See deflate.c for comments about the MIN_MATCH+1.
118 /* Values for max_lazy_match, good_match and max_chain_length, depending on
119 * the desired pack level (0..9). The values given below have been tuned to
120 * exclude worst case performance for pathological files. Better values may be
121 * found for specific files.
123 typedef struct config_s
{
124 ush good_length
; /* reduce lazy search above this match length */
125 ush max_lazy
; /* do not perform lazy search above this match length */
126 ush nice_length
; /* quit search above this match length */
132 local
const config configuration_table
[2] = {
133 /* good lazy nice chain */
134 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
135 /* 1 */ {4, 4, 8, 4, deflate_fast
}}; /* max speed, no lazy matches */
137 local
const config configuration_table
[10] = {
138 /* good lazy nice chain */
139 /* 0 */ {0, 0, 0, 0, deflate_stored
}, /* store only */
140 /* 1 */ {4, 4, 8, 4, deflate_fast
}, /* max speed, no lazy matches */
141 /* 2 */ {4, 5, 16, 8, deflate_fast
},
142 /* 3 */ {4, 6, 32, 32, deflate_fast
},
144 /* 4 */ {4, 4, 16, 16, deflate_slow
}, /* lazy matches */
145 /* 5 */ {8, 16, 32, 32, deflate_slow
},
146 /* 6 */ {8, 16, 128, 128, deflate_slow
},
147 /* 7 */ {8, 32, 128, 256, deflate_slow
},
148 /* 8 */ {32, 128, 258, 1024, deflate_slow
},
149 /* 9 */ {32, 258, 258, 4096, deflate_slow
}}; /* max compression */
152 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
153 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
157 #ifndef NO_DUMMY_DECL
158 struct static_tree_desc_s
{int dummy
;}; /* for buggy compilers */
161 /* ===========================================================================
162 * Update a hash value with the given input byte
163 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
164 * input characters, so that a running hash key can be computed from the
165 * previous key instead of complete recalculation each time.
167 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
170 /* ===========================================================================
171 * Insert string str in the dictionary and set match_head to the previous head
172 * of the hash chain (the most recent string with same hash key). Return
173 * the previous length of the hash chain.
174 * If this file is compiled with -DFASTEST, the compression level is forced
175 * to 1, and no hash chains are maintained.
176 * IN assertion: all calls to to INSERT_STRING are made with consecutive
177 * input characters and the first MIN_MATCH bytes of str are valid
178 * (except for the last MIN_MATCH-1 bytes of the input file).
181 #define INSERT_STRING(s, str, match_head) \
182 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
183 match_head = s->head[s->ins_h], \
184 s->head[s->ins_h] = (Pos)(str))
186 #define INSERT_STRING(s, str, match_head) \
187 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
188 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
189 s->head[s->ins_h] = (Pos)(str))
192 /* ===========================================================================
193 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
194 * prev[] will be initialized on the fly.
196 #define CLEAR_HASH(s) \
197 s->head[s->hash_size-1] = NIL; \
198 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
200 /* ========================================================================= */
201 int ZEXPORT
deflateInit_(strm
, level
, version
, stream_size
)
207 return deflateInit2_(strm
, level
, Z_DEFLATED
, MAX_WBITS
, DEF_MEM_LEVEL
,
208 Z_DEFAULT_STRATEGY
, version
, stream_size
);
209 /* To do: ignore strm->next_in if we use it as window */
212 /* ========================================================================= */
213 int ZEXPORT
deflateInit2_(strm
, level
, method
, windowBits
, memLevel
, strategy
,
214 version
, stream_size
)
226 static const char my_version
[] = ZLIB_VERSION
;
229 /* We overlay pending_buf and d_buf+l_buf. This works since the average
230 * output size for (length,distance) codes is <= 24 bits.
233 if (version
== Z_NULL
|| version
[0] != my_version
[0] ||
234 stream_size
!= sizeof(z_stream
)) {
235 return Z_VERSION_ERROR
;
237 if (strm
== Z_NULL
) return Z_STREAM_ERROR
;
240 if (strm
->zalloc
== (alloc_func
)0) {
241 strm
->zalloc
= zcalloc
;
242 strm
->opaque
= (voidpf
)0;
244 if (strm
->zfree
== (free_func
)0) strm
->zfree
= zcfree
;
247 if (level
!= 0) level
= 1;
249 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
252 if (windowBits
< 0) { /* suppress zlib wrapper */
254 windowBits
= -windowBits
;
257 else if (windowBits
> 15) {
258 wrap
= 2; /* write gzip wrapper instead */
262 if (memLevel
< 1 || memLevel
> MAX_MEM_LEVEL
|| method
!= Z_DEFLATED
||
263 windowBits
< 8 || windowBits
> 15 || level
< 0 || level
> 9 ||
264 strategy
< 0 || strategy
> Z_FIXED
) {
265 return Z_STREAM_ERROR
;
267 if (windowBits
== 8) windowBits
= 9; /* until 256-byte window bug fixed */
268 s
= (deflate_state
*) ZALLOC(strm
, 1, sizeof(deflate_state
));
269 if (s
== Z_NULL
) return Z_MEM_ERROR
;
270 strm
->state
= (struct internal_state FAR
*)s
;
275 s
->w_bits
= windowBits
;
276 s
->w_size
= 1 << s
->w_bits
;
277 s
->w_mask
= s
->w_size
- 1;
279 s
->hash_bits
= memLevel
+ 7;
280 s
->hash_size
= 1 << s
->hash_bits
;
281 s
->hash_mask
= s
->hash_size
- 1;
282 s
->hash_shift
= ((s
->hash_bits
+MIN_MATCH
-1)/MIN_MATCH
);
284 s
->window
= (Bytef
*) ZALLOC(strm
, s
->w_size
, 2*sizeof(Byte
));
285 s
->prev
= (Posf
*) ZALLOC(strm
, s
->w_size
, sizeof(Pos
));
286 s
->head
= (Posf
*) ZALLOC(strm
, s
->hash_size
, sizeof(Pos
));
288 s
->lit_bufsize
= 1 << (memLevel
+ 6); /* 16K elements by default */
290 overlay
= (ushf
*) ZALLOC(strm
, s
->lit_bufsize
, sizeof(ush
)+2);
291 s
->pending_buf
= (uchf
*) overlay
;
292 s
->pending_buf_size
= (ulg
)s
->lit_bufsize
* (sizeof(ush
)+2L);
294 if (s
->window
== Z_NULL
|| s
->prev
== Z_NULL
|| s
->head
== Z_NULL
||
295 s
->pending_buf
== Z_NULL
) {
296 s
->status
= FINISH_STATE
;
297 strm
->msg
= ERR_MSG(Z_MEM_ERROR
);
301 s
->d_buf
= overlay
+ s
->lit_bufsize
/sizeof(ush
);
302 s
->l_buf
= s
->pending_buf
+ (1+sizeof(ush
))*s
->lit_bufsize
;
305 s
->strategy
= strategy
;
306 s
->method
= (Byte
)method
;
308 return deflateReset(strm
);
311 /* ========================================================================= */
312 int ZEXPORT
deflateSetDictionary (strm
, dictionary
, dictLength
)
314 const Bytef
*dictionary
;
318 uInt length
= dictLength
;
322 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
|| dictionary
== Z_NULL
||
323 strm
->state
->wrap
== 2 ||
324 (strm
->state
->wrap
== 1 && strm
->state
->status
!= INIT_STATE
))
325 return Z_STREAM_ERROR
;
329 strm
->adler
= adler32(strm
->adler
, dictionary
, dictLength
);
331 if (length
< MIN_MATCH
) return Z_OK
;
332 if (length
> MAX_DIST(s
)) {
333 length
= MAX_DIST(s
);
334 dictionary
+= dictLength
- length
; /* use the tail of the dictionary */
336 zmemcpy(s
->window
, dictionary
, length
);
337 s
->strstart
= length
;
338 s
->block_start
= (long)length
;
340 /* Insert all strings in the hash table (except for the last two bytes).
341 * s->lookahead stays null, so s->ins_h will be recomputed at the next
342 * call of fill_window.
344 s
->ins_h
= s
->window
[0];
345 UPDATE_HASH(s
, s
->ins_h
, s
->window
[1]);
346 for (n
= 0; n
<= length
- MIN_MATCH
; n
++) {
347 INSERT_STRING(s
, n
, hash_head
);
349 if (hash_head
) hash_head
= 0; /* to make compiler happy */
353 /* ========================================================================= */
354 int ZEXPORT
deflateReset (strm
)
359 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
360 strm
->zalloc
== (alloc_func
)0 || strm
->zfree
== (free_func
)0) {
361 return Z_STREAM_ERROR
;
364 strm
->total_in
= strm
->total_out
= 0;
365 strm
->msg
= Z_NULL
; /* use zfree if we ever allocate msg dynamically */
366 strm
->data_type
= Z_UNKNOWN
;
368 s
= (deflate_state
*)strm
->state
;
370 s
->pending_out
= s
->pending_buf
;
373 s
->wrap
= -s
->wrap
; /* was made negative by deflate(..., Z_FINISH); */
375 s
->status
= s
->wrap
? INIT_STATE
: BUSY_STATE
;
378 s
->wrap
== 2 ? crc32(0L, Z_NULL
, 0) :
380 adler32(0L, Z_NULL
, 0);
381 s
->last_flush
= Z_NO_FLUSH
;
389 /* ========================================================================= */
390 int ZEXPORT
deflateSetHeader (strm
, head
)
394 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
395 if (strm
->state
->wrap
!= 2) return Z_STREAM_ERROR
;
396 strm
->state
->gzhead
= head
;
400 /* ========================================================================= */
401 int ZEXPORT
deflatePrime (strm
, bits
, value
)
406 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
407 strm
->state
->bi_valid
= bits
;
408 strm
->state
->bi_buf
= (ush
)(value
& ((1 << bits
) - 1));
412 /* ========================================================================= */
413 int ZEXPORT
deflateParams(strm
, level
, strategy
)
422 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
426 if (level
!= 0) level
= 1;
428 if (level
== Z_DEFAULT_COMPRESSION
) level
= 6;
430 if (level
< 0 || level
> 9 || strategy
< 0 || strategy
> Z_FIXED
) {
431 return Z_STREAM_ERROR
;
433 func
= configuration_table
[s
->level
].func
;
435 if (func
!= configuration_table
[level
].func
&& strm
->total_in
!= 0) {
436 /* Flush the last buffer: */
437 err
= deflate(strm
, Z_PARTIAL_FLUSH
);
439 if (s
->level
!= level
) {
441 s
->max_lazy_match
= configuration_table
[level
].max_lazy
;
442 s
->good_match
= configuration_table
[level
].good_length
;
443 s
->nice_match
= configuration_table
[level
].nice_length
;
444 s
->max_chain_length
= configuration_table
[level
].max_chain
;
446 s
->strategy
= strategy
;
450 /* ========================================================================= */
451 int ZEXPORT
deflateTune(strm
, good_length
, max_lazy
, nice_length
, max_chain
)
460 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
462 s
->good_match
= good_length
;
463 s
->max_lazy_match
= max_lazy
;
464 s
->nice_match
= nice_length
;
465 s
->max_chain_length
= max_chain
;
469 /* =========================================================================
470 * For the default windowBits of 15 and memLevel of 8, this function returns
471 * a close to exact, as well as small, upper bound on the compressed size.
472 * They are coded as constants here for a reason--if the #define's are
473 * changed, then this function needs to be changed as well. The return
474 * value for 15 and 8 only works for those exact settings.
476 * For any setting other than those defaults for windowBits and memLevel,
477 * the value returned is a conservative worst case for the maximum expansion
478 * resulting from using fixed blocks instead of stored blocks, which deflate
479 * can emit on compressed data for some combinations of the parameters.
481 * This function could be more sophisticated to provide closer upper bounds
482 * for every combination of windowBits and memLevel, as well as wrap.
483 * But even the conservative upper bound of about 14% expansion does not
484 * seem onerous for output buffer allocation.
486 uLong ZEXPORT
deflateBound(strm
, sourceLen
)
493 /* conservative upper bound */
494 destLen
= sourceLen
+
495 ((sourceLen
+ 7) >> 3) + ((sourceLen
+ 63) >> 6) + 11;
497 /* if can't get parameters, return conservative bound */
498 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
)
501 /* if not default parameters, return conservative bound */
503 if (s
->w_bits
!= 15 || s
->hash_bits
!= 8 + 7)
506 /* default settings: return tight bound for that case */
507 return compressBound(sourceLen
);
510 /* =========================================================================
511 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
512 * IN assertion: the stream state is correct and there is enough room in
515 local
void putShortMSB (s
, b
)
519 put_byte(s
, (Byte
)(b
>> 8));
520 put_byte(s
, (Byte
)(b
& 0xff));
523 /* =========================================================================
524 * Flush as much pending output as possible. All deflate() output goes
525 * through this function so some applications may wish to modify it
526 * to avoid allocating a large strm->next_out buffer and copying into it.
527 * (See also read_buf()).
529 local
void flush_pending(strm
)
532 unsigned len
= strm
->state
->pending
;
534 if (len
> strm
->avail_out
) len
= strm
->avail_out
;
535 if (len
== 0) return;
537 zmemcpy(strm
->next_out
, strm
->state
->pending_out
, len
);
538 strm
->next_out
+= len
;
539 strm
->state
->pending_out
+= len
;
540 strm
->total_out
+= len
;
541 strm
->avail_out
-= len
;
542 strm
->state
->pending
-= len
;
543 if (strm
->state
->pending
== 0) {
544 strm
->state
->pending_out
= strm
->state
->pending_buf
;
548 /* ========================================================================= */
549 int ZEXPORT
deflate (strm
, flush
)
553 int old_flush
; /* value of flush param for previous deflate call */
556 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
||
557 flush
> Z_FINISH
|| flush
< 0) {
558 return Z_STREAM_ERROR
;
562 if (strm
->next_out
== Z_NULL
||
563 (strm
->next_in
== Z_NULL
&& strm
->avail_in
!= 0) ||
564 (s
->status
== FINISH_STATE
&& flush
!= Z_FINISH
)) {
565 ERR_RETURN(strm
, Z_STREAM_ERROR
);
567 if (strm
->avail_out
== 0) ERR_RETURN(strm
, Z_BUF_ERROR
);
569 s
->strm
= strm
; /* just in case */
570 old_flush
= s
->last_flush
;
571 s
->last_flush
= flush
;
573 /* Write the header */
574 if (s
->status
== INIT_STATE
) {
577 strm
->adler
= crc32(0L, Z_NULL
, 0);
581 if (s
->gzhead
== NULL
) {
587 put_byte(s
, s
->level
== 9 ? 2 :
588 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
590 put_byte(s
, OS_CODE
);
591 s
->status
= BUSY_STATE
;
594 put_byte(s
, (s
->gzhead
->text
? 1 : 0) +
595 (s
->gzhead
->hcrc
? 2 : 0) +
596 (s
->gzhead
->extra
== Z_NULL
? 0 : 4) +
597 (s
->gzhead
->name
== Z_NULL
? 0 : 8) +
598 (s
->gzhead
->comment
== Z_NULL
? 0 : 16)
600 put_byte(s
, (Byte
)(s
->gzhead
->time
& 0xff));
601 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 8) & 0xff));
602 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 16) & 0xff));
603 put_byte(s
, (Byte
)((s
->gzhead
->time
>> 24) & 0xff));
604 put_byte(s
, s
->level
== 9 ? 2 :
605 (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2 ?
607 put_byte(s
, s
->gzhead
->os
& 0xff);
608 if (s
->gzhead
->extra
!= NULL
) {
609 put_byte(s
, s
->gzhead
->extra_len
& 0xff);
610 put_byte(s
, (s
->gzhead
->extra_len
>> 8) & 0xff);
613 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
,
616 s
->status
= EXTRA_STATE
;
622 uInt header
= (Z_DEFLATED
+ ((s
->w_bits
-8)<<4)) << 8;
625 if (s
->strategy
>= Z_HUFFMAN_ONLY
|| s
->level
< 2)
627 else if (s
->level
< 6)
629 else if (s
->level
== 6)
633 header
|= (level_flags
<< 6);
634 if (s
->strstart
!= 0) header
|= PRESET_DICT
;
635 header
+= 31 - (header
% 31);
637 s
->status
= BUSY_STATE
;
638 putShortMSB(s
, header
);
640 /* Save the adler32 of the preset dictionary: */
641 if (s
->strstart
!= 0) {
642 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
643 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
645 strm
->adler
= adler32(0L, Z_NULL
, 0);
649 if (s
->status
== EXTRA_STATE
) {
650 if (s
->gzhead
->extra
!= NULL
) {
651 uInt beg
= s
->pending
; /* start of bytes to update crc */
653 while (s
->gzindex
< (s
->gzhead
->extra_len
& 0xffff)) {
654 if (s
->pending
== s
->pending_buf_size
) {
655 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
656 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
660 if (s
->pending
== s
->pending_buf_size
)
663 put_byte(s
, s
->gzhead
->extra
[s
->gzindex
]);
666 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
667 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
669 if (s
->gzindex
== s
->gzhead
->extra_len
) {
671 s
->status
= NAME_STATE
;
675 s
->status
= NAME_STATE
;
677 if (s
->status
== NAME_STATE
) {
678 if (s
->gzhead
->name
!= NULL
) {
679 uInt beg
= s
->pending
; /* start of bytes to update crc */
683 if (s
->pending
== s
->pending_buf_size
) {
684 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
685 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
689 if (s
->pending
== s
->pending_buf_size
) {
694 val
= s
->gzhead
->name
[s
->gzindex
++];
697 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
698 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
702 s
->status
= COMMENT_STATE
;
706 s
->status
= COMMENT_STATE
;
708 if (s
->status
== COMMENT_STATE
) {
709 if (s
->gzhead
->comment
!= NULL
) {
710 uInt beg
= s
->pending
; /* start of bytes to update crc */
714 if (s
->pending
== s
->pending_buf_size
) {
715 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
716 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
720 if (s
->pending
== s
->pending_buf_size
) {
725 val
= s
->gzhead
->comment
[s
->gzindex
++];
728 if (s
->gzhead
->hcrc
&& s
->pending
> beg
)
729 strm
->adler
= crc32(strm
->adler
, s
->pending_buf
+ beg
,
732 s
->status
= HCRC_STATE
;
735 s
->status
= HCRC_STATE
;
737 if (s
->status
== HCRC_STATE
) {
738 if (s
->gzhead
->hcrc
) {
739 if (s
->pending
+ 2 > s
->pending_buf_size
)
741 if (s
->pending
+ 2 <= s
->pending_buf_size
) {
742 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
743 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
744 strm
->adler
= crc32(0L, Z_NULL
, 0);
745 s
->status
= BUSY_STATE
;
749 s
->status
= BUSY_STATE
;
753 /* Flush as much pending output as possible */
754 if (s
->pending
!= 0) {
756 if (strm
->avail_out
== 0) {
757 /* Since avail_out is 0, deflate will be called again with
758 * more output space, but possibly with both pending and
759 * avail_in equal to zero. There won't be anything to do,
760 * but this is not an error situation so make sure we
761 * return OK instead of BUF_ERROR at next call of deflate:
767 /* Make sure there is something to do and avoid duplicate consecutive
768 * flushes. For repeated and useless calls with Z_FINISH, we keep
769 * returning Z_STREAM_END instead of Z_BUF_ERROR.
771 } else if (strm
->avail_in
== 0 && flush
<= old_flush
&&
773 ERR_RETURN(strm
, Z_BUF_ERROR
);
776 /* User must not provide more input after the first FINISH: */
777 if (s
->status
== FINISH_STATE
&& strm
->avail_in
!= 0) {
778 ERR_RETURN(strm
, Z_BUF_ERROR
);
781 /* Start a new block or continue the current one.
783 if (strm
->avail_in
!= 0 || s
->lookahead
!= 0 ||
784 (flush
!= Z_NO_FLUSH
&& s
->status
!= FINISH_STATE
)) {
787 bstate
= (*(configuration_table
[s
->level
].func
))(s
, flush
);
789 if (bstate
== finish_started
|| bstate
== finish_done
) {
790 s
->status
= FINISH_STATE
;
792 if (bstate
== need_more
|| bstate
== finish_started
) {
793 if (strm
->avail_out
== 0) {
794 s
->last_flush
= -1; /* avoid BUF_ERROR next call, see above */
797 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
798 * of deflate should use the same flush parameter to make sure
799 * that the flush is complete. So we don't have to output an
800 * empty block here, this will be done at next call. This also
801 * ensures that for a very small output buffer, we emit at most
805 if (bstate
== block_done
) {
806 if (flush
== Z_PARTIAL_FLUSH
) {
808 } else { /* FULL_FLUSH or SYNC_FLUSH */
809 _tr_stored_block(s
, (char*)0, 0L, 0);
810 /* For a full flush, this empty block will be recognized
811 * as a special marker by inflate_sync().
813 if (flush
== Z_FULL_FLUSH
) {
814 CLEAR_HASH(s
); /* forget history */
818 if (strm
->avail_out
== 0) {
819 s
->last_flush
= -1; /* avoid BUF_ERROR at next call, see above */
824 Assert(strm
->avail_out
> 0, "bug2");
826 if (flush
!= Z_FINISH
) return Z_OK
;
827 if (s
->wrap
<= 0) return Z_STREAM_END
;
829 /* Write the trailer */
832 put_byte(s
, (Byte
)(strm
->adler
& 0xff));
833 put_byte(s
, (Byte
)((strm
->adler
>> 8) & 0xff));
834 put_byte(s
, (Byte
)((strm
->adler
>> 16) & 0xff));
835 put_byte(s
, (Byte
)((strm
->adler
>> 24) & 0xff));
836 put_byte(s
, (Byte
)(strm
->total_in
& 0xff));
837 put_byte(s
, (Byte
)((strm
->total_in
>> 8) & 0xff));
838 put_byte(s
, (Byte
)((strm
->total_in
>> 16) & 0xff));
839 put_byte(s
, (Byte
)((strm
->total_in
>> 24) & 0xff));
844 putShortMSB(s
, (uInt
)(strm
->adler
>> 16));
845 putShortMSB(s
, (uInt
)(strm
->adler
& 0xffff));
848 /* If avail_out is zero, the application will call deflate again
851 if (s
->wrap
> 0) s
->wrap
= -s
->wrap
; /* write the trailer only once! */
852 return s
->pending
!= 0 ? Z_OK
: Z_STREAM_END
;
855 /* ========================================================================= */
856 int ZEXPORT
deflateEnd (strm
)
861 if (strm
== Z_NULL
|| strm
->state
== Z_NULL
) return Z_STREAM_ERROR
;
863 status
= strm
->state
->status
;
864 if (status
!= INIT_STATE
&&
865 status
!= EXTRA_STATE
&&
866 status
!= NAME_STATE
&&
867 status
!= COMMENT_STATE
&&
868 status
!= HCRC_STATE
&&
869 status
!= BUSY_STATE
&&
870 status
!= FINISH_STATE
) {
871 return Z_STREAM_ERROR
;
874 /* Deallocate in reverse order of allocations: */
875 TRY_FREE(strm
, strm
->state
->pending_buf
);
876 TRY_FREE(strm
, strm
->state
->head
);
877 TRY_FREE(strm
, strm
->state
->prev
);
878 TRY_FREE(strm
, strm
->state
->window
);
880 ZFREE(strm
, strm
->state
);
881 strm
->state
= Z_NULL
;
883 return status
== BUSY_STATE
? Z_DATA_ERROR
: Z_OK
;
886 /* =========================================================================
887 * Copy the source state to the destination state.
888 * To simplify the source, this is not supported for 16-bit MSDOS (which
889 * doesn't have enough memory anyway to duplicate compression states).
891 int ZEXPORT
deflateCopy (dest
, source
)
896 return Z_STREAM_ERROR
;
903 if (source
== Z_NULL
|| dest
== Z_NULL
|| source
->state
== Z_NULL
) {
904 return Z_STREAM_ERROR
;
909 zmemcpy(dest
, source
, sizeof(z_stream
));
911 ds
= (deflate_state
*) ZALLOC(dest
, 1, sizeof(deflate_state
));
912 if (ds
== Z_NULL
) return Z_MEM_ERROR
;
913 dest
->state
= (struct internal_state FAR
*) ds
;
914 zmemcpy(ds
, ss
, sizeof(deflate_state
));
917 ds
->window
= (Bytef
*) ZALLOC(dest
, ds
->w_size
, 2*sizeof(Byte
));
918 ds
->prev
= (Posf
*) ZALLOC(dest
, ds
->w_size
, sizeof(Pos
));
919 ds
->head
= (Posf
*) ZALLOC(dest
, ds
->hash_size
, sizeof(Pos
));
920 overlay
= (ushf
*) ZALLOC(dest
, ds
->lit_bufsize
, sizeof(ush
)+2);
921 ds
->pending_buf
= (uchf
*) overlay
;
923 if (ds
->window
== Z_NULL
|| ds
->prev
== Z_NULL
|| ds
->head
== Z_NULL
||
924 ds
->pending_buf
== Z_NULL
) {
928 /* following zmemcpy do not work for 16-bit MSDOS */
929 zmemcpy(ds
->window
, ss
->window
, ds
->w_size
* 2 * sizeof(Byte
));
930 zmemcpy(ds
->prev
, ss
->prev
, ds
->w_size
* sizeof(Pos
));
931 zmemcpy(ds
->head
, ss
->head
, ds
->hash_size
* sizeof(Pos
));
932 zmemcpy(ds
->pending_buf
, ss
->pending_buf
, (uInt
)ds
->pending_buf_size
);
934 ds
->pending_out
= ds
->pending_buf
+ (ss
->pending_out
- ss
->pending_buf
);
935 ds
->d_buf
= overlay
+ ds
->lit_bufsize
/sizeof(ush
);
936 ds
->l_buf
= ds
->pending_buf
+ (1+sizeof(ush
))*ds
->lit_bufsize
;
938 ds
->l_desc
.dyn_tree
= ds
->dyn_ltree
;
939 ds
->d_desc
.dyn_tree
= ds
->dyn_dtree
;
940 ds
->bl_desc
.dyn_tree
= ds
->bl_tree
;
943 #endif /* MAXSEG_64K */
946 /* ===========================================================================
947 * Read a new buffer from the current input stream, update the adler32
948 * and total number of bytes read. All deflate() input goes through
949 * this function so some applications may wish to modify it to avoid
950 * allocating a large strm->next_in buffer and copying from it.
951 * (See also flush_pending()).
953 local
int read_buf(strm
, buf
, size
)
958 unsigned len
= strm
->avail_in
;
960 if (len
> size
) len
= size
;
961 if (len
== 0) return 0;
963 strm
->avail_in
-= len
;
965 if (strm
->state
->wrap
== 1) {
966 strm
->adler
= adler32(strm
->adler
, strm
->next_in
, len
);
969 else if (strm
->state
->wrap
== 2) {
970 strm
->adler
= crc32(strm
->adler
, strm
->next_in
, len
);
973 zmemcpy(buf
, strm
->next_in
, len
);
974 strm
->next_in
+= len
;
975 strm
->total_in
+= len
;
980 /* ===========================================================================
981 * Initialize the "longest match" routines for a new zlib stream
983 local
void lm_init (s
)
986 s
->window_size
= (ulg
)2L*s
->w_size
;
990 /* Set the default configuration parameters:
992 s
->max_lazy_match
= configuration_table
[s
->level
].max_lazy
;
993 s
->good_match
= configuration_table
[s
->level
].good_length
;
994 s
->nice_match
= configuration_table
[s
->level
].nice_length
;
995 s
->max_chain_length
= configuration_table
[s
->level
].max_chain
;
1000 s
->match_length
= s
->prev_length
= MIN_MATCH
-1;
1001 s
->match_available
= 0;
1005 match_init(); /* initialize the asm code */
1011 /* ===========================================================================
1012 * Set match_start to the longest match starting at the given string and
1013 * return its length. Matches shorter or equal to prev_length are discarded,
1014 * in which case the result is equal to prev_length and match_start is
1016 * IN assertions: cur_match is the head of the hash chain for the current
1017 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1018 * OUT assertion: the match length is not greater than s->lookahead.
1021 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1022 * match.S. The code will be functionally equivalent.
1024 local uInt
longest_match(s
, cur_match
)
1026 IPos cur_match
; /* current match */
1028 unsigned chain_length
= s
->max_chain_length
;/* max hash chain length */
1029 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1030 register Bytef
*match
; /* matched string */
1031 register int len
; /* length of current match */
1032 int best_len
= s
->prev_length
; /* best match length so far */
1033 int nice_match
= s
->nice_match
; /* stop if match long enough */
1034 IPos limit
= s
->strstart
> (IPos
)MAX_DIST(s
) ?
1035 s
->strstart
- (IPos
)MAX_DIST(s
) : NIL
;
1036 /* Stop when cur_match becomes <= limit. To simplify the code,
1037 * we prevent matches with the string of window index 0.
1039 Posf
*prev
= s
->prev
;
1040 uInt wmask
= s
->w_mask
;
1043 /* Compare two bytes at a time. Note: this is not always beneficial.
1044 * Try with and without -DUNALIGNED_OK to check.
1046 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
- 1;
1047 register ush scan_start
= *(ushf
*)scan
;
1048 register ush scan_end
= *(ushf
*)(scan
+best_len
-1);
1050 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1051 register Byte scan_end1
= scan
[best_len
-1];
1052 register Byte scan_end
= scan
[best_len
];
1055 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1056 * It is easy to get rid of this optimization if necessary.
1058 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1060 /* Do not waste too much time if we already have a good match: */
1061 if (s
->prev_length
>= s
->good_match
) {
1064 /* Do not look for matches beyond the end of the input. This is necessary
1065 * to make deflate deterministic.
1067 if ((uInt
)nice_match
> s
->lookahead
) nice_match
= s
->lookahead
;
1069 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1072 Assert(cur_match
< s
->strstart
, "no future");
1073 match
= s
->window
+ cur_match
;
1075 /* Skip to next match if the match length cannot increase
1076 * or if the match length is less than 2. Note that the checks below
1077 * for insufficient lookahead only occur occasionally for performance
1078 * reasons. Therefore uninitialized memory will be accessed, and
1079 * conditional jumps will be made that depend on those values.
1080 * However the length of the match is limited to the lookahead, so
1081 * the output of deflate is not affected by the uninitialized values.
1083 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1084 /* This code assumes sizeof(unsigned short) == 2. Do not use
1085 * UNALIGNED_OK if your compiler uses a different size.
1087 if (*(ushf
*)(match
+best_len
-1) != scan_end
||
1088 *(ushf
*)match
!= scan_start
) continue;
1090 /* It is not necessary to compare scan[2] and match[2] since they are
1091 * always equal when the other bytes match, given that the hash keys
1092 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1093 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1094 * lookahead only every 4th comparison; the 128th check will be made
1095 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1096 * necessary to put more guard bytes at the end of the window, or
1097 * to check more often for insufficient lookahead.
1099 Assert(scan
[2] == match
[2], "scan[2]?");
1102 } while (*(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1103 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1104 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1105 *(ushf
*)(scan
+=2) == *(ushf
*)(match
+=2) &&
1107 /* The funny "do {}" generates better code on most compilers */
1109 /* Here, scan <= window+strstart+257 */
1110 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1111 if (*scan
== *match
) scan
++;
1113 len
= (MAX_MATCH
- 1) - (int)(strend
-scan
);
1114 scan
= strend
- (MAX_MATCH
-1);
1116 #else /* UNALIGNED_OK */
1118 if (match
[best_len
] != scan_end
||
1119 match
[best_len
-1] != scan_end1
||
1121 *++match
!= scan
[1]) continue;
1123 /* The check at best_len-1 can be removed because it will be made
1124 * again later. (This heuristic is not always a win.)
1125 * It is not necessary to compare scan[2] and match[2] since they
1126 * are always equal when the other bytes match, given that
1127 * the hash keys are equal and that HASH_BITS >= 8.
1130 Assert(*scan
== *match
, "match[2]?");
1132 /* We check for insufficient lookahead only every 8th comparison;
1133 * the 256th check will be made at strstart+258.
1136 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1137 *++scan
== *++match
&& *++scan
== *++match
&&
1138 *++scan
== *++match
&& *++scan
== *++match
&&
1139 *++scan
== *++match
&& *++scan
== *++match
&&
1142 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1144 len
= MAX_MATCH
- (int)(strend
- scan
);
1145 scan
= strend
- MAX_MATCH
;
1147 #endif /* UNALIGNED_OK */
1149 if (len
> best_len
) {
1150 s
->match_start
= cur_match
;
1152 if (len
>= nice_match
) break;
1154 scan_end
= *(ushf
*)(scan
+best_len
-1);
1156 scan_end1
= scan
[best_len
-1];
1157 scan_end
= scan
[best_len
];
1160 } while ((cur_match
= prev
[cur_match
& wmask
]) > limit
1161 && --chain_length
!= 0);
1163 if ((uInt
)best_len
<= s
->lookahead
) return (uInt
)best_len
;
1164 return s
->lookahead
;
1167 #endif /* FASTEST */
1169 /* ---------------------------------------------------------------------------
1170 * Optimized version for level == 1 or strategy == Z_RLE only
1172 local uInt
longest_match_fast(s
, cur_match
)
1174 IPos cur_match
; /* current match */
1176 register Bytef
*scan
= s
->window
+ s
->strstart
; /* current string */
1177 register Bytef
*match
; /* matched string */
1178 register int len
; /* length of current match */
1179 register Bytef
*strend
= s
->window
+ s
->strstart
+ MAX_MATCH
;
1181 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1182 * It is easy to get rid of this optimization if necessary.
1184 Assert(s
->hash_bits
>= 8 && MAX_MATCH
== 258, "Code too clever");
1186 Assert((ulg
)s
->strstart
<= s
->window_size
-MIN_LOOKAHEAD
, "need lookahead");
1188 Assert(cur_match
< s
->strstart
, "no future");
1190 match
= s
->window
+ cur_match
;
1192 /* Return failure if the match length is less than 2:
1194 if (match
[0] != scan
[0] || match
[1] != scan
[1]) return MIN_MATCH
-1;
1196 /* The check at best_len-1 can be removed because it will be made
1197 * again later. (This heuristic is not always a win.)
1198 * It is not necessary to compare scan[2] and match[2] since they
1199 * are always equal when the other bytes match, given that
1200 * the hash keys are equal and that HASH_BITS >= 8.
1202 scan
+= 2, match
+= 2;
1203 Assert(*scan
== *match
, "match[2]?");
1205 /* We check for insufficient lookahead only every 8th comparison;
1206 * the 256th check will be made at strstart+258.
1209 } while (*++scan
== *++match
&& *++scan
== *++match
&&
1210 *++scan
== *++match
&& *++scan
== *++match
&&
1211 *++scan
== *++match
&& *++scan
== *++match
&&
1212 *++scan
== *++match
&& *++scan
== *++match
&&
1215 Assert(scan
<= s
->window
+(unsigned)(s
->window_size
-1), "wild scan");
1217 len
= MAX_MATCH
- (int)(strend
- scan
);
1219 if (len
< MIN_MATCH
) return MIN_MATCH
- 1;
1221 s
->match_start
= cur_match
;
1222 return (uInt
)len
<= s
->lookahead
? (uInt
)len
: s
->lookahead
;
1227 /* result of memcmp for equal strings */
1229 /* ===========================================================================
1230 * Check that the match at match_start is indeed a match.
1232 local
void check_match(s
, start
, match
, length
)
1237 /* check that the match is indeed a match */
1238 if (zmemcmp(s
->window
+ match
,
1239 s
->window
+ start
, length
) != EQUAL
) {
1240 fprintf(stderr
, " start %u, match %u, length %d\n",
1241 start
, match
, length
);
1243 fprintf(stderr
, "%c%c", s
->window
[match
++], s
->window
[start
++]);
1244 } while (--length
!= 0);
1245 z_error("invalid match");
1247 if (z_verbose
> 1) {
1248 fprintf(stderr
,"\\[%d,%d]", start
-match
, length
);
1249 do { putc(s
->window
[start
++], stderr
); } while (--length
!= 0);
1253 # define check_match(s, start, match, length)
1256 /* ===========================================================================
1257 * Fill the window when the lookahead becomes insufficient.
1258 * Updates strstart and lookahead.
1260 * IN assertion: lookahead < MIN_LOOKAHEAD
1261 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1262 * At least one byte has been read, or avail_in == 0; reads are
1263 * performed for at least two bytes (required for the zip translate_eol
1264 * option -- not supported here).
1266 local
void fill_window(s
)
1269 register unsigned n
, m
;
1271 unsigned more
; /* Amount of free space at the end of the window. */
1272 uInt wsize
= s
->w_size
;
1275 more
= (unsigned)(s
->window_size
-(ulg
)s
->lookahead
-(ulg
)s
->strstart
);
1277 /* Deal with !@#$% 64K limit: */
1278 if (sizeof(int) <= 2) {
1279 if (more
== 0 && s
->strstart
== 0 && s
->lookahead
== 0) {
1282 } else if (more
== (unsigned)(-1)) {
1283 /* Very unlikely, but possible on 16 bit machine if
1284 * strstart == 0 && lookahead == 1 (input done a byte at time)
1290 /* If the window is almost full and there is insufficient lookahead,
1291 * move the upper half to the lower one to make room in the upper half.
1293 if (s
->strstart
>= wsize
+MAX_DIST(s
)) {
1295 zmemcpy(s
->window
, s
->window
+wsize
, (unsigned)wsize
);
1296 s
->match_start
-= wsize
;
1297 s
->strstart
-= wsize
; /* we now have strstart >= MAX_DIST */
1298 s
->block_start
-= (long) wsize
;
1300 /* Slide the hash table (could be avoided with 32 bit values
1301 at the expense of memory usage). We slide even when level == 0
1302 to keep the hash table consistent if we switch back to level > 0
1303 later. (Using level 0 permanently is not an optimal usage of
1304 zlib, so we don't care about this pathological case.)
1306 /* %%% avoid this when Z_RLE */
1311 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1319 *p
= (Pos
)(m
>= wsize
? m
-wsize
: NIL
);
1320 /* If n is not on any hash chain, prev[n] is garbage but
1321 * its value will never be used.
1327 if (s
->strm
->avail_in
== 0) return;
1329 /* If there was no sliding:
1330 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1331 * more == window_size - lookahead - strstart
1332 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1333 * => more >= window_size - 2*WSIZE + 2
1334 * In the BIG_MEM or MMAP case (not yet supported),
1335 * window_size == input_size + MIN_LOOKAHEAD &&
1336 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1337 * Otherwise, window_size == 2*WSIZE so more >= 2.
1338 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1340 Assert(more
>= 2, "more < 2");
1342 n
= read_buf(s
->strm
, s
->window
+ s
->strstart
+ s
->lookahead
, more
);
1345 /* Initialize the hash value now that we have some input: */
1346 if (s
->lookahead
>= MIN_MATCH
) {
1347 s
->ins_h
= s
->window
[s
->strstart
];
1348 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1350 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1353 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1354 * but this is not important since only literal bytes will be emitted.
1357 } while (s
->lookahead
< MIN_LOOKAHEAD
&& s
->strm
->avail_in
!= 0);
1360 /* ===========================================================================
1361 * Flush the current block, with given end-of-file flag.
1362 * IN assertion: strstart is set to the end of the current match.
1364 #define FLUSH_BLOCK_ONLY(s, eof) { \
1365 _tr_flush_block(s, (s->block_start >= 0L ? \
1366 (charf *)&s->window[(unsigned)s->block_start] : \
1368 (ulg)((long)s->strstart - s->block_start), \
1370 s->block_start = s->strstart; \
1371 flush_pending(s->strm); \
1372 Tracev((stderr,"[FLUSH]")); \
1375 /* Same but force premature exit if necessary. */
1376 #define FLUSH_BLOCK(s, eof) { \
1377 FLUSH_BLOCK_ONLY(s, eof); \
1378 if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1381 /* ===========================================================================
1382 * Copy without compression as much as possible from the input stream, return
1383 * the current block state.
1384 * This function does not insert new strings in the dictionary since
1385 * uncompressible data is probably not useful. This function is used
1386 * only for the level=0 compression option.
1387 * NOTE: this function should be optimized to avoid extra copying from
1388 * window to pending_buf.
1390 local block_state
deflate_stored(s
, flush
)
1394 /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1395 * to pending_buf_size, and each stored block has a 5 byte header:
1397 ulg max_block_size
= 0xffff;
1400 if (max_block_size
> s
->pending_buf_size
- 5) {
1401 max_block_size
= s
->pending_buf_size
- 5;
1404 /* Copy as much as possible from input to output: */
1406 /* Fill the window as much as possible: */
1407 if (s
->lookahead
<= 1) {
1409 Assert(s
->strstart
< s
->w_size
+MAX_DIST(s
) ||
1410 s
->block_start
>= (long)s
->w_size
, "slide too late");
1413 if (s
->lookahead
== 0 && flush
== Z_NO_FLUSH
) return need_more
;
1415 if (s
->lookahead
== 0) break; /* flush the current block */
1417 Assert(s
->block_start
>= 0L, "block gone");
1419 s
->strstart
+= s
->lookahead
;
1422 /* Emit a stored block if pending_buf will be full: */
1423 max_start
= s
->block_start
+ max_block_size
;
1424 if (s
->strstart
== 0 || (ulg
)s
->strstart
>= max_start
) {
1425 /* strstart == 0 is possible when wraparound on 16-bit machine */
1426 s
->lookahead
= (uInt
)(s
->strstart
- max_start
);
1427 s
->strstart
= (uInt
)max_start
;
1430 /* Flush if we may have to slide, otherwise block_start may become
1431 * negative and the data will be gone:
1433 if (s
->strstart
- (uInt
)s
->block_start
>= MAX_DIST(s
)) {
1437 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1438 return flush
== Z_FINISH
? finish_done
: block_done
;
1441 /* ===========================================================================
1442 * Compress as much as possible from the input stream, return the current
1444 * This function does not perform lazy evaluation of matches and inserts
1445 * new strings in the dictionary only for unmatched strings or for short
1446 * matches. It is used only for the fast compression options.
1448 local block_state
deflate_fast(s
, flush
)
1452 IPos hash_head
= NIL
; /* head of the hash chain */
1453 int bflush
; /* set if current block must be flushed */
1456 /* Make sure that we always have enough lookahead, except
1457 * at the end of the input file. We need MAX_MATCH bytes
1458 * for the next match, plus MIN_MATCH bytes to insert the
1459 * string following the next match.
1461 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1463 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1466 if (s
->lookahead
== 0) break; /* flush the current block */
1469 /* Insert the string window[strstart .. strstart+2] in the
1470 * dictionary, and set hash_head to the head of the hash chain:
1472 if (s
->lookahead
>= MIN_MATCH
) {
1473 INSERT_STRING(s
, s
->strstart
, hash_head
);
1476 /* Find the longest match, discarding those <= prev_length.
1477 * At this point we have always match_length < MIN_MATCH
1479 if (hash_head
!= NIL
&& s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1480 /* To simplify the code, we prevent matches with the string
1481 * of window index 0 (in particular we have to avoid a match
1482 * of the string with itself at the start of the input file).
1485 if ((s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) ||
1486 (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1)) {
1487 s
->match_length
= longest_match_fast (s
, hash_head
);
1490 if (s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) {
1491 s
->match_length
= longest_match (s
, hash_head
);
1492 } else if (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1) {
1493 s
->match_length
= longest_match_fast (s
, hash_head
);
1496 /* longest_match() or longest_match_fast() sets match_start */
1498 if (s
->match_length
>= MIN_MATCH
) {
1499 check_match(s
, s
->strstart
, s
->match_start
, s
->match_length
);
1501 _tr_tally_dist(s
, s
->strstart
- s
->match_start
,
1502 s
->match_length
- MIN_MATCH
, bflush
);
1504 s
->lookahead
-= s
->match_length
;
1506 /* Insert new strings in the hash table only if the match length
1507 * is not too large. This saves time but degrades compression.
1510 if (s
->match_length
<= s
->max_insert_length
&&
1511 s
->lookahead
>= MIN_MATCH
) {
1512 s
->match_length
--; /* string at strstart already in table */
1515 INSERT_STRING(s
, s
->strstart
, hash_head
);
1516 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1517 * always MIN_MATCH bytes ahead.
1519 } while (--s
->match_length
!= 0);
1524 s
->strstart
+= s
->match_length
;
1525 s
->match_length
= 0;
1526 s
->ins_h
= s
->window
[s
->strstart
];
1527 UPDATE_HASH(s
, s
->ins_h
, s
->window
[s
->strstart
+1]);
1529 Call
UPDATE_HASH() MIN_MATCH
-3 more times
1531 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1532 * matter since it will be recomputed at next deflate call.
1536 /* No match, output a literal byte */
1537 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1538 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1542 if (bflush
) FLUSH_BLOCK(s
, 0);
1544 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1545 return flush
== Z_FINISH
? finish_done
: block_done
;
1549 /* ===========================================================================
1550 * Same as above, but achieves better compression. We use a lazy
1551 * evaluation for matches: a match is finally adopted only if there is
1552 * no better match at the next window position.
1554 local block_state
deflate_slow(s
, flush
)
1558 IPos hash_head
= NIL
; /* head of hash chain */
1559 int bflush
; /* set if current block must be flushed */
1561 /* Process the input block. */
1563 /* Make sure that we always have enough lookahead, except
1564 * at the end of the input file. We need MAX_MATCH bytes
1565 * for the next match, plus MIN_MATCH bytes to insert the
1566 * string following the next match.
1568 if (s
->lookahead
< MIN_LOOKAHEAD
) {
1570 if (s
->lookahead
< MIN_LOOKAHEAD
&& flush
== Z_NO_FLUSH
) {
1573 if (s
->lookahead
== 0) break; /* flush the current block */
1576 /* Insert the string window[strstart .. strstart+2] in the
1577 * dictionary, and set hash_head to the head of the hash chain:
1579 if (s
->lookahead
>= MIN_MATCH
) {
1580 INSERT_STRING(s
, s
->strstart
, hash_head
);
1583 /* Find the longest match, discarding those <= prev_length.
1585 s
->prev_length
= s
->match_length
, s
->prev_match
= s
->match_start
;
1586 s
->match_length
= MIN_MATCH
-1;
1588 if (hash_head
!= NIL
&& s
->prev_length
< s
->max_lazy_match
&&
1589 s
->strstart
- hash_head
<= MAX_DIST(s
)) {
1590 /* To simplify the code, we prevent matches with the string
1591 * of window index 0 (in particular we have to avoid a match
1592 * of the string with itself at the start of the input file).
1594 if (s
->strategy
!= Z_HUFFMAN_ONLY
&& s
->strategy
!= Z_RLE
) {
1595 s
->match_length
= longest_match (s
, hash_head
);
1596 } else if (s
->strategy
== Z_RLE
&& s
->strstart
- hash_head
== 1) {
1597 s
->match_length
= longest_match_fast (s
, hash_head
);
1599 /* longest_match() or longest_match_fast() sets match_start */
1601 if (s
->match_length
<= 5 && (s
->strategy
== Z_FILTERED
1602 #if TOO_FAR <= 32767
1603 || (s
->match_length
== MIN_MATCH
&&
1604 s
->strstart
- s
->match_start
> TOO_FAR
)
1608 /* If prev_match is also MIN_MATCH, match_start is garbage
1609 * but we will ignore the current match anyway.
1611 s
->match_length
= MIN_MATCH
-1;
1614 /* If there was a match at the previous step and the current
1615 * match is not better, output the previous match:
1617 if (s
->prev_length
>= MIN_MATCH
&& s
->match_length
<= s
->prev_length
) {
1618 uInt max_insert
= s
->strstart
+ s
->lookahead
- MIN_MATCH
;
1619 /* Do not insert strings in hash table beyond this. */
1621 check_match(s
, s
->strstart
-1, s
->prev_match
, s
->prev_length
);
1623 _tr_tally_dist(s
, s
->strstart
-1 - s
->prev_match
,
1624 s
->prev_length
- MIN_MATCH
, bflush
);
1626 /* Insert in hash table all strings up to the end of the match.
1627 * strstart-1 and strstart are already inserted. If there is not
1628 * enough lookahead, the last two strings are not inserted in
1631 s
->lookahead
-= s
->prev_length
-1;
1632 s
->prev_length
-= 2;
1634 if (++s
->strstart
<= max_insert
) {
1635 INSERT_STRING(s
, s
->strstart
, hash_head
);
1637 } while (--s
->prev_length
!= 0);
1638 s
->match_available
= 0;
1639 s
->match_length
= MIN_MATCH
-1;
1642 if (bflush
) FLUSH_BLOCK(s
, 0);
1644 } else if (s
->match_available
) {
1645 /* If there was no match at the previous position, output a
1646 * single literal. If there was a match but the current match
1647 * is longer, truncate the previous match to a single literal.
1649 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1650 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1652 FLUSH_BLOCK_ONLY(s
, 0);
1656 if (s
->strm
->avail_out
== 0) return need_more
;
1658 /* There is no previous match to compare with, wait for
1659 * the next step to decide.
1661 s
->match_available
= 1;
1666 Assert (flush
!= Z_NO_FLUSH
, "no flush?");
1667 if (s
->match_available
) {
1668 Tracevv((stderr
,"%c", s
->window
[s
->strstart
-1]));
1669 _tr_tally_lit(s
, s
->window
[s
->strstart
-1], bflush
);
1670 s
->match_available
= 0;
1672 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1673 return flush
== Z_FINISH
? finish_done
: block_done
;
1675 #endif /* FASTEST */
1678 /* ===========================================================================
1679 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1680 * one. Do not maintain a hash table. (It will be regenerated if this run of
1681 * deflate switches away from Z_RLE.)
1683 local block_state
deflate_rle(s
, flush
)
1687 int bflush
; /* set if current block must be flushed */
1688 uInt run
; /* length of run */
1689 uInt max
; /* maximum length of run */
1690 uInt prev
; /* byte at distance one to match */
1691 Bytef
*scan
; /* scan for end of run */
1694 /* Make sure that we always have enough lookahead, except
1695 * at the end of the input file. We need MAX_MATCH bytes
1696 * for the longest encodable run.
1698 if (s
->lookahead
< MAX_MATCH
) {
1700 if (s
->lookahead
< MAX_MATCH
&& flush
== Z_NO_FLUSH
) {
1703 if (s
->lookahead
== 0) break; /* flush the current block */
1706 /* See how many times the previous byte repeats */
1708 if (s
->strstart
> 0) { /* if there is a previous byte, that is */
1709 max
= s
->lookahead
< MAX_MATCH
? s
->lookahead
: MAX_MATCH
;
1710 scan
= s
->window
+ s
->strstart
- 1;
1713 if (*scan
++ != prev
)
1715 } while (++run
< max
);
1718 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1719 if (run
>= MIN_MATCH
) {
1720 check_match(s
, s
->strstart
, s
->strstart
- 1, run
);
1721 _tr_tally_dist(s
, 1, run
- MIN_MATCH
, bflush
);
1722 s
->lookahead
-= run
;
1725 /* No match, output a literal byte */
1726 Tracevv((stderr
,"%c", s
->window
[s
->strstart
]));
1727 _tr_tally_lit (s
, s
->window
[s
->strstart
], bflush
);
1731 if (bflush
) FLUSH_BLOCK(s
, 0);
1733 FLUSH_BLOCK(s
, flush
== Z_FINISH
);
1734 return flush
== Z_FINISH
? finish_done
: block_done
;