More minor edits to add features ...
[Samba/gebeck_regimport.git] / source3 / utils / editreg.c
blob1b7b3d587df3e98b5d2cc8981c4475b593529ce4
1 /*
2 Samba Unix/Linux SMB client utility editreg.c
3 Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19 /*************************************************************************
21 A utility to edit a Windows NT/2K etc registry file.
23 Many of the ideas in here come from other people and software.
24 I first looked in Wine in misc/registry.c and was also influenced by
25 http://www.wednesday.demon.co.uk/dosreg.html
27 Which seems to contain comments from someone else. I reproduce them here
28 incase the site above disappears. It actually comes from
29 http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt.
31 The goal here is to read the registry into memory, manipulate it, and then
32 write it out if it was changed by any actions of the user.
34 The windows NT registry has 2 different blocks, where one can occur many
35 times...
37 the "regf"-Block
38 ================
40 "regf" is obviosly the abbreviation for "Registry file". "regf" is the
41 signature of the header-block which is always 4kb in size, although only
42 the first 64 bytes seem to be used and a checksum is calculated over
43 the first 0x200 bytes only!
45 Offset Size Contents
46 0x00000000 D-Word ID: ASCII-"regf" = 0x66676572
47 0x00000004 D-Word ???? //see struct REGF
48 0x00000008 D-Word ???? Always the same value as at 0x00000004
49 0x0000000C Q-Word last modify date in WinNT date-format
50 0x00000014 D-Word 1
51 0x00000018 D-Word 3
52 0x0000001C D-Word 0
53 0x00000020 D-Word 1
54 0x00000024 D-Word Offset of 1st key record
55 0x00000028 D-Word Size of the data-blocks (Filesize-4kb)
56 0x0000002C D-Word 1
57 0x000001FC D-Word Sum of all D-Words from 0x00000000 to
58 0x000001FB //XOR of all words. Nigel
60 I have analyzed more registry files (from multiple machines running
61 NT 4.0 german version) and could not find an explanation for the values
62 marked with ???? the rest of the first 4kb page is not important...
64 the "hbin"-Block
65 ================
66 I don't know what "hbin" stands for, but this block is always a multiple
67 of 4kb in size.
69 Inside these hbin-blocks the different records are placed. The memory-
70 management looks like a C-compiler heap management to me...
72 hbin-Header
73 ===========
74 Offset Size Contents
75 0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268
76 0x0004 D-Word Offset from the 1st hbin-Block
77 0x0008 D-Word Offset to the next hbin-Block
78 0x001C D-Word Block-size
80 The values in 0x0008 and 0x001C should be the same, so I don't know
81 if they are correct or swapped...
83 From offset 0x0020 inside a hbin-block data is stored with the following
84 format:
86 Offset Size Contents
87 0x0000 D-Word Data-block size //this size must be a
88 multiple of 8. Nigel
89 0x0004 ???? Data
91 If the size field is negative (bit 31 set), the corresponding block
92 is free and has a size of -blocksize!
94 That does not seem to be true. All block lengths seem to be negative! (Richard Sharpe)
96 The data is stored as one record per block. Block size is a multiple
97 of 4 and the last block reaches the next hbin-block, leaving no room.
99 Records in the hbin-blocks
100 ==========================
102 nk-Record
104 The nk-record can be treated as a kombination of tree-record and
105 key-record of the win 95 registry.
107 lf-Record
109 The lf-record is the counterpart to the RGKN-record (the
110 hash-function)
112 vk-Record
114 The vk-record consists information to a single value.
116 sk-Record
118 sk (? Security Key ?) is the ACL of the registry.
120 Value-Lists
122 The value-lists contain information about which values are inside a
123 sub-key and don't have a header.
125 Datas
127 The datas of the registry are (like the value-list) stored without a
128 header.
130 All offset-values are relative to the first hbin-block and point to the
131 block-size field of the record-entry. to get the file offset, you have to add
132 the header size (4kb) and the size field (4 bytes)...
134 the nk-Record
135 =============
136 Offset Size Contents
137 0x0000 Word ID: ASCII-"nk" = 0x6B6E
138 0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel
139 0x0004 Q-Word write-date/time in windows nt notation
140 0x0010 D-Word Offset of Owner/Parent key
141 0x0014 D-Word number of sub-Keys
142 0x001C D-Word Offset of the sub-key lf-Records
143 0x0024 D-Word number of values
144 0x0028 D-Word Offset of the Value-List
145 0x002C D-Word Offset of the sk-Record
147 0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel
148 0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel
149 0x0048 Word name-length
150 0x004A Word class-name length
151 0x004C ???? key-name
153 the Value-List
154 ==============
155 Offset Size Contents
156 0x0000 D-Word Offset 1st Value
157 0x0004 D-Word Offset 2nd Value
158 0x???? D-Word Offset nth Value
160 To determine the number of values, you have to look at the owner-nk-record!
162 Der vk-Record
163 =============
164 Offset Size Contents
165 0x0000 Word ID: ASCII-"vk" = 0x6B76
166 0x0002 Word name length
167 0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel
168 0x0008 D-Word Offset of Data
169 0x000C D-Word Type of value
170 0x0010 Word Flag
171 0x0012 Word Unused (data-trash)
172 0x0014 ???? Name
174 If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default)
176 If the data-size is lower 5, the data-offset value is used to store the data itself!
178 The data-types
179 ==============
180 Wert Beteutung
181 0x0001 RegSZ: character string (in UNICODE!)
182 0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!)
183 0x0003 RegBin: raw-binary value
184 0x0004 RegDWord: Dword
185 0x0007 RegMultiSZ: multiple strings, seperated with 0
186 (UNICODE!)
188 The "lf"-record
189 ===============
190 Offset Size Contents
191 0x0000 Word ID: ASCII-"lf" = 0x666C
192 0x0002 Word number of keys
193 0x0004 ???? Hash-Records
195 Hash-Record
196 ===========
197 Offset Size Contents
198 0x0000 D-Word Offset of corresponding "nk"-Record
199 0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0's. Case sensitiv!
201 Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the
202 key-name you have to change the hash-value too!
204 //These hashrecords must be sorted low to high within the lf record. Nigel.
206 The "sk"-block
207 ==============
208 (due to the complexity of the SAM-info, not clear jet)
209 (This is just a security descriptor in the data. R Sharpe.)
212 Offset Size Contents
213 0x0000 Word ID: ASCII-"sk" = 0x6B73
214 0x0002 Word Unused
215 0x0004 D-Word Offset of previous "sk"-Record
216 0x0008 D-Word Offset of next "sk"-Record
217 0x000C D-Word usage-counter
218 0x0010 D-Word Size of "sk"-record in bytes
219 ???? //standard self
220 relative security desciptor. Nigel
221 ???? ???? Security and auditing settings...
222 ????
224 The usage counter counts the number of references to this
225 "sk"-record. You can use one "sk"-record for the entire registry!
227 Windows nt date/time format
228 ===========================
229 The time-format is a 64-bit integer which is incremented every
230 0,0000001 seconds by 1 (I don't know how accurate it realy is!)
231 It starts with 0 at the 1st of january 1601 0:00! All values are
232 stored in GMT time! The time-zone is important to get the real
233 time!
235 Common values for win95 and win-nt
236 ==================================
237 Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF).
238 If a value has no name (length=0, flag(bit 0)=0), it is treated as the
239 "Default" entry...
240 If a value has no data (length=0), it is displayed as empty.
242 simplyfied win-3.?? registry:
243 =============================
245 +-----------+
246 | next rec. |---+ +----->+------------+
247 | first sub | | | | Usage cnt. |
248 | name | | +-->+------------+ | | length |
249 | value | | | | next rec. | | | text |------->+-------+
250 +-----------+ | | | name rec. |--+ +------------+ | xxxxx |
251 +------------+ | | value rec. |-------->+------------+ +-------+
252 v | +------------+ | Usage cnt. |
253 +-----------+ | | length |
254 | next rec. | | | text |------->+-------+
255 | first sub |------+ +------------+ | xxxxx |
256 | name | +-------+
257 | value |
258 +-----------+
260 Greatly simplyfied structure of the nt-registry:
261 ================================================
263 +---------------------------------------------------------------+
266 +---------+ +---------->+-----------+ +----->+---------+ |
267 | "nk" | | | lf-rec. | | | nk-rec. | |
268 | ID | | | # of keys | | | parent |---+
269 | Date | | | 1st key |--+ | .... |
270 | parent | | +-----------+ +---------+
271 | suk-keys|-----+
272 | values |--------------------->+----------+
273 | SK-rec. |---------------+ | 1. value |--> +----------+
274 | class |--+ | +----------+ | vk-rec. |
275 +---------+ | | | .... |
276 v | | data |--> +-------+
277 +------------+ | +----------+ | xxxxx |
278 | Class name | | +-------+
279 +------------+ |
281 +---------+ +---------+
282 +----->| next sk |--->| Next sk |--+
283 | +---| prev sk |<---| prev sk | |
284 | | | .... | | ... | |
285 | | +---------+ +---------+ |
286 | | ^ |
287 | | | |
288 | +--------------------+ |
289 +----------------------------------+
291 ---------------------------------------------------------------------------
293 Hope this helps.... (Although it was "fun" for me to uncover this things,
294 it took me several sleepless nights ;)
296 B.D.
298 *************************************************************************/
300 #include <stdio.h>
301 #include <stdlib.h>
302 #include <errno.h>
303 #include <assert.h>
304 #include <sys/types.h>
305 #include <sys/stat.h>
306 #include <unistd.h>
307 #include <sys/mman.h>
308 #include <string.h>
309 #include <fcntl.h>
311 #define False 0
312 #define True 1
313 #define REG_KEY_LIST_SIZE 10;
315 static int verbose = 0;
316 static int print_security = 0;
319 * These definitions are for the in-memory registry structure.
320 * It is a tree structure that mimics what you see with tools like regedit
324 * DateTime struct for Windows
327 typedef struct date_time_s {
328 unsigned int low, high;
329 } NTTIME;
332 * Definition of a Key. It has a name, classname, date/time last modified,
333 * sub-keys, values, and a security descriptor
336 #define REG_ROOT_KEY 1
337 #define REG_SUB_KEY 2
338 #define REG_SYM_LINK 3
340 typedef struct reg_key_s {
341 char *name; /* Name of the key */
342 char *class_name;
343 int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */
344 NTTIME last_mod; /* Time last modified */
345 struct reg_key_s *owner;
346 struct key_list_s *sub_keys;
347 struct val_list_s *values;
348 struct key_sec_desc_s *security;
349 } REG_KEY;
352 * The KEY_LIST struct lists sub-keys.
355 typedef struct key_list_s {
356 int key_count;
357 int max_keys;
358 REG_KEY *keys[1];
359 } KEY_LIST;
361 typedef struct val_key_s {
362 char *name;
363 int has_name;
364 int data_type;
365 int data_len;
366 void *data_blk; /* Might want a separate block */
367 } VAL_KEY;
369 typedef struct val_list_s {
370 int val_count;
371 VAL_KEY *vals[1];
372 } VAL_LIST;
374 #ifndef MAXSUBAUTHS
375 #define MAXSUBAUTHS 15
376 #endif
378 typedef struct dom_sid_s {
379 unsigned char ver, auths;
380 unsigned char auth[6];
381 unsigned int sub_auths[MAXSUBAUTHS];
382 } DOM_SID;
384 typedef struct ace_struct_s {
385 unsigned char type, flags;
386 unsigned int perms; /* Perhaps a better def is in order */
387 DOM_SID *trustee;
388 } ACE;
390 typedef struct acl_struct_s {
391 unsigned short rev, refcnt;
392 unsigned short num_aces;
393 ACE *aces[1];
394 } ACL;
396 typedef struct sec_desc_s {
397 unsigned int rev, type;
398 DOM_SID *owner, *group;
399 ACL *sacl, *dacl;
400 } SEC_DESC;
402 #define SEC_DESC_NON 0
403 #define SEC_DESC_RES 1
404 #define SEC_DESC_OCU 2
406 typedef struct key_sec_desc_s {
407 struct key_sec_desc_s *prev, *next;
408 int ref_cnt;
409 int state;
410 SEC_DESC *sec_desc;
411 } KEY_SEC_DESC;
414 * All of the structures below actually have a four-byte lenght before them
415 * which always seems to be negative. The following macro retrieves that
416 * size as an integer
419 #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1))
421 typedef unsigned int DWORD;
422 typedef unsigned short WORD;
424 #define REG_REGF_ID 0x66676572
426 typedef struct regf_block {
427 DWORD REGF_ID; /* regf */
428 DWORD uk1;
429 DWORD uk2;
430 DWORD tim1, tim2;
431 DWORD uk3; /* 1 */
432 DWORD uk4; /* 3 */
433 DWORD uk5; /* 0 */
434 DWORD uk6; /* 1 */
435 DWORD first_key; /* offset */
436 unsigned int dblk_size;
437 DWORD uk7[116]; /* 1 */
438 DWORD chksum;
439 } REGF_HDR;
441 typedef struct hbin_sub_struct {
442 DWORD dblocksize;
443 char data[1];
444 } HBIN_SUB_HDR;
446 #define REG_HBIN_ID 0x6E696268
448 typedef struct hbin_struct {
449 DWORD HBIN_ID; /* hbin */
450 DWORD next_off;
451 DWORD prev_off;
452 DWORD uk1;
453 DWORD uk2;
454 DWORD uk3;
455 DWORD uk4;
456 DWORD blk_size;
457 HBIN_SUB_HDR hbin_sub_hdr;
458 } HBIN_HDR;
460 #define REG_NK_ID 0x6B6E
462 typedef struct nk_struct {
463 WORD NK_ID;
464 WORD type;
465 DWORD t1, t2;
466 DWORD uk1;
467 DWORD own_off;
468 DWORD subk_num;
469 DWORD uk2;
470 DWORD lf_off;
471 DWORD uk3;
472 DWORD val_cnt;
473 DWORD val_off;
474 DWORD sk_off;
475 DWORD clsnam_off;
476 DWORD unk4[4];
477 DWORD unk5;
478 WORD nam_len;
479 WORD clsnam_len;
480 char key_nam[1]; /* Actual length determined by nam_len */
481 } NK_HDR;
483 #define REG_SK_ID 0x6B73
485 typedef struct sk_struct {
486 WORD SK_ID;
487 WORD uk1;
488 DWORD prev_off;
489 DWORD next_off;
490 DWORD ref_cnt;
491 DWORD rec_size;
492 char sec_desc[1];
493 } SK_HDR;
495 typedef struct ace_struct {
496 unsigned char type;
497 unsigned char flags;
498 unsigned short length;
499 unsigned int perms;
500 DOM_SID trustee;
501 } REG_ACE;
503 typedef struct acl_struct {
504 WORD rev;
505 WORD size;
506 DWORD num_aces;
507 REG_ACE *aces; /* One or more ACEs */
508 } REG_ACL;
510 typedef struct sec_desc_rec {
511 WORD rev;
512 WORD type;
513 DWORD owner_off;
514 DWORD group_off;
515 DWORD sacl_off;
516 DWORD dacl_off;
517 } REG_SEC_DESC;
519 typedef struct hash_struct {
520 DWORD nk_off;
521 char hash[4];
522 } HASH_REC;
524 #define REG_LF_ID 0x666C
526 typedef struct lf_struct {
527 WORD LF_ID;
528 WORD key_count;
529 struct hash_struct hr[1]; /* Array of hash records, depending on key_count */
530 } LF_HDR;
532 typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */
534 #define REG_VK_ID 0x6B76
536 typedef struct vk_struct {
537 WORD VK_ID;
538 WORD nam_len;
539 DWORD dat_len; /* If top-bit set, offset contains the data */
540 DWORD dat_off;
541 DWORD dat_type;
542 WORD flag; /* =1, has name, else no name (=Default). */
543 WORD unk1;
544 char dat_name[1]; /* Name starts here ... */
545 } VK_HDR;
547 #define REG_TYPE_NONE 0
548 #define REG_TYPE_REGSZ 1
549 #define REG_TYPE_EXPANDSZ 2
550 #define REG_TYPE_BIN 3
551 #define REG_TYPE_DWORD 4
552 #define REG_TYPE_MULTISZ 7
554 typedef struct _val_str {
555 unsigned int val;
556 const char * str;
557 } VAL_STR;
559 /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */
560 typedef struct sk_map_s {
561 int sk_off;
562 KEY_SEC_DESC *key_sec_desc;
563 } SK_MAP;
565 struct regf_struct_s {
566 int reg_type;
567 char *regfile_name, *outfile_name;
568 int fd;
569 struct stat sbuf;
570 char *base;
571 int modified;
572 NTTIME last_mod_time;
573 REG_KEY *root; /* Root of the tree for this file */
574 int sk_count, sk_map_size;
575 SK_MAP *sk_map;
578 typedef struct regf_struct_s REGF;
581 * An API for accessing/creating/destroying items above
585 * Iterate over the keys, depth first, calling a function for each key
586 * and indicating if it is terminal or non-terminal and if it has values.
588 * In addition, for each value in the list, call a value list function
591 typedef int (*key_print_f)(const char *path, char *key_name, char *class_name,
592 int root, int terminal, int values);
594 typedef int (*val_print_f)(const char *path, char *val_name, int val_type,
595 int data_len, void *data_blk, int terminal,
596 int first, int last);
598 typedef int (*sec_print_f)(SEC_DESC *sec_desc);
600 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
601 key_print_f key_print, sec_print_f sec_print,
602 val_print_f val_print);
604 int nt_val_list_iterator(REGF *regf, VAL_LIST *val_list, int bf, char *path,
605 int terminal, val_print_f val_print)
607 int i;
609 if (!val_list) return 1;
611 if (!val_print) return 1;
613 for (i=0; i<val_list->val_count; i++) {
614 if (!val_print(path, val_list->vals[i]->name, val_list->vals[i]->data_type,
615 val_list->vals[i]->data_len, val_list->vals[i]->data_blk,
616 terminal,
617 (i == 0),
618 (i == val_list->val_count))) {
620 return 0;
625 return 1;
628 int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf,
629 const char *path,
630 key_print_f key_print, sec_print_f sec_print,
631 val_print_f val_print)
633 int i;
635 if (!key_list) return 1;
637 for (i=0; i< key_list->key_count; i++) {
638 if (!nt_key_iterator(regf, key_list->keys[i], bf, path, key_print,
639 sec_print, val_print)) {
640 return 0;
643 return 1;
646 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
647 key_print_f key_print, sec_print_f sec_print,
648 val_print_f val_print)
650 int path_len = strlen(path);
651 char *new_path;
653 if (!regf || !key_tree)
654 return -1;
656 /* List the key first, then the values, then the sub-keys */
658 if (key_print) {
660 if (!(*key_print)(path, key_tree->name,
661 key_tree->class_name,
662 (key_tree->type == REG_ROOT_KEY),
663 (key_tree->sub_keys == NULL),
664 (key_tree->values?(key_tree->values->val_count):0)))
665 return 0;
669 * If we have a security print routine, call it
670 * If the security print routine returns false, stop.
672 if (sec_print) {
673 if (key_tree->security && !(*sec_print)(key_tree->security->sec_desc))
674 return 0;
677 new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1);
678 if (!new_path) return 0; /* Errors? */
679 new_path[0] = '\0';
680 strcat(new_path, path);
681 strcat(new_path, key_tree->name);
682 strcat(new_path, "\\");
685 * Now, iterate through the values in the val_list
688 if (key_tree->values &&
689 !nt_val_list_iterator(regf, key_tree->values, bf, new_path,
690 (key_tree->values!=NULL),
691 val_print)) {
693 free(new_path);
694 return 0;
698 * Now, iterate through the keys in the key list
701 if (key_tree->sub_keys &&
702 !nt_key_list_iterator(regf, key_tree->sub_keys, bf, new_path, key_print,
703 sec_print, val_print)) {
704 free(new_path);
705 return 0;
708 free(new_path);
709 return 1;
712 REG_KEY *nt_find_key_by_name(REG_KEY *tree, char *key);
715 * Find key by name in a list ...
716 * Take the first component and search for that in the list
718 REG_KEY *nt_find_key_in_list_by_name(KEY_LIST *list, char *key)
720 int i;
721 REG_KEY *res = NULL;
723 if (!list || !key || !*key) return NULL;
725 for (i = 0; i<= list->key_count; i++)
726 if ((res = nt_find_key_by_name(list->keys[i], key)))
727 return res;
729 return NULL;
733 * Find key by name in a tree ... We will assume absolute names here, but we
734 * need the root of the tree ...
736 REG_KEY *nt_find_key_by_name(REG_KEY *tree, char *key)
738 char *lname = NULL, *c1, *c2;
739 REG_KEY *tmp;
741 if (!tree || !key || !*key) return NULL;
743 lname = strdup(key);
744 if (!lname) return NULL;
747 * Make sure that the first component is correct ...
749 c1 = lname;
750 c2 = strchr(c1, '\\');
751 if (c2) { /* Split here ... */
752 *c2 = 0;
753 c2++;
755 if (strcmp(c1, tree->name) != 0) goto error;
757 if (c2) {
758 tmp = nt_find_key_in_list_by_name(tree->sub_keys, c2);
759 free(lname);
760 return tmp;
762 else {
763 if (lname) free(lname);
764 return tree;
766 error:
767 if (lname) free(lname);
768 return NULL;
771 /* Make, delete keys */
773 int nt_delete_val_key(VAL_KEY *val_key)
776 if (val_key) {
777 if (val_key->data_blk) free(val_key->data_blk);
778 free(val_key);
780 return 1;
783 int nt_delete_val_list(VAL_LIST *vl)
785 int i;
787 if (vl) {
788 for (i=0; i<vl->val_count; i++)
789 nt_delete_val_key(vl->vals[i]);
790 free(vl);
792 return 1;
795 int nt_delete_reg_key(REG_KEY *key, int delete_name);
796 int nt_delete_key_list(KEY_LIST *key_list, int delete_name)
798 int i;
800 if (key_list) {
801 for (i=0; i<key_list->key_count; i++)
802 nt_delete_reg_key(key_list->keys[i], False);
803 free(key_list);
805 return 1;
809 * Find the key, and if it exists, delete it ...
811 int nt_delete_key_by_name(REGF *regf, char *name)
813 REG_KEY *key;
815 if (!name || !*name) return 0;
817 key = nt_find_key_by_name(regf->root, name);
819 if (key) {
820 return nt_delete_reg_key(key, True);
823 return 0;
827 int nt_delete_sid(DOM_SID *sid)
830 if (sid) free(sid);
831 return 1;
835 int nt_delete_ace(ACE *ace)
838 if (ace) {
839 nt_delete_sid(ace->trustee);
840 free(ace);
842 return 1;
846 int nt_delete_acl(ACL *acl)
849 if (acl) {
850 int i;
852 for (i=0; i<acl->num_aces; i++)
853 nt_delete_ace(acl->aces[i]);
855 free(acl);
857 return 1;
860 int nt_delete_sec_desc(SEC_DESC *sec_desc)
863 if (sec_desc) {
865 nt_delete_sid(sec_desc->owner);
866 nt_delete_sid(sec_desc->group);
867 nt_delete_acl(sec_desc->sacl);
868 nt_delete_acl(sec_desc->dacl);
869 free(sec_desc);
872 return 1;
875 int nt_delete_key_sec_desc(KEY_SEC_DESC *key_sec_desc)
878 if (key_sec_desc) {
879 key_sec_desc->ref_cnt--;
880 if (key_sec_desc->ref_cnt<=0) {
882 * There should always be a next and prev, even if they point to us
884 key_sec_desc->next->prev = key_sec_desc->prev;
885 key_sec_desc->prev->next = key_sec_desc->next;
886 nt_delete_sec_desc(key_sec_desc->sec_desc);
889 return 1;
892 int nt_delete_reg_key(REG_KEY *key, int delete_name)
895 if (key) {
896 if (key->name) free(key->name);
897 if (key->class_name) free(key->class_name);
900 * We will delete the owner if we are not the root and told to ...
903 if (key->owner && key->owner->sub_keys && delete_name) {
904 REG_KEY *own;
905 KEY_LIST *kl;
906 int i;
907 /* Find our owner, look in keylist for us and shuffle up */
908 /* Perhaps should be a function */
910 own = key->owner;
911 kl = own->sub_keys;
913 for (i=0; i < kl->key_count && kl->keys[i] != key ; i++) {
914 /* Just find the entry ... */
917 if (i == kl->key_count) {
918 fprintf(stderr, "Bad data structure. Key not found in key list of owner\n");
920 else {
921 int j;
924 * Shuffle up. Works for the last one also
926 for (j = i + 1; j < kl->key_count; j++) {
927 kl->keys[j - 1] = kl->keys[j];
930 kl->key_count--;
934 if (key->sub_keys) nt_delete_key_list(key->sub_keys, False);
935 if (key->values) nt_delete_val_list(key->values);
936 if (key->security) nt_delete_key_sec_desc(key->security);
937 free(key);
939 return 1;
943 * Add a value to the key specified ...
945 REG_KEY *nt_add_reg_value(REG_KEY *key, char *name, int type, char *value)
948 return NULL;
952 * Delete a value. Should perhaps return the value ...
954 REG_KEY *nt_delete_reg_valye(REG_KEY *key, char *name)
957 return NULL;
961 * Add a key to the tree ... We walk down the components matching until
962 * we don't find any. There must be a match on the first component ...
963 * We return the key structure for the final component as that is
964 * often where we want to add values ...
968 * Create a 1 component key name and set its parent to parent
970 REG_KEY *nt_create_reg_key1(char *name, REG_KEY *parent)
972 REG_KEY *tmp;
974 if (!name || !*name) return NULL; /* A key's name cannot be empty */
976 /* There should not be more than one component */
977 if (strchr(name, '\\')) return NULL;
979 if (!(tmp = (REG_KEY *)malloc(sizeof(REG_KEY)))) return NULL;
981 bzero(tmp, sizeof(REG_KEY));
983 if (!(tmp->name = strdup(name))) goto error;
987 error:
988 if (tmp) free(tmp);
989 return NULL;
992 REG_KEY *nt_add_reg_key(REG_KEY *key, char *name, int create);
993 REG_KEY *nt_add_reg_key_list(KEY_LIST *list, char * name, REG_KEY *parent, int create)
995 int i;
996 REG_KEY *ret;
997 char *lname, *c1, *c2;
999 if (!list || !name || !*name) return NULL;
1001 for (i = 0; i < list->key_count; i++) {
1002 if ((ret = nt_add_reg_key(list->keys[i], name, create)))
1003 return ret;
1007 * If we reach here we could not find the the first component
1008 * so create it ...
1011 lname = strdup(name);
1012 if (!lname) return NULL;
1014 c1 = lname;
1015 c2 = strchr(c1, '\\');
1016 if (c2) { /* Split here ... */
1017 *c2 = 0;
1018 c2++;
1021 if (list->key_count < list->max_keys){
1022 list->key_count++;
1024 else { /* Create more space in the list ... */
1028 return NULL;
1029 error:
1030 if (lname) free(lname);
1031 return NULL;
1034 REG_KEY *nt_add_reg_key(REG_KEY *key, char *name, int create)
1036 char *lname = NULL, *c1, *c2;
1037 REG_KEY * tmp;
1040 * Look until we hit the first component that does not exist, and
1041 * then add from there. However, if the first component does not
1042 * match and the path we are given is the root, then it must match
1044 if (!key || !name || !*name) return NULL;
1046 lname = strdup(name);
1047 if (!lname) return NULL;
1049 c1 = lname;
1050 c2 = strchr(c1, '\\');
1051 if (c2) { /* Split here ... */
1052 *c2 = 0;
1053 c2++;
1057 * If we don't match, then we have to return error ...
1058 * If we do match on this component, check the next one in the
1059 * list, and if not found, add it ... short circuit, add all the
1060 * way down
1063 if (strcmp(c1, key->name) != 0)
1064 goto error;
1066 tmp = nt_add_reg_key_list(key->sub_keys, c2, key, True);
1067 free(lname);
1068 return tmp;
1070 error:
1071 if (lname) free(lname);
1072 return NULL;
1076 * Create/delete value lists, add/delete values, count them
1081 * Create/delete security descriptors, add/delete SIDS, count SIDS, etc.
1082 * We reference count the security descriptors. Any new reference increments
1083 * the ref count. If we modify an SD, we copy the old one, dec the ref count
1084 * and make the change. We also want to be able to check for equality so
1085 * we can reduce the number of SDs in use.
1089 * Load and unload a registry file.
1091 * Load, loads it into memory as a tree, while unload sealizes/flattens it
1095 * Get the starting record for NT Registry file
1099 * Where we keep all the regf stuff for one registry.
1100 * This is the structure that we use to tie the in memory tree etc
1101 * together. By keeping separate structs, we can operate on different
1102 * registries at the same time.
1103 * Currently, the SK_MAP is an array of mapping structure.
1104 * Since we only need this on input and output, we fill in the structure
1105 * as we go on input. On output, we know how many SK items we have, so
1106 * we can allocate the structure as we need to.
1107 * If you add stuff here that is dynamically allocated, add the
1108 * appropriate free statements below.
1111 #define REGF_REGTYPE_NONE 0
1112 #define REGF_REGTYPE_NT 1
1113 #define REGF_REGTYPE_W9X 2
1115 #define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \
1116 (r)->last_mod_time.high = (t2);
1118 #define REGF_HDR_BLKSIZ 0x1000
1121 * Structures for dealing with the on-disk format of the registry
1124 #define IVAL(buf) ((unsigned int) \
1125 (unsigned int)*((unsigned char *)(buf)+3)<<24| \
1126 (unsigned int)*((unsigned char *)(buf)+2)<<16| \
1127 (unsigned int)*((unsigned char *)(buf)+1)<<8| \
1128 (unsigned int)*((unsigned char *)(buf)+0))
1130 #define SVAL(buf) ((unsigned short) \
1131 (unsigned short)*((unsigned char *)(buf)+1)<<8| \
1132 (unsigned short)*((unsigned char *)(buf)+0))
1134 #define CVAL(buf) ((unsigned char)*((unsigned char *)(buf)))
1136 #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4)
1137 #define LOCN(base, f) ((base) + OFF(f))
1139 const VAL_STR reg_type_names[] = {
1140 { REG_TYPE_REGSZ, "REG_SZ" },
1141 { REG_TYPE_EXPANDSZ, "REG_EXPAND_SZ" },
1142 { REG_TYPE_BIN, "REG_BIN" },
1143 { REG_TYPE_DWORD, "REG_DWORD" },
1144 { REG_TYPE_MULTISZ, "REG_MULTI_SZ" },
1145 { 0, NULL },
1148 const char *val_to_str(unsigned int val, const VAL_STR *val_array)
1150 int i = 0;
1152 if (!val_array) return NULL;
1154 while (val_array[i].val && val_array[i].str) {
1156 if (val_array[i].val == val) return val_array[i].str;
1157 i++;
1161 return NULL;
1166 * Convert from UniCode to Ascii ... Does not take into account other lang
1167 * Restrict by ascii_max if > 0
1169 int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max,
1170 int uni_max)
1172 int i = 0;
1174 while (i < ascii_max && !(!uni[i*2] && !uni[i*2+1])) {
1175 if (uni_max > 0 && (i*2) >= uni_max) break;
1176 ascii[i] = uni[i*2];
1177 i++;
1181 ascii[i] = '\0';
1183 return i;
1187 * Convert a data value to a string for display
1189 int data_to_ascii(unsigned char *datap, int len, int type, char *ascii, int ascii_max)
1191 unsigned char *asciip;
1192 int i;
1194 switch (type) {
1195 case REG_TYPE_REGSZ:
1196 if (verbose) fprintf(stderr, "Len: %d\n", len);
1197 return uni_to_ascii(datap, ascii, len, ascii_max);
1198 break;
1200 case REG_TYPE_EXPANDSZ:
1201 return uni_to_ascii(datap, ascii, len, ascii_max);
1202 break;
1204 case REG_TYPE_BIN:
1205 asciip = ascii;
1206 for (i=0; (i<len)&&(i+1)*3<ascii_max; i++) {
1207 int str_rem = ascii_max - ((int)asciip - (int)ascii);
1208 asciip += snprintf(asciip, str_rem, "%02x", *(unsigned char *)(datap+i));
1209 if (i < len && str_rem > 0)
1210 *asciip = ' '; asciip++;
1212 *asciip = '\0';
1213 return ((int)asciip - (int)ascii);
1214 break;
1216 case REG_TYPE_DWORD:
1217 if (*(int *)datap == 0)
1218 return snprintf(ascii, ascii_max, "0");
1219 else
1220 return snprintf(ascii, ascii_max, "0x%x", *(int *)datap);
1221 break;
1223 case REG_TYPE_MULTISZ:
1225 break;
1227 default:
1228 return 0;
1229 break;
1232 return len;
1236 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent);
1238 int nt_set_regf_input_file(REGF *regf, char *filename)
1240 return ((regf->regfile_name = strdup(filename)) != NULL);
1243 int nt_set_regf_output_file(REGF *regf, char *filename)
1245 return ((regf->outfile_name = strdup(filename)) != NULL);
1248 /* Create a regf structure and init it */
1250 REGF *nt_create_regf(void)
1252 REGF *tmp = (REGF *)malloc(sizeof(REGF));
1253 if (!tmp) return tmp;
1254 bzero(tmp, sizeof(REGF));
1255 return tmp;
1258 /* Free all the bits and pieces ... Assumes regf was malloc'd */
1259 /* If you add stuff to REGF, add the relevant free bits here */
1260 int nt_free_regf(REGF *regf)
1262 if (!regf) return 0;
1264 if (regf->regfile_name) free(regf->regfile_name);
1265 if (regf->outfile_name) free(regf->outfile_name);
1267 /* Free the mmap'd area */
1269 if (regf->base) munmap(regf->base, regf->sbuf.st_size);
1270 regf->base = NULL;
1271 close(regf->fd); /* Ignore the error :-) */
1273 nt_delete_reg_key(regf->root, False); /* Free the tree */
1274 free(regf->sk_map);
1275 regf->sk_count = regf->sk_map_size = 0;
1277 free(regf);
1279 return 1;
1282 /* Get the header of the registry. Return a pointer to the structure
1283 * If the mmap'd area has not been allocated, then mmap the input file
1285 REGF_HDR *nt_get_regf_hdr(REGF *regf)
1287 if (!regf)
1288 return NULL; /* What about errors */
1290 if (!regf->regfile_name)
1291 return NULL; /* What about errors */
1293 if (!regf->base) { /* Try to mmap etc the file */
1295 if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) {
1296 return NULL; /* What about errors? */
1299 if (fstat(regf->fd, &regf->sbuf) < 0) {
1300 return NULL;
1303 regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0);
1305 if ((int)regf->base == 1) {
1306 fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name,
1307 strerror(errno));
1308 return NULL;
1313 * At this point, regf->base != NULL, and we should be able to read the
1314 * header
1317 assert(regf->base != NULL);
1319 return (REGF_HDR *)regf->base;
1323 * Validate a regf header
1324 * For now, do nothing, but we should check the checksum
1326 int valid_regf_hdr(REGF_HDR *regf_hdr)
1328 if (!regf_hdr) return 0;
1330 return 1;
1334 * Process an SK header ...
1335 * Every time we see a new one, add it to the map. Otherwise, just look it up.
1336 * We will do a simple linear search for the moment, since many KEYs have the
1337 * same security descriptor.
1338 * We allocate the map in increments of 10 entries.
1342 * Create a new entry in the map, and increase the size of the map if needed
1345 SK_MAP *alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off)
1347 if (!regf->sk_map) { /* Allocate a block of 10 */
1348 regf->sk_map = (SK_MAP *)malloc(sizeof(SK_MAP) * 10);
1349 if (!regf->sk_map) {
1350 free(tmp);
1351 return NULL;
1353 regf->sk_map_size = 10;
1354 regf->sk_count = 1;
1355 (regf->sk_map)[0].sk_off = sk_off;
1356 (regf->sk_map)[0].key_sec_desc = tmp;
1358 else { /* Simply allocate a new slot, unless we have to expand the list */
1359 int ndx = regf->sk_count;
1360 if (regf->sk_count >= regf->sk_map_size) {
1361 regf->sk_map = (SK_MAP *)realloc(regf->sk_map,
1362 (regf->sk_map_size + 10)*sizeof(SK_MAP));
1363 if (!regf->sk_map) {
1364 free(tmp);
1365 return NULL;
1368 * ndx already points at the first entry of the new block
1370 regf->sk_map_size += 10;
1372 (regf->sk_map)[ndx].sk_off = sk_off;
1373 (regf->sk_map)[ndx].key_sec_desc = tmp;
1374 regf->sk_count++;
1376 return regf->sk_map;
1380 * Search for a KEY_SEC_DESC in the sk_map, but don't create one if not
1381 * found
1384 KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off)
1386 int i;
1388 if (!sk_map) return NULL;
1390 for (i = 0; i < count; i++) {
1392 if (sk_map[i].sk_off == sk_off)
1393 return sk_map[i].key_sec_desc;
1397 return NULL;
1402 * Allocate a KEY_SEC_DESC if we can't find one in the map
1405 KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off)
1407 KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off);
1409 if (tmp) {
1410 return tmp;
1412 else { /* Allocate a new one */
1413 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1414 if (!tmp) {
1415 return NULL;
1417 tmp->state = SEC_DESC_RES;
1418 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1419 return NULL;
1421 return tmp;
1426 * Allocate storage and duplicate a SID
1427 * We could allocate the SID to be only the size needed, but I am too lazy.
1429 DOM_SID *dup_sid(DOM_SID *sid)
1431 DOM_SID *tmp = (DOM_SID *)malloc(sizeof(DOM_SID));
1432 int i;
1434 if (!tmp) return NULL;
1435 tmp->ver = sid->ver;
1436 tmp->auths = sid->auths;
1437 for (i=0; i<6; i++) {
1438 tmp->auth[i] = sid->auth[i];
1440 for (i=0; i<tmp->auths&&i<MAXSUBAUTHS; i++) {
1441 tmp->sub_auths[i] = sid->sub_auths[i];
1443 return tmp;
1447 * Allocate space for an ACE and duplicate the registry encoded one passed in
1449 ACE *dup_ace(REG_ACE *ace)
1451 ACE *tmp = NULL;
1453 tmp = (ACE *)malloc(sizeof(ACE));
1455 if (!tmp) return NULL;
1457 tmp->type = CVAL(&ace->type);
1458 tmp->flags = CVAL(&ace->flags);
1459 tmp->perms = IVAL(&ace->perms);
1460 tmp->trustee = dup_sid(&ace->trustee);
1461 return tmp;
1465 * Allocate space for an ACL and duplicate the registry encoded one passed in
1467 ACL *dup_acl(REG_ACL *acl)
1469 ACL *tmp = NULL;
1470 REG_ACE* ace;
1471 int i, num_aces;
1473 num_aces = IVAL(&acl->num_aces);
1475 tmp = (ACL *)malloc(sizeof(ACL) + (num_aces - 1)*sizeof(ACE *));
1476 if (!tmp) return NULL;
1478 tmp->num_aces = num_aces;
1479 tmp->refcnt = 1;
1480 tmp->rev = SVAL(&acl->rev);
1481 ace = (REG_ACE *)&acl->aces;
1482 for (i=0; i<num_aces; i++) {
1483 tmp->aces[i] = dup_ace(ace);
1484 ace = (REG_ACE *)((char *)ace + SVAL(&ace->length));
1485 /* XXX: FIXME, should handle malloc errors */
1488 return tmp;
1491 SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc)
1493 SEC_DESC *tmp = NULL;
1495 tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC));
1497 if (!tmp) {
1498 return NULL;
1501 tmp->rev = SVAL(&sec_desc->rev);
1502 tmp->type = SVAL(&sec_desc->type);
1503 tmp->owner = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->owner_off)));
1504 if (!tmp->owner) {
1505 free(tmp);
1506 return NULL;
1508 tmp->group = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->group_off)));
1509 if (!tmp->group) {
1510 free(tmp);
1511 return NULL;
1514 /* Now pick up the SACL and DACL */
1516 if (sec_desc->sacl_off)
1517 tmp->sacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->sacl_off)));
1518 else
1519 tmp->sacl = NULL;
1521 if (sec_desc->dacl_off)
1522 tmp->dacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->dacl_off)));
1523 else
1524 tmp->dacl = NULL;
1526 return tmp;
1529 KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size)
1531 KEY_SEC_DESC *tmp = NULL;
1532 int sk_next_off, sk_prev_off, sk_size;
1533 REG_SEC_DESC *sec_desc;
1535 if (!sk_hdr) return NULL;
1537 if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) {
1538 fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr,
1539 regf->regfile_name);
1540 return NULL;
1543 if (-size < (sk_size = IVAL(&sk_hdr->rec_size))) {
1544 fprintf(stderr, "Incorrect SK record size: %d vs %d. %s\n",
1545 -size, sk_size, regf->regfile_name);
1546 return NULL;
1550 * Now, we need to look up the SK Record in the map, and return it
1551 * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can
1552 * use that
1555 if (regf->sk_map &&
1556 ((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL)
1557 && (tmp->state == SEC_DESC_OCU)) {
1558 tmp->ref_cnt++;
1559 return tmp;
1562 /* Here, we have an item in the map that has been reserved, or tmp==NULL. */
1564 assert(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON));
1567 * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the
1568 * new KEY_SEC_DESC to the mapping structure, since the offset supplied is
1569 * the actual offset of structure. The same offset will be used by
1570 * all future references to this structure
1571 * We could put all this unpleasantness in a function.
1574 if (!tmp) {
1575 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1576 if (!tmp) return NULL;
1577 bzero(tmp, sizeof(KEY_SEC_DESC));
1580 * Allocate an entry in the SK_MAP ...
1581 * We don't need to free tmp, because that is done for us if the
1582 * sm_map entry can't be expanded when we need more space in the map.
1585 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1586 return NULL;
1590 tmp->ref_cnt++;
1591 tmp->state = SEC_DESC_OCU;
1594 * Now, process the actual sec desc and plug the values in
1597 sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0];
1598 tmp->sec_desc = process_sec_desc(regf, sec_desc);
1601 * Now forward and back links. Here we allocate an entry in the sk_map
1602 * if it does not exist, and mark it reserved
1605 sk_prev_off = IVAL(&sk_hdr->prev_off);
1606 tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off);
1607 assert(tmp->prev != NULL);
1608 sk_next_off = IVAL(&sk_hdr->next_off);
1609 tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off);
1610 assert(tmp->next != NULL);
1612 return tmp;
1616 * Process a VK header and return a value
1618 VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size)
1620 char val_name[1024];
1621 int nam_len, dat_len, flag, dat_type, dat_off, vk_id;
1622 const char *val_type;
1623 VAL_KEY *tmp = NULL;
1625 if (!vk_hdr) return NULL;
1627 if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) {
1628 fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n",
1629 vk_id, (int)vk_hdr, regf->regfile_name);
1630 return NULL;
1633 nam_len = SVAL(&vk_hdr->nam_len);
1634 val_name[nam_len] = '\0';
1635 flag = SVAL(&vk_hdr->flag);
1636 dat_type = IVAL(&vk_hdr->dat_type);
1637 dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */
1638 dat_off = IVAL(&vk_hdr->dat_off);
1640 tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
1641 if (!tmp) {
1642 goto error;
1644 bzero(tmp, sizeof(VAL_KEY));
1645 tmp->has_name = flag;
1646 tmp->data_type = dat_type;
1648 if (flag & 0x01) {
1649 strncpy(val_name, vk_hdr->dat_name, nam_len);
1650 tmp->name = strdup(val_name);
1651 if (!tmp->name) {
1652 goto error;
1655 else
1656 strncpy(val_name, "<No Name>", 10);
1659 * Allocate space and copy the data as a BLOB
1662 if (dat_len) {
1664 char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF);
1666 if (!dtmp) {
1667 goto error;
1670 tmp->data_blk = dtmp;
1672 if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */
1673 char *dat_ptr = LOCN(regf->base, dat_off);
1674 bcopy(dat_ptr, dtmp, dat_len);
1676 else { /* The data is in the offset */
1677 dat_len = dat_len & 0x7FFFFFFF;
1678 bcopy(&dat_off, dtmp, dat_len);
1681 tmp->data_len = dat_len;
1684 val_type = val_to_str(dat_type, reg_type_names);
1687 * We need to save the data area as well
1690 if (verbose) fprintf(stdout, " %s : %s : \n", val_name, val_type);
1692 return tmp;
1694 error:
1695 /* XXX: FIXME, free the partially allocated struct */
1696 return NULL;
1701 * Process a VL Header and return a list of values
1703 VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size)
1705 int i, vk_off;
1706 VK_HDR *vk_hdr;
1707 VAL_LIST *tmp = NULL;
1709 if (!vl) return NULL;
1711 if (-size < (count+1)*sizeof(int)){
1712 fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size);
1713 return NULL;
1716 tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *));
1717 if (!tmp) {
1718 goto error;
1721 for (i=0; i<count; i++) {
1722 vk_off = IVAL(&vl[i]);
1723 vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off);
1724 tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr));
1725 if (!tmp->vals[i]){
1726 goto error;
1730 tmp->val_count = count;
1732 return tmp;
1734 error:
1735 /* XXX: FIXME, free the partially allocated structure */
1736 return NULL;
1740 * Process an LF Header and return a list of sub-keys
1742 KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size, REG_KEY *parent)
1744 int count, i, nk_off;
1745 unsigned int lf_id;
1746 KEY_LIST *tmp;
1748 if (!lf_hdr) return NULL;
1750 if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) {
1751 fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n",
1752 lf_id, (int)lf_hdr, regf->regfile_name);
1753 return NULL;
1756 assert(size < 0);
1758 count = SVAL(&lf_hdr->key_count);
1760 if (count <= 0) return NULL;
1762 /* Now, we should allocate a KEY_LIST struct and fill it in ... */
1764 tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *));
1765 if (!tmp) {
1766 goto error;
1769 tmp->key_count = count;
1770 tmp->max_keys = count;
1772 for (i=0; i<count; i++) {
1773 NK_HDR *nk_hdr;
1775 nk_off = IVAL(&lf_hdr->hr[i].nk_off);
1776 nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off);
1777 tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr), parent);
1778 if (!tmp->keys[i]) {
1779 goto error;
1783 return tmp;
1785 error:
1786 if (tmp) nt_delete_key_list(tmp, False);
1787 return NULL;
1791 * This routine is passed a NK_HDR pointer and retrieves the entire tree
1792 * from there down. It returns a REG_KEY *.
1794 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent)
1796 REG_KEY *tmp = NULL, *own;
1797 int name_len, clsname_len, lf_off, val_off, val_count, sk_off, own_off;
1798 unsigned int nk_id;
1799 LF_HDR *lf_hdr;
1800 VL_TYPE *vl;
1801 SK_HDR *sk_hdr;
1802 char key_name[1024], cls_name[1024];
1804 if (!nk_hdr) return NULL;
1806 if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) {
1807 fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n",
1808 nk_id, (int)nk_hdr, regf->regfile_name);
1809 return NULL;
1812 assert(size < 0);
1814 name_len = SVAL(&nk_hdr->nam_len);
1815 clsname_len = SVAL(&nk_hdr->clsnam_len);
1818 * The value of -size should be ge
1819 * (sizeof(NK_HDR) - 1 + name_len)
1820 * The -1 accounts for the fact that we included the first byte of
1821 * the name in the structure. clsname_len is the length of the thing
1822 * pointed to by clsnam_off
1825 if (-size < (sizeof(NK_HDR) - 1 + name_len)) {
1826 fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr);
1827 fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n",
1828 sizeof(NK_HDR), name_len, clsname_len);
1829 /*return NULL;*/
1832 if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n",
1833 name_len, clsname_len);
1835 /* Fish out the key name and process the LF list */
1837 assert(name_len < sizeof(key_name));
1839 /* Allocate the key struct now */
1840 tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
1841 if (!tmp) return tmp;
1842 bzero(tmp, sizeof(REG_KEY));
1844 tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY);
1846 strncpy(key_name, nk_hdr->key_nam, name_len);
1847 key_name[name_len] = '\0';
1849 if (verbose) fprintf(stdout, "Key name: %s\n", key_name);
1851 tmp->name = strdup(key_name);
1852 if (!tmp->name) {
1853 goto error;
1857 * Fish out the class name, it is in UNICODE, while the key name is
1858 * ASCII :-)
1861 if (clsname_len) { /* Just print in Ascii for now */
1862 char *clsnamep;
1863 int clsnam_off;
1865 clsnam_off = IVAL(&nk_hdr->clsnam_off);
1866 clsnamep = LOCN(regf->base, clsnam_off);
1868 bzero(cls_name, clsname_len);
1869 uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len);
1872 * I am keeping class name as an ascii string for the moment.
1873 * That means it needs to be converted on output.
1874 * It will also piss off people who need Unicode/UTF-8 strings. Sorry.
1875 * XXX: FIXME
1878 tmp->class_name = strdup(cls_name);
1879 if (!tmp->class_name) {
1880 goto error;
1883 if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name);
1888 * Process the owner offset ...
1891 own_off = IVAL(&nk_hdr->own_off);
1892 own = (REG_KEY *)LOCN(regf->base, own_off);
1894 if (verbose) fprintf(stdout, " Owner offset: %0X, Our Offset: %0X\n",
1895 own, nk_hdr);
1898 * We should verify that the owner field is correct ...
1899 * for now, we don't worry ...
1902 tmp->owner = parent;
1905 * If there are any values, process them here
1908 val_count = IVAL(&nk_hdr->val_cnt);
1910 if (val_count) {
1912 val_off = IVAL(&nk_hdr->val_off);
1913 vl = (VL_TYPE *)LOCN(regf->base, val_off);
1915 tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl));
1916 if (!tmp->values) {
1917 goto error;
1923 * Also handle the SK header ...
1926 sk_off = IVAL(&nk_hdr->sk_off);
1927 sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off);
1929 if (sk_off != -1) {
1931 tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr));
1935 lf_off = IVAL(&nk_hdr->lf_off);
1938 * No more subkeys if lf_off == -1
1941 if (lf_off != -1) {
1943 lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off);
1945 tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr), tmp);
1946 if (!tmp->sub_keys){
1947 goto error;
1952 return tmp;
1954 error:
1955 if (tmp) nt_delete_reg_key(tmp, False);
1956 return NULL;
1959 int nt_load_registry(REGF *regf)
1961 REGF_HDR *regf_hdr;
1962 unsigned int regf_id, hbin_id;
1963 HBIN_HDR *hbin_hdr;
1964 NK_HDR *first_key;
1966 /* Get the header */
1968 if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) {
1969 return -1;
1972 /* Now process that header and start to read the rest in */
1974 if ((regf_id = IVAL(&regf_hdr->REGF_ID)) != REG_REGF_ID) {
1975 fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n",
1976 regf_id, regf->regfile_name);
1977 return -1;
1981 * Validate the header ...
1983 if (!valid_regf_hdr(regf_hdr)) {
1984 fprintf(stderr, "Registry file header does not validate: %s\n",
1985 regf->regfile_name);
1986 return -1;
1989 /* Update the last mod date, and then go get the first NK record and on */
1991 TTTONTTIME(regf, IVAL(&regf_hdr->tim1), IVAL(&regf_hdr->tim2));
1994 * The hbin hdr seems to be just uninteresting garbage. Check that
1995 * it is there, but that is all.
1998 hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ);
2000 if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) {
2001 fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n",
2002 hbin_id, regf->regfile_name);
2003 return -1;
2007 * Get a pointer to the first key from the hreg_hdr
2010 first_key = (NK_HDR *)LOCN(regf->base, IVAL(&regf_hdr->first_key));
2013 * Now, get the registry tree by processing that NK recursively
2016 regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key), NULL);
2018 assert(regf->root != NULL);
2020 return 1;
2024 * Story the registry in the output file
2026 int nt_store_registry(REGF *regf)
2029 return 1;
2033 * Routines to parse a REGEDIT4 file
2035 * The file consists of:
2037 * REGEDIT4
2038 * \[[-]key-path\]\n
2039 * <value-spec>*
2041 * Format:
2042 * [cmd:]name=type:value
2044 * cmd = a|d|c|add|delete|change|as|ds|cs
2046 * There can be more than one key-path and value-spec.
2048 * Since we want to support more than one type of file format, we
2049 * construct a command-file structure that keeps info about the command file
2052 #define FMT_UNREC -1
2053 #define FMT_REGEDIT4 0
2054 #define FMT_EDITREG1_1 1
2056 #define FMT_STRING_REGEDIT4 "REGEDIT4"
2057 #define FMT_STRING_EDITREG1_0 "EDITREG1.0"
2059 #define CMD_NONE 0
2060 #define CMD_ADD_KEY 1
2061 #define CMD_DEL_KEY 2
2063 #define CMD_KEY 1
2064 #define CMD_VAL 2
2066 typedef struct val_spec_list {
2067 struct val_spec_list *next;
2068 char *name;
2069 int type;
2070 char *val; /* Kept as a char string, really? */
2071 } VAL_SPEC_LIST;
2073 typedef struct command_s {
2074 int cmd;
2075 char *key;
2076 int val_count;
2077 VAL_SPEC_LIST *val_spec_list, *val_spec_last;
2078 } CMD;
2080 typedef struct cmd_line {
2081 int len, line_len;
2082 char *line;
2083 } CMD_LINE;
2086 * Some routines to handle lines of info in the command files
2088 void skip_to_eol(int fd)
2090 int rc;
2091 char ch = 0;
2093 while ((rc = read(fd, &ch, 1)) == 1) {
2094 if (ch == 0x0A) return;
2096 if (rc < 0) {
2097 fprintf(stderr, "Could not read file descriptor: %d, %s\n",
2098 fd, strerror(errno));
2099 exit(1);
2103 void free_cmd(CMD *cmd)
2105 if (!cmd) return;
2107 while (cmd->val_spec_list) {
2108 VAL_SPEC_LIST *tmp;
2110 tmp = cmd->val_spec_list;
2111 cmd->val_spec_list = tmp->next;
2112 free(tmp);
2115 free(cmd);
2119 void free_cmd_line(CMD_LINE *cmd_line)
2121 if (cmd_line) {
2122 if (cmd_line->line) free(cmd_line->line);
2123 free(cmd_line);
2127 void print_line(struct cmd_line *cl)
2129 char *pl;
2131 if (!cl) return;
2133 if ((pl = malloc(cl->line_len + 1)) == NULL) {
2134 fprintf(stderr, "Unable to allocate space to print line: %s\n",
2135 strerror(errno));
2136 exit(1);
2139 strncpy(pl, cl->line, cl->line_len);
2140 pl[cl->line_len] = 0;
2142 fprintf(stdout, "%s\n", pl);
2143 free(pl);
2146 #define INIT_ALLOC 10
2149 * Read a line from the input file.
2150 * NULL returned when EOF and no chars read
2151 * Otherwise we return a cmd_line *
2152 * Exit if other errors
2154 struct cmd_line *get_cmd_line(int fd)
2156 struct cmd_line *cl = (CMD_LINE *)malloc(sizeof(CMD_LINE));
2157 int i = 0, rc;
2158 unsigned char ch;
2160 if (!cl) {
2161 fprintf(stderr, "Unable to allocate structure for command line: %s\n",
2162 strerror(errno));
2163 exit(1);
2166 cl->len = INIT_ALLOC;
2169 * Allocate some space for the line. We extend later if needed.
2172 if ((cl->line = (char *)malloc(INIT_ALLOC)) == NULL) {
2173 fprintf(stderr, "Unable to allocate initial space for line: %s\n",
2174 strerror(errno));
2175 exit(1);
2179 * Now read in the chars to EOL. Don't store the EOL in the
2180 * line. What about CR?
2183 while ((rc = read(fd, &ch, 1)) == 1 && ch != '\n') {
2184 if (ch == '\r') continue; /* skip CR */
2185 if (i == cl->len) {
2187 * Allocate some more memory
2189 if ((cl->line = realloc(cl->line, cl->len + INIT_ALLOC)) == NULL) {
2190 fprintf(stderr, "Unable to realloc space for line: %s\n",
2191 strerror(errno));
2192 exit(1);
2194 cl->len += INIT_ALLOC;
2196 cl->line[i] = ch;
2197 i++;
2200 /* read 0 and we were at loc'n 0, return NULL */
2201 if (rc == 0 && i == 0) {
2202 free_cmd_line(cl);
2203 return NULL;
2206 cl->line_len = i;
2208 return cl;
2213 * parse_value: parse out a value. We pull it apart as:
2215 * <value> ::= <value-name>=<type>:<value-string>
2217 * <value-name> ::= char-string-without-spaces | '"' char-string '"'
2219 * If it parsed OK, return the <value-name> as a string, and the
2220 * value type and value-string in parameters.
2222 * The value name can be empty. There can only be one empty name in
2223 * a list of values. A value of - removes the value entirely.
2226 char *dup_str(char *s, int len)
2228 char *nstr;
2229 nstr = (char *)malloc(len + 1);
2230 if (nstr) {
2231 memcpy(nstr, s, len);
2232 nstr[len] = 0;
2234 return nstr;
2237 char *parse_name(char *nstr)
2239 int len = 0, start = 0;
2240 if (!nstr) return NULL;
2242 len = strlen(nstr);
2244 while (len && nstr[len - 1] == ' ') len--;
2246 nstr[len] = 0; /* Trim any spaces ... if there were none, doesn't matter */
2249 * Beginning and end should be '"' or neither should be so
2251 if ((nstr[0] == '"' && nstr[len - 1] != '"') ||
2252 (nstr[0] != '"' && nstr[len - 1] == '"'))
2253 return NULL;
2255 if (nstr[0] == '"') {
2256 start = 1;
2257 len -= 2;
2260 return dup_str(&nstr[start], len);
2263 int parse_value_type(char *tstr)
2265 int len = strlen(tstr);
2267 while (len && tstr[len - 1] == ' ') len--;
2268 tstr[len] = 0;
2270 if (strcmp(tstr, "REG_DWORD") == 0)
2271 return REG_TYPE_DWORD;
2272 else if (strcmp(tstr, "dword") == 0)
2273 return REG_TYPE_DWORD;
2274 else if (strcmp(tstr, "REG_EXPAND_SZ") == 0)
2275 return REG_TYPE_EXPANDSZ;
2276 else if (strcmp(tstr, "REG_BIN") == 0)
2277 return REG_TYPE_BIN;
2278 else if (strcmp(tstr, "REG_SZ") == 0)
2279 return REG_TYPE_REGSZ;
2280 else if (strcmp(tstr, "REG_MULTI_SZ") == 0)
2281 return REG_TYPE_MULTISZ;
2283 return 0;
2286 char *parse_val_str(char *vstr)
2289 return dup_str(vstr, strlen(vstr));
2293 char *parse_value(struct cmd_line *cl, int *vtype, char **val)
2295 char *p1 = NULL, *p2 = NULL, *nstr = NULL, *tstr = NULL, *vstr = NULL;
2297 if (!cl || !vtype || !val) return NULL;
2298 if (!cl->line_len) return NULL;
2300 p1 = dup_str(cl->line, cl->line_len);
2301 /* FIXME: Better return codes etc ... */
2302 if (!p1) return NULL;
2303 p2 = strchr(p1, '=');
2304 if (!p2) return NULL;
2306 *p2 = 0; p2++; /* Split into two strings at p2 */
2308 /* Now, parse the name ... */
2310 nstr = parse_name(p1);
2311 if (!nstr) goto error;
2313 /* Now, split the remainder and parse on type and val ... */
2315 tstr = p2;
2316 while (*tstr == ' ') tstr++; /* Skip leading white space */
2317 p2 = strchr(p2, ':');
2319 if (!p2) goto error;
2321 *p2 = 0; p2++; /* split on the : */
2323 *vtype = parse_value_type(tstr);
2325 if (!vtype) goto error;
2327 /* Now, parse the value string. It should return a newly malloc'd string */
2329 while (*p2 == ' ') p2++; /* Skip leading space */
2330 vstr = parse_val_str(p2);
2332 if (!vstr) goto error;
2334 *val = vstr;
2336 return nstr;
2338 error:
2339 if (p1) free(p1);
2340 if (nstr) free(nstr);
2341 if (vstr) free(vstr);
2342 return NULL;
2346 * Parse out a key. Look for a correctly formatted key [...]
2347 * and whether it is a delete or add? A delete is signalled
2348 * by a - in front of the key.
2349 * Assumes that there are no leading and trailing spaces
2352 char *parse_key(struct cmd_line *cl, int *cmd)
2354 int start = 1;
2355 char *tmp;
2357 if (cl->line[0] != '[' ||
2358 cl->line[cl->line_len - 1] != ']') return NULL;
2359 if (cl->line_len == 2) return NULL;
2360 *cmd = CMD_ADD_KEY;
2361 if (cl->line[1] == '-') {
2362 if (cl->line_len == 3) return NULL;
2363 start = 2;
2364 *cmd = CMD_DEL_KEY;
2366 tmp = malloc(cl->line_len - 1 - start + 1);
2367 if (!tmp) return tmp; /* Bail out on no mem ... FIXME */
2368 strncpy(tmp, &cl->line[start], cl->line_len - 1 - start);
2369 tmp[cl->line_len - 1 - start] = 0;
2370 return tmp;
2374 * Parse a line to determine if we have a key or a value
2375 * We only check for key or val ...
2378 int parse_line(struct cmd_line *cl)
2381 if (!cl || cl->len == 0) return 0;
2383 if (cl->line[0] == '[') /* No further checking for now */
2384 return CMD_KEY;
2385 else
2386 return CMD_VAL;
2390 * We seek to offset 0, read in the required number of bytes,
2391 * and compare to the correct value.
2392 * We then seek back to the original location
2394 int regedit4_file_type(int fd)
2396 int cur_ofs = 0;
2397 char desc[9];
2399 cur_ofs = lseek(fd, 0, SEEK_CUR); /* Get current offset */
2400 if (cur_ofs < 0) {
2401 fprintf(stderr, "Unable to get current offset: %s\n", strerror(errno));
2402 exit(1); /* FIXME */
2405 if (cur_ofs) {
2406 lseek(fd, 0, SEEK_SET);
2409 if (read(fd, desc, 8) < 8) {
2410 fprintf(stderr, "Unable to read command file format\n");
2411 exit(2); /* FIXME */
2414 desc[8] = 0;
2416 if (strcmp(desc, FMT_STRING_REGEDIT4) == 0) {
2417 if (cur_ofs) {
2418 lseek(fd, cur_ofs, SEEK_SET);
2420 else {
2421 skip_to_eol(fd);
2423 return FMT_REGEDIT4;
2426 return FMT_UNREC;
2430 * Run though the data in the line and strip anything after a comment
2431 * char.
2433 void strip_comment(struct cmd_line *cl)
2435 int i;
2437 if (!cl) return;
2439 for (i = 0; i < cl->line_len; i++) {
2440 if (cl->line[i] == ';') {
2441 cl->line_len = i;
2442 return;
2448 * trim leading space
2451 void trim_leading_spaces(struct cmd_line *cl)
2453 int i;
2455 if (!cl) return;
2457 for (i = 0; i < cl->line_len; i++) {
2458 if (cl->line[i] != ' '){
2459 if (i) memcpy(cl->line, &cl->line[i], cl->line_len - i);
2460 return;
2466 * trim trailing spaces
2468 void trim_trailing_spaces(struct cmd_line *cl)
2470 int i;
2472 if (!cl) return;
2474 for (i = cl->line_len; i == 0; i--) {
2475 if (cl->line[i-1] != ' ' &&
2476 cl->line[i-1] != '\t') {
2477 cl->line_len = i;
2483 * Get a command ... This consists of possibly multiple lines:
2484 * [key]
2485 * values*
2486 * possibly Empty line
2488 * value ::= <value-name>=<value-type>':'<value-string>
2489 * <value-name> is some path, possibly enclosed in quotes ...
2490 * We alctually look for the next key to terminate a previous key
2492 CMD *regedit4_get_cmd(int fd)
2494 struct command_s *cmd = NULL;
2495 struct cmd_line *cl = NULL;
2496 struct val_spec_list *vl = NULL;
2498 if ((cmd = (struct command_s *)malloc(sizeof(struct command_s))) == NULL) {
2499 fprintf(stderr, "Unable to malloc space for command: %s\n",
2500 strerror(errno));
2501 exit(1);
2504 cmd->cmd = CMD_NONE;
2505 cmd->key = NULL;
2506 cmd->val_spec_list = cmd->val_spec_last = NULL;
2507 while (cl = get_cmd_line(fd)) {
2509 strip_comment(cl); /* remove anything beyond a comment char */
2510 trim_trailing_spaces(cl);
2511 trim_leading_spaces(cl);
2513 if (cl->line_len == 0) { /* An empty line */
2514 free_cmd_line(cl);
2516 else { /* Else, non-empty ... */
2518 * Parse out the bits ...
2520 switch (parse_line(cl)) {
2521 case CMD_KEY:
2522 if ((cmd->key = parse_key(cl, &cmd->cmd)) == NULL) {
2523 fprintf(stderr, "Error parsing key from line: ");
2524 print_line(cl);
2525 fprintf(stderr, "\n");
2527 break;
2529 case CMD_VAL:
2531 * We need to add the value stuff to the list
2532 * There could be a \ on the end which we need to
2533 * handle at some time
2535 vl = (struct val_spec_list *)malloc(sizeof(struct val_spec_list));
2536 if (!vl) goto error;
2537 vl->next = NULL;
2538 vl->name = parse_value(cl, &vl->type, &vl->val);
2539 if (!vl->name) goto error;
2540 if (cmd->val_spec_list == NULL) {
2541 cmd->val_spec_list = cmd->val_spec_last = vl;
2543 else {
2544 cmd->val_spec_last->next = vl;
2545 cmd->val_spec_last = vl;
2547 cmd->val_count++;
2548 break;
2550 default:
2551 fprintf(stderr, "Unrecognized line in command file: \n");
2552 print_line(cl);
2553 break;
2558 if (!cmd->cmd) goto error; /* End of file ... */
2560 return cmd;
2562 error:
2563 if (vl) free(vl);
2564 if (cmd) free_cmd(cmd);
2565 return NULL;
2568 int regedit4_exec_cmd(CMD *cmd)
2571 return 0;
2574 int editreg_1_0_file_type(int fd)
2576 int cur_ofs = 0;
2577 char desc[11];
2579 cur_ofs = lseek(fd, 0, SEEK_CUR); /* Get current offset */
2580 if (cur_ofs < 0) {
2581 fprintf(stderr, "Unable to get current offset: %s\n", strerror(errno));
2582 exit(1); /* FIXME */
2585 if (cur_ofs) {
2586 lseek(fd, 0, SEEK_SET);
2589 if (read(fd, desc, 10) < 10) {
2590 fprintf(stderr, "Unable to read command file format\n");
2591 exit(2); /* FIXME */
2594 desc[10] = 0;
2596 if (strcmp(desc, FMT_STRING_EDITREG1_0) == 0) {
2597 lseek(fd, cur_ofs, SEEK_SET);
2598 return FMT_REGEDIT4;
2601 return FMT_UNREC;
2604 CMD *editreg_1_0_get_cmd(int fd)
2606 return NULL;
2609 int editreg_1_0_exec_cmd(CMD *cmd)
2612 return -1;
2615 typedef struct command_ops_s {
2616 int type;
2617 int (*file_type)(int fd);
2618 CMD *(*get_cmd)(int fd);
2619 int (*exec_cmd)(CMD *cmd);
2620 } CMD_OPS;
2622 CMD_OPS default_cmd_ops[] = {
2623 {0, regedit4_file_type, regedit4_get_cmd, regedit4_exec_cmd},
2624 {1, editreg_1_0_file_type, editreg_1_0_get_cmd, editreg_1_0_exec_cmd},
2625 {-1, NULL, NULL, NULL}
2628 typedef struct command_file_s {
2629 char *name;
2630 int type, fd;
2631 CMD_OPS cmd_ops;
2632 } CMD_FILE;
2635 * Create a new command file structure
2638 CMD_FILE *cmd_file_create(char *file)
2640 CMD_FILE *tmp;
2641 struct stat sbuf;
2642 int i = 0;
2645 * Let's check if the file exists ...
2646 * No use creating the cmd_file structure if the file does not exist
2649 if (stat(file, &sbuf) < 0) { /* Not able to access file */
2651 return NULL;
2654 tmp = (CMD_FILE *)malloc(sizeof(CMD_FILE));
2655 if (!tmp) {
2656 return NULL;
2660 * Let's fill in some of the fields;
2663 tmp->name = strdup(file);
2665 if ((tmp->fd = open(file, O_RDONLY, 666)) < 0) {
2666 free(tmp);
2667 return NULL;
2671 * Now, try to find the format by indexing through the table
2673 while (default_cmd_ops[i].type != -1) {
2674 if ((tmp->type = default_cmd_ops[i].file_type(tmp->fd)) >= 0) {
2675 tmp->cmd_ops = default_cmd_ops[i];
2676 return tmp;
2678 i++;
2682 * If we got here, return NULL, as we could not figure out the type
2683 * of command file.
2685 * What about errors?
2688 free(tmp);
2689 return NULL;
2693 * Extract commands from the command file, and execute them.
2694 * We pass a table of command callbacks for that
2698 * Main code from here on ...
2702 * key print function here ...
2705 int print_key(const char *path, char *name, char *class_name, int root,
2706 int terminal, int vals)
2709 /*if (terminal)*/ fprintf(stdout, "[%s%s]\n", path, name);
2711 return 1;
2715 * Sec Desc print functions
2718 void print_type(unsigned char type)
2720 switch (type) {
2721 case 0x00:
2722 fprintf(stdout, " ALLOW");
2723 break;
2724 case 0x01:
2725 fprintf(stdout, " DENY");
2726 break;
2727 case 0x02:
2728 fprintf(stdout, " AUDIT");
2729 break;
2730 case 0x03:
2731 fprintf(stdout, " ALARM");
2732 break;
2733 case 0x04:
2734 fprintf(stdout, "ALLOW CPD");
2735 break;
2736 case 0x05:
2737 fprintf(stdout, "OBJ ALLOW");
2738 break;
2739 case 0x06:
2740 fprintf(stdout, " OBJ DENY");
2741 default:
2742 fprintf(stdout, " UNKNOWN");
2743 break;
2747 void print_flags(unsigned char flags)
2749 char flg_output[21];
2750 int some = 0;
2752 flg_output[0] = 0;
2753 if (!flags) {
2754 fprintf(stdout, " ");
2755 return;
2757 if (flags & 0x01) {
2758 if (some) strcat(flg_output, ",");
2759 some = 1;
2760 strcat(flg_output, "OI");
2762 if (flags & 0x02) {
2763 if (some) strcat(flg_output, ",");
2764 some = 1;
2765 strcat(flg_output, "CI");
2767 if (flags & 0x04) {
2768 if (some) strcat(flg_output, ",");
2769 some = 1;
2770 strcat(flg_output, "NP");
2772 if (flags & 0x08) {
2773 if (some) strcat(flg_output, ",");
2774 some = 1;
2775 strcat(flg_output, "IO");
2777 if (flags & 0x10) {
2778 if (some) strcat(flg_output, ",");
2779 some = 1;
2780 strcat(flg_output, "IA");
2782 if (flags == 0xF) {
2783 if (some) strcat(flg_output, ",");
2784 some = 1;
2785 strcat(flg_output, "VI");
2787 fprintf(stdout, " %s", flg_output);
2790 void print_perms(int perms)
2792 fprintf(stdout, " %8X", perms);
2795 void print_sid(DOM_SID *sid)
2797 int i, comps = sid->auths;
2798 fprintf(stdout, "S-%u-%u", sid->ver, sid->auth[5]);
2800 for (i = 0; i < comps; i++) {
2802 fprintf(stdout, "-%u", sid->sub_auths[i]);
2805 fprintf(stdout, "\n");
2808 void print_acl(ACL *acl, char *prefix)
2810 int i;
2812 for (i = 0; i < acl->num_aces; i++) {
2813 fprintf(stdout, ";;%s", prefix);
2814 print_type(acl->aces[i]->type);
2815 print_flags(acl->aces[i]->flags);
2816 print_perms(acl->aces[i]->perms);
2817 fprintf(stdout, " ");
2818 print_sid(acl->aces[i]->trustee);
2822 int print_sec(SEC_DESC *sec_desc)
2824 if (!print_security) return 1;
2825 fprintf(stdout, ";; SECURITY\n");
2826 fprintf(stdout, ";; Owner: ");
2827 print_sid(sec_desc->owner);
2828 fprintf(stdout, ";; Group: ");
2829 print_sid(sec_desc->group);
2830 if (sec_desc->sacl) {
2831 fprintf(stdout, ";; SACL:\n");
2832 print_acl(sec_desc->sacl, " ");
2834 if (sec_desc->dacl) {
2835 fprintf(stdout, ";; DACL:\n");
2836 print_acl(sec_desc->dacl, " ");
2838 return 1;
2842 * Value print function here ...
2844 int print_val(const char *path, char *val_name, int val_type, int data_len,
2845 void *data_blk, int terminal, int first, int last)
2847 char data_asc[1024];
2849 bzero(data_asc, sizeof(data_asc));
2850 if (!terminal && first)
2851 fprintf(stdout, "%s\n", path);
2852 data_to_ascii((unsigned char *)data_blk, data_len, val_type, data_asc,
2853 sizeof(data_asc) - 1);
2854 fprintf(stdout, " %s = %s : %s\n", (val_name?val_name:"<No Name>"),
2855 val_to_str(val_type, reg_type_names), data_asc);
2856 return 1;
2859 void usage(void)
2861 fprintf(stderr, "Usage: editreg [-v] [-p] [-k] [-s] [-c <command-file>] <registryfile>\n");
2862 fprintf(stderr, "Version: 0.1\n\n");
2863 fprintf(stderr, "\n\t-v\t sets verbose mode");
2864 fprintf(stderr, "\n\t-p\t prints the registry");
2865 fprintf(stderr, "\n\t-s\t prints security descriptors");
2866 fprintf(stderr, "\n\t-c <command-file>\t specifies a command file");
2867 fprintf(stderr, "\n");
2870 int main(int argc, char *argv[])
2872 REGF *regf;
2873 extern char *optarg;
2874 extern int optind;
2875 int opt, print_keys = 0;
2876 int regf_opt = 1; /* Command name */
2877 int commands = 0;
2878 char *cmd_file_name = NULL;
2879 char *out_file_name = NULL;
2880 CMD_FILE *cmd_file = NULL;
2882 if (argc < 2) {
2883 usage();
2884 exit(1);
2888 * Now, process the arguments
2891 while ((opt = getopt(argc, argv, "spvko:c:")) != EOF) {
2892 switch (opt) {
2893 case 'c':
2894 commands = 1;
2895 cmd_file_name = optarg;
2896 regf_opt += 2;
2897 break;
2899 case 'o':
2900 out_file_name = optarg;
2901 regf_opt += 2;
2902 break;
2904 case 'p':
2905 print_keys++;
2906 regf_opt++;
2907 break;
2909 case 's':
2910 print_security++;
2911 regf_opt++;
2912 break;
2914 case 'v':
2915 verbose++;
2916 regf_opt++;
2917 break;
2919 case 'k':
2920 regf_opt++;
2921 break;
2923 default:
2924 usage();
2925 exit(1);
2926 break;
2930 if ((regf = nt_create_regf()) == NULL) {
2931 fprintf(stderr, "Could not create registry object: %s\n", strerror(errno));
2932 exit(2);
2935 if (regf_opt < argc) { /* We have a registry file */
2936 if (!nt_set_regf_input_file(regf, argv[regf_opt])) {
2937 fprintf(stderr, "Could not set name of registry file: %s, %s\n",
2938 argv[regf_opt], strerror(errno));
2939 exit(3);
2942 /* Now, open it, and bring it into memory :-) */
2944 if (nt_load_registry(regf) < 0) {
2945 fprintf(stderr, "Could not load registry: %s\n", argv[1]);
2946 exit(4);
2950 if (out_file_name) {
2951 if (!nt_set_regf_output_file(regf, out_file_name)) {
2952 fprintf(stderr, "Could not set name of output registry file: %s, %s\n",
2953 out_file_name, strerror(errno));
2954 exit(3);
2959 if (commands) {
2960 CMD *cmd;
2962 cmd_file = cmd_file_create(cmd_file_name);
2964 while ((cmd = cmd_file->cmd_ops.get_cmd(cmd_file->fd)) != NULL) {
2967 * Now, apply the requests to the tree ...
2969 switch (cmd->cmd) {
2970 case CMD_ADD_KEY:
2972 break;
2974 case CMD_DEL_KEY:
2976 * Any value does not matter ...
2977 * Find the key if it exists, and delete it ...
2980 nt_delete_key_by_name(regf, cmd->key);
2981 break;
2984 free_cmd(cmd);
2988 * At this point, we should have a registry in memory and should be able
2989 * to iterate over it.
2992 if (print_keys) {
2993 nt_key_iterator(regf, regf->root, 0, "", print_key, print_sec, print_val);
2996 return 0;