s3: Pass smbd_server_connection to srv_decrypt_buffer
[Samba/gebeck_regimport.git] / lib / talloc / talloc.h
blob96c7e2467c27b27dd23107f799603fa855434351
1 #ifndef _TALLOC_H_
2 #define _TALLOC_H_
3 /*
4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
12 ** under the LGPL
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
36 /**
37 * @defgroup talloc The talloc API
39 * talloc is a hierarchical, reference counted memory pool system with
40 * destructors. It is the core memory allocator used in Samba.
42 * @{
45 #define TALLOC_VERSION_MAJOR 2
46 #define TALLOC_VERSION_MINOR 0
48 int talloc_version_major(void);
49 int talloc_version_minor(void);
51 /**
52 * @brief Define a talloc parent type
54 * As talloc is a hierarchial memory allocator, every talloc chunk is a
55 * potential parent to other talloc chunks. So defining a separate type for a
56 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
57 * as it provides an indicator for function arguments. You will frequently
58 * write code like
60 * @code
61 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
62 * {
63 * struct foo *result;
64 * result = talloc(mem_ctx, struct foo);
65 * if (result == NULL) return NULL;
66 * ... initialize foo ...
67 * return result;
68 * }
69 * @endcode
71 * In this type of allocating functions it is handy to have a general
72 * TALLOC_CTX type to indicate which parent to put allocated structures on.
74 typedef void TALLOC_CTX;
77 this uses a little trick to allow __LINE__ to be stringified
79 #ifndef __location__
80 #define __TALLOC_STRING_LINE1__(s) #s
81 #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
82 #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
83 #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
84 #endif
86 #ifndef TALLOC_DEPRECATED
87 #define TALLOC_DEPRECATED 0
88 #endif
90 #ifndef PRINTF_ATTRIBUTE
91 #if (__GNUC__ >= 3)
92 /** Use gcc attribute to check printf fns. a1 is the 1-based index of
93 * the parameter containing the format, and a2 the index of the first
94 * argument. Note that some gcc 2.x versions don't handle this
95 * properly **/
96 #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
97 #else
98 #define PRINTF_ATTRIBUTE(a1, a2)
99 #endif
100 #endif
102 #ifdef DOXYGEN
104 * @brief Create a new talloc context.
106 * The talloc() macro is the core of the talloc library. It takes a memory
107 * context and a type, and returns a pointer to a new area of memory of the
108 * given type.
110 * The returned pointer is itself a talloc context, so you can use it as the
111 * context argument to more calls to talloc if you wish.
113 * The returned pointer is a "child" of the supplied context. This means that if
114 * you talloc_free() the context then the new child disappears as well.
115 * Alternatively you can free just the child.
117 * @param[in] ctx A talloc context to create a new reference on or NULL to
118 * create a new top level context.
120 * @param[in] type The type of memory to allocate.
122 * @return A type casted talloc context or NULL on error.
124 * @code
125 * unsigned int *a, *b;
127 * a = talloc(NULL, unsigned int);
128 * b = talloc(a, unsigned int);
129 * @endcode
131 * @see talloc_zero
132 * @see talloc_array
133 * @see talloc_steal
134 * @see talloc_free
136 void *talloc(const void *ctx, #type);
137 #else
138 #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
139 void *_talloc(const void *context, size_t size);
140 #endif
143 * @brief Create a new top level talloc context.
145 * This function creates a zero length named talloc context as a top level
146 * context. It is equivalent to:
148 * @code
149 * talloc_named(NULL, 0, fmt, ...);
150 * @endcode
151 * @param[in] fmt Format string for the name.
153 * @param[in] ... Additional printf-style arguments.
155 * @return The allocated memory chunk, NULL on error.
157 * @see talloc_named()
159 void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
161 #ifdef DOXYGEN
163 * @brief Free a chunk of talloc memory.
165 * The talloc_free() function frees a piece of talloc memory, and all its
166 * children. You can call talloc_free() on any pointer returned by
167 * talloc().
169 * The return value of talloc_free() indicates success or failure, with 0
170 * returned for success and -1 for failure. A possible failure condition
171 * is if the pointer had a destructor attached to it and the destructor
172 * returned -1. See talloc_set_destructor() for details on
173 * destructors. Likewise, if "ptr" is NULL, then the function will make
174 * no modifications and return -1.
176 * From version 2.0 and onwards, as a special case, talloc_free() is
177 * refused on pointers that have more than one parent associated, as talloc
178 * would have no way of knowing which parent should be removed. This is
179 * different from older versions in the sense that always the reference to
180 * the most recently established parent has been destroyed. Hence to free a
181 * pointer that has more than one parent please use talloc_unlink().
183 * To help you find problems in your code caused by this behaviour, if
184 * you do try and free a pointer with more than one parent then the
185 * talloc logging function will be called to give output like this:
187 * @code
188 * ERROR: talloc_free with references at some_dir/source/foo.c:123
189 * reference at some_dir/source/other.c:325
190 * reference at some_dir/source/third.c:121
191 * @endcode
193 * Please see the documentation for talloc_set_log_fn() and
194 * talloc_set_log_stderr() for more information on talloc logging
195 * functions.
197 * talloc_free() operates recursively on its children.
199 * @param[in] ptr The chunk to be freed.
201 * @return Returns 0 on success and -1 on error. A possible
202 * failure condition is if the pointer had a destructor
203 * attached to it and the destructor returned -1. Likewise,
204 * if "ptr" is NULL, then the function will make no
205 * modifications and returns -1.
207 * Example:
208 * @code
209 * unsigned int *a, *b;
210 * a = talloc(NULL, unsigned int);
211 * b = talloc(a, unsigned int);
213 * talloc_free(a); // Frees a and b
214 * @endcode
216 * @see talloc_set_destructor()
217 * @see talloc_unlink()
219 int talloc_free(void *ptr);
220 #else
221 #define talloc_free(ctx) _talloc_free(ctx, __location__)
222 int _talloc_free(void *ptr, const char *location);
223 #endif
226 * @brief Free a talloc chunk's children.
228 * The function walks along the list of all children of a talloc context and
229 * talloc_free()s only the children, not the context itself.
231 * A NULL argument is handled as no-op.
233 * @param[in] ptr The chunk that you want to free the children of
234 * (NULL is allowed too)
236 void talloc_free_children(void *ptr);
238 #ifdef DOXYGEN
240 * @brief Assign a destructor function to be called when a chunk is freed.
242 * The function talloc_set_destructor() sets the "destructor" for the pointer
243 * "ptr". A destructor is a function that is called when the memory used by a
244 * pointer is about to be released. The destructor receives the pointer as an
245 * argument, and should return 0 for success and -1 for failure.
247 * The destructor can do anything it wants to, including freeing other pieces
248 * of memory. A common use for destructors is to clean up operating system
249 * resources (such as open file descriptors) contained in the structure the
250 * destructor is placed on.
252 * You can only place one destructor on a pointer. If you need more than one
253 * destructor then you can create a zero-length child of the pointer and place
254 * an additional destructor on that.
256 * To remove a destructor call talloc_set_destructor() with NULL for the
257 * destructor.
259 * If your destructor attempts to talloc_free() the pointer that it is the
260 * destructor for then talloc_free() will return -1 and the free will be
261 * ignored. This would be a pointless operation anyway, as the destructor is
262 * only called when the memory is just about to go away.
264 * @param[in] ptr The talloc chunk to add a destructor to.
266 * @param[in] destructor The destructor function to be called. NULL to remove
267 * it.
269 * Example:
270 * @code
271 * static int destroy_fd(int *fd) {
272 * close(*fd);
273 * return 0;
276 * int *open_file(const char *filename) {
277 * int *fd = talloc(NULL, int);
278 * *fd = open(filename, O_RDONLY);
279 * if (*fd < 0) {
280 * talloc_free(fd);
281 * return NULL;
283 * // Whenever they free this, we close the file.
284 * talloc_set_destructor(fd, destroy_fd);
285 * return fd;
287 * @endcode
289 * @see talloc()
290 * @see talloc_free()
292 void talloc_set_destructor(const void *ptr, int (*destructor)(void *));
295 * @brief Change a talloc chunk's parent.
297 * The talloc_steal() function changes the parent context of a talloc
298 * pointer. It is typically used when the context that the pointer is
299 * currently a child of is going to be freed and you wish to keep the
300 * memory for a longer time.
302 * To make the changed hierarchy less error-prone, you might consider to use
303 * talloc_move().
305 * If you try and call talloc_steal() on a pointer that has more than one
306 * parent then the result is ambiguous. Talloc will choose to remove the
307 * parent that is currently indicated by talloc_parent() and replace it with
308 * the chosen parent. You will also get a message like this via the talloc
309 * logging functions:
311 * @code
312 * WARNING: talloc_steal with references at some_dir/source/foo.c:123
313 * reference at some_dir/source/other.c:325
314 * reference at some_dir/source/third.c:121
315 * @endcode
317 * To unambiguously change the parent of a pointer please see the function
318 * talloc_reparent(). See the talloc_set_log_fn() documentation for more
319 * information on talloc logging.
321 * @param[in] new_ctx The new parent context.
323 * @param[in] ptr The talloc chunk to move.
325 * @return Returns the pointer that you pass it. It does not have
326 * any failure modes.
328 * @note It is possible to produce loops in the parent/child relationship
329 * if you are not careful with talloc_steal(). No guarantees are provided
330 * as to your sanity or the safety of your data if you do this.
332 void *talloc_steal(const void *new_ctx, const void *ptr);
333 #else /* DOXYGEN */
334 /* try to make talloc_set_destructor() and talloc_steal() type safe,
335 if we have a recent gcc */
336 #if (__GNUC__ >= 3)
337 #define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
338 #define talloc_set_destructor(ptr, function) \
339 do { \
340 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
341 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
342 } while(0)
343 /* this extremely strange macro is to avoid some braindamaged warning
344 stupidity in gcc 4.1.x */
345 #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__); __talloc_steal_ret; })
346 #else /* __GNUC__ >= 3 */
347 #define talloc_set_destructor(ptr, function) \
348 _talloc_set_destructor((ptr), (int (*)(void *))(function))
349 #define _TALLOC_TYPEOF(ptr) void *
350 #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__)
351 #endif /* __GNUC__ >= 3 */
352 void _talloc_set_destructor(const void *ptr, int (*_destructor)(void *));
353 void *_talloc_steal_loc(const void *new_ctx, const void *ptr, const char *location);
354 #endif /* DOXYGEN */
357 * @brief Assign a name to a talloc chunk.
359 * Each talloc pointer has a "name". The name is used principally for
360 * debugging purposes, although it is also possible to set and get the name on
361 * a pointer in as a way of "marking" pointers in your code.
363 * The main use for names on pointer is for "talloc reports". See
364 * talloc_report() and talloc_report_full() for details. Also see
365 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
367 * The talloc_set_name() function allocates memory as a child of the
368 * pointer. It is logically equivalent to:
370 * @code
371 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
372 * @endcode
374 * @param[in] ptr The talloc chunk to assign a name to.
376 * @param[in] fmt Format string for the name.
378 * @param[in] ... Add printf-style additional arguments.
380 * @return The assigned name, NULL on error.
382 * @note Multiple calls to talloc_set_name() will allocate more memory without
383 * releasing the name. All of the memory is released when the ptr is freed
384 * using talloc_free().
386 const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
388 #ifdef DOXYGEN
390 * @brief Change a talloc chunk's parent.
392 * This function has the same effect as talloc_steal(), and additionally sets
393 * the source pointer to NULL. You would use it like this:
395 * @code
396 * struct foo *X = talloc(tmp_ctx, struct foo);
397 * struct foo *Y;
398 * Y = talloc_move(new_ctx, &X);
399 * @endcode
401 * @param[in] new_ctx The new parent context.
403 * @param[in] pptr Pointer to the talloc chunk to move.
405 * @return The pointer of the talloc chunk it has been moved to,
406 * NULL on error.
408 void *talloc_move(const void *new_ctx, void **pptr);
409 #else
410 #define talloc_move(ctx, pptr) (_TALLOC_TYPEOF(*(pptr)))_talloc_move((ctx),(void *)(pptr))
411 void *_talloc_move(const void *new_ctx, const void *pptr);
412 #endif
415 * @brief Assign a name to a talloc chunk.
417 * The function is just like talloc_set_name(), but it takes a string constant,
418 * and is much faster. It is extensively used by the "auto naming" macros, such
419 * as talloc_p().
421 * This function does not allocate any memory. It just copies the supplied
422 * pointer into the internal representation of the talloc ptr. This means you
423 * must not pass a name pointer to memory that will disappear before the ptr
424 * is freed with talloc_free().
426 * @param[in] ptr The talloc chunk to assign a name to.
428 * @param[in] name Format string for the name.
430 void talloc_set_name_const(const void *ptr, const char *name);
433 * @brief Create a named talloc chunk.
435 * The talloc_named() function creates a named talloc pointer. It is
436 * equivalent to:
438 * @code
439 * ptr = talloc_size(context, size);
440 * talloc_set_name(ptr, fmt, ....);
441 * @endcode
443 * @param[in] context The talloc context to hang the result off.
445 * @param[in] size Number of char's that you want to allocate.
447 * @param[in] fmt Format string for the name.
449 * @param[in] ... Additional printf-style arguments.
451 * @return The allocated memory chunk, NULL on error.
453 * @see talloc_set_name()
455 void *talloc_named(const void *context, size_t size,
456 const char *fmt, ...) PRINTF_ATTRIBUTE(3,4);
459 * @brief Basic routine to allocate a chunk of memory.
461 * This is equivalent to:
463 * @code
464 * ptr = talloc_size(context, size);
465 * talloc_set_name_const(ptr, name);
466 * @endcode
468 * @param[in] context The parent context.
470 * @param[in] size The number of char's that we want to allocate.
472 * @param[in] name The name the talloc block has.
474 * @return The allocated memory chunk, NULL on error.
476 void *talloc_named_const(const void *context, size_t size, const char *name);
478 #ifdef DOXYGEN
480 * @brief Untyped allocation.
482 * The function should be used when you don't have a convenient type to pass to
483 * talloc(). Unlike talloc(), it is not type safe (as it returns a void *), so
484 * you are on your own for type checking.
486 * Best to use talloc() or talloc_array() instead.
488 * @param[in] ctx The talloc context to hang the result off.
490 * @param[in] size Number of char's that you want to allocate.
492 * @return The allocated memory chunk, NULL on error.
494 * Example:
495 * @code
496 * void *mem = talloc_size(NULL, 100);
497 * @endcode
499 void *talloc_size(const void *ctx, size_t size);
500 #else
501 #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
502 #endif
504 #ifdef DOXYGEN
506 * @brief Allocate into a typed pointer.
508 * The talloc_ptrtype() macro should be used when you have a pointer and want
509 * to allocate memory to point at with this pointer. When compiling with
510 * gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size() and
511 * talloc_get_name() will return the current location in the source file and
512 * not the type.
514 * @param[in] ctx The talloc context to hang the result off.
516 * @param[in] type The pointer you want to assign the result to.
518 * @return The properly casted allocated memory chunk, NULL on
519 * error.
521 * Example:
522 * @code
523 * unsigned int *a = talloc_ptrtype(NULL, a);
524 * @endcode
526 void *talloc_ptrtype(const void *ctx, #type);
527 #else
528 #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
529 #endif
531 #ifdef DOXYGEN
533 * @brief Allocate a new 0-sized talloc chunk.
535 * This is a utility macro that creates a new memory context hanging off an
536 * existing context, automatically naming it "talloc_new: __location__" where
537 * __location__ is the source line it is called from. It is particularly
538 * useful for creating a new temporary working context.
540 * @param[in] ctx The talloc parent context.
542 * @return A new talloc chunk, NULL on error.
544 void *talloc_new(const void *ctx);
545 #else
546 #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
547 #endif
549 #ifdef DOXYGEN
551 * @brief Allocate a 0-initizialized structure.
553 * The macro is equivalent to:
555 * @code
556 * ptr = talloc(ctx, type);
557 * if (ptr) memset(ptr, 0, sizeof(type));
558 * @endcode
560 * @param[in] ctx The talloc context to hang the result off.
562 * @param[in] type The type that we want to allocate.
564 * @return Pointer to a piece of memory, properly cast to 'type *',
565 * NULL on error.
567 * Example:
568 * @code
569 * unsigned int *a, *b;
570 * a = talloc_zero(NULL, unsigned int);
571 * b = talloc_zero(a, unsigned int);
572 * @endcode
574 * @see talloc()
575 * @see talloc_zero_size()
576 * @see talloc_zero_array()
578 void *talloc_zero(const void *ctx, #type);
581 * @brief Allocate untyped, 0-initialized memory.
583 * @param[in] ctx The talloc context to hang the result off.
585 * @param[in] size Number of char's that you want to allocate.
587 * @return The allocated memory chunk.
589 void *talloc_zero_size(const void *ctx, size_t size);
590 #else
591 #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
592 #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
593 void *_talloc_zero(const void *ctx, size_t size, const char *name);
594 #endif
597 * @brief Return the name of a talloc chunk.
599 * @param[in] ptr The talloc chunk.
601 * @return The current name for the given talloc pointer.
603 * @see talloc_set_name()
605 const char *talloc_get_name(const void *ptr);
608 * @brief Verify that a talloc chunk carries a specified name.
610 * This function checks if a pointer has the specified name. If it does
611 * then the pointer is returned.
613 * @param[in] ptr The talloc chunk to check.
615 * @param[in] name The name to check against.
617 * @return The pointer if the name matches, NULL if it doesn't.
619 void *talloc_check_name(const void *ptr, const char *name);
622 * @brief Get the parent chunk of a pointer.
624 * @param[in] ptr The talloc pointer to inspect.
626 * @return The talloc parent of ptr, NULL on error.
628 void *talloc_parent(const void *ptr);
631 * @brief Get a talloc chunk's parent name.
633 * @param[in] ptr The talloc pointer to inspect.
635 * @return The name of ptr's parent chunk.
637 const char *talloc_parent_name(const void *ptr);
640 * @brief Get the total size of a talloc chunk including its children.
642 * The function returns the total size in bytes used by this pointer and all
643 * child pointers. Mostly useful for debugging.
645 * Passing NULL is allowed, but it will only give a meaningful result if
646 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
647 * been called.
649 * @param[in] ptr The talloc chunk.
651 * @return The total size.
653 size_t talloc_total_size(const void *ptr);
656 * @brief Get the number of talloc chunks hanging off a chunk.
658 * The talloc_total_blocks() function returns the total memory block
659 * count used by this pointer and all child pointers. Mostly useful for
660 * debugging.
662 * Passing NULL is allowed, but it will only give a meaningful result if
663 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
664 * been called.
666 * @param[in] ptr The talloc chunk.
668 * @return The total size.
670 size_t talloc_total_blocks(const void *ptr);
672 #ifdef DOXYGEN
674 * @brief Duplicate a memory area into a talloc chunk.
676 * The function is equivalent to:
678 * @code
679 * ptr = talloc_size(ctx, size);
680 * if (ptr) memcpy(ptr, p, size);
681 * @endcode
683 * @param[in] t The talloc context to hang the result off.
685 * @param[in] p The memory chunk you want to duplicate.
687 * @param[in] size Number of char's that you want copy.
689 * @return The allocated memory chunk.
691 * @see talloc_size()
693 void *talloc_memdup(const void *t, const void *p, size_t size);
694 #else
695 #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
696 void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name);
697 #endif
699 #ifdef DOXYGEN
701 * @brief Assign a type to a talloc chunk.
703 * This macro allows you to force the name of a pointer to be of a particular
704 * type. This can be used in conjunction with talloc_get_type() to do type
705 * checking on void* pointers.
707 * It is equivalent to this:
709 * @code
710 * talloc_set_name_const(ptr, #type)
711 * @endcode
713 * @param[in] ptr The talloc chunk to assign the type to.
715 * @param[in] type The type to assign.
717 void talloc_set_type(const char *ptr, #type);
720 * @brief Get a typed pointer out of a talloc pointer.
722 * This macro allows you to do type checking on talloc pointers. It is
723 * particularly useful for void* private pointers. It is equivalent to
724 * this:
726 * @code
727 * (type *)talloc_check_name(ptr, #type)
728 * @endcode
730 * @param[in] ptr The talloc pointer to check.
732 * @param[in] type The type to check against.
734 * @return The properly casted pointer given by ptr, NULL on error.
736 type *talloc_get_type(const void *ptr, #type);
737 #else
738 #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
739 #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
740 #endif
742 #ifdef DOXYGEN
744 * @brief Safely turn a void pointer into a typed pointer.
746 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
747 * assing the talloc chunk pointer to some void pointer variable,
748 * talloc_get_type_abort() is the recommended way to get the convert the void
749 * pointer back to a typed pointer.
751 * @param[in] ptr The void pointer to convert.
753 * @param[in] type The type that this chunk contains
755 * @return The same value as ptr, type-checked and properly cast.
757 void *talloc_get_type_abort(const void *ptr, #type);
758 #else
759 #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
760 void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location);
761 #endif
764 * @brief Find a parent context by name.
766 * Find a parent memory context of the current context that has the given
767 * name. This can be very useful in complex programs where it may be
768 * difficult to pass all information down to the level you need, but you
769 * know the structure you want is a parent of another context.
771 * @param[in] ctx The talloc chunk to start from.
773 * @param[in] name The name of the parent we look for.
775 * @return The memory context we are looking for, NULL if not
776 * found.
778 void *talloc_find_parent_byname(const void *ctx, const char *name);
780 #ifdef DOXYGEN
782 * @brief Find a parent context by type.
784 * Find a parent memory context of the current context that has the given
785 * name. This can be very useful in complex programs where it may be
786 * difficult to pass all information down to the level you need, but you
787 * know the structure you want is a parent of another context.
789 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
791 * @param[in] ptr The talloc chunk to start from.
793 * @param[in] type The type of the parent to look for.
795 * @return The memory context we are looking for, NULL if not
796 * found.
798 void *talloc_find_parent_bytype(const void *ptr, #type);
799 #else
800 #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
801 #endif
804 * @brief Allocate a talloc pool.
806 * A talloc pool is a pure optimization for specific situations. In the
807 * release process for Samba 3.2 we found out that we had become considerably
808 * slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
809 * consumer in benchmarks. For Samba 3.2 we have internally converted many
810 * static buffers to dynamically allocated ones, so malloc(3) being beaten
811 * more was no surprise. But it made us slower.
813 * talloc_pool() is an optimization to call malloc(3) a lot less for the use
814 * pattern Samba has: The SMB protocol is mainly a request/response protocol
815 * where we have to allocate a certain amount of memory per request and free
816 * that after the SMB reply is sent to the client.
818 * talloc_pool() creates a talloc chunk that you can use as a talloc parent
819 * exactly as you would use any other ::TALLOC_CTX. The difference is that
820 * when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
821 * just increments a pointer inside the talloc_pool. This also works
822 * recursively. If you use the child of the talloc pool as a parent for
823 * grand-children, their memory is also taken from the talloc pool.
825 * If you talloc_free() children of a talloc pool, the memory is not given
826 * back to the system. Instead, free(3) is only called if the talloc_pool()
827 * itself is released with talloc_free().
829 * The downside of a talloc pool is that if you talloc_move() a child of a
830 * talloc pool to a talloc parent outside the pool, the whole pool memory is
831 * not free(3)'ed until that moved chunk is also talloc_free()ed.
833 * @param[in] context The talloc context to hang the result off.
835 * @param[in] size Size of the talloc pool.
837 * @return The allocated talloc pool, NULL on error.
839 void *talloc_pool(const void *context, size_t size);
842 * @brief Free a talloc chunk and NULL out the pointer.
844 * TALLOC_FREE() frees a pointer and sets it to NULL. Use this if you want
845 * immediate feedback (i.e. crash) if you use a pointer after having free'ed
846 * it.
848 * @param[in] ctx The chunk to be freed.
850 #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
852 /* @} ******************************************************************/
855 * \defgroup talloc_ref The talloc reference function.
856 * @ingroup talloc
858 * This module contains the definitions around talloc references
860 * @{
864 * @brief Increase the reference count of a talloc chunk.
866 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
868 * @code
869 * talloc_reference(NULL, ptr);
870 * @endcode
872 * You can use either syntax, depending on which you think is clearer in
873 * your code.
875 * @param[in] ptr The pointer to increase the reference count.
877 * @return 0 on success, -1 on error.
879 int talloc_increase_ref_count(const void *ptr);
882 * @brief Get the number of references to a talloc chunk.
884 * @param[in] ptr The pointer to retrieve the reference count from.
886 * @return The number of references.
888 size_t talloc_reference_count(const void *ptr);
890 #ifdef DOXYGEN
892 * @brief Create an additional talloc parent to a pointer.
894 * The talloc_reference() function makes "context" an additional parent of
895 * ptr. Each additional reference consumes around 48 bytes of memory on intel
896 * x86 platforms.
898 * If ptr is NULL, then the function is a no-op, and simply returns NULL.
900 * After creating a reference you can free it in one of the following ways:
902 * - you can talloc_free() any parent of the original pointer. That
903 * will reduce the number of parents of this pointer by 1, and will
904 * cause this pointer to be freed if it runs out of parents.
906 * - you can talloc_free() the pointer itself if it has at maximum one
907 * parent. This behaviour has been changed since the release of version
908 * 2.0. Further informations in the description of "talloc_free".
910 * For more control on which parent to remove, see talloc_unlink()
911 * @param[in] ctx The additional parent.
913 * @param[in] ptr The pointer you want to create an additional parent for.
915 * @return The original pointer 'ptr', NULL if talloc ran out of
916 * memory in creating the reference.
918 * Example:
919 * @code
920 * unsigned int *a, *b, *c;
921 * a = talloc(NULL, unsigned int);
922 * b = talloc(NULL, unsigned int);
923 * c = talloc(a, unsigned int);
924 * // b also serves as a parent of c.
925 * talloc_reference(b, c);
926 * @endcode
928 * @see talloc_unlink()
930 void *talloc_reference(const void *ctx, const void *ptr);
931 #else
932 #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference_loc((ctx),(ptr), __location__)
933 void *_talloc_reference_loc(const void *context, const void *ptr, const char *location);
934 #endif
937 * @brief Remove a specific parent from a talloc chunk.
939 * The function removes a specific parent from ptr. The context passed must
940 * either be a context used in talloc_reference() with this pointer, or must be
941 * a direct parent of ptr.
943 * You can just use talloc_free() instead of talloc_unlink() if there
944 * is at maximum one parent. This behaviour has been changed since the
945 * release of version 2.0. Further informations in the description of
946 * "talloc_free".
948 * @param[in] context The talloc parent to remove.
950 * @param[in] ptr The talloc ptr you want to remove the parent from.
952 * @return 0 on success, -1 on error.
954 * @note If the parent has already been removed using talloc_free() then
955 * this function will fail and will return -1. Likewise, if ptr is NULL,
956 * then the function will make no modifications and return -1.
958 * Example:
959 * @code
960 * unsigned int *a, *b, *c;
961 * a = talloc(NULL, unsigned int);
962 * b = talloc(NULL, unsigned int);
963 * c = talloc(a, unsigned int);
964 * // b also serves as a parent of c.
965 * talloc_reference(b, c);
966 * talloc_unlink(b, c);
967 * @endcode
969 int talloc_unlink(const void *context, void *ptr);
972 * @brief Provide a talloc context that is freed at program exit.
974 * This is a handy utility function that returns a talloc context
975 * which will be automatically freed on program exit. This can be used
976 * to reduce the noise in memory leak reports.
978 * Never use this in code that might be used in objects loaded with
979 * dlopen and unloaded with dlclose. talloc_autofree_context()
980 * internally uses atexit(3). Some platforms like modern Linux handles
981 * this fine, but for example FreeBSD does not deal well with dlopen()
982 * and atexit() used simultaneously: dlclose() does not clean up the
983 * list of atexit-handlers, so when the program exits the code that
984 * was registered from within talloc_autofree_context() is gone, the
985 * program crashes at exit.
987 * @return A talloc context, NULL on error.
989 void *talloc_autofree_context(void);
992 * @brief Get the size of a talloc chunk.
994 * This function lets you know the amount of memory allocated so far by
995 * this context. It does NOT account for subcontext memory.
996 * This can be used to calculate the size of an array.
998 * @param[in] ctx The talloc chunk.
1000 * @return The size of the talloc chunk.
1002 size_t talloc_get_size(const void *ctx);
1005 * @brief Show the parentage of a context.
1007 * @param[in] context The talloc context to look at.
1009 * @param[in] file The output to use, a file, stdout or stderr.
1011 void talloc_show_parents(const void *context, FILE *file);
1014 * @brief Check if a context is parent of a talloc chunk.
1016 * This checks if context is referenced in the talloc hierarchy above ptr.
1018 * @param[in] context The assumed talloc context.
1020 * @param[in] ptr The talloc chunk to check.
1022 * @return Return 1 if this is the case, 0 if not.
1024 int talloc_is_parent(const void *context, const void *ptr);
1027 * @brief Change the parent context of a talloc pointer.
1029 * The function changes the parent context of a talloc pointer. It is typically
1030 * used when the context that the pointer is currently a child of is going to be
1031 * freed and you wish to keep the memory for a longer time.
1033 * The difference between talloc_reparent() and talloc_steal() is that
1034 * talloc_reparent() can specify which parent you wish to change. This is
1035 * useful when a pointer has multiple parents via references.
1037 * @param[in] old_parent
1038 * @param[in] new_parent
1039 * @param[in] ptr
1041 * @return Return the pointer you passed. It does not have any
1042 * failure modes.
1044 void *talloc_reparent(const void *old_parent, const void *new_parent, const void *ptr);
1046 /* @} ******************************************************************/
1049 * @defgroup talloc_array The talloc array functions
1050 * @ingroup talloc
1052 * Talloc contains some handy helpers for handling Arrays conveniently
1054 * @{
1057 #ifdef DOXYGEN
1059 * @brief Allocate an array.
1061 * The macro is equivalent to:
1063 * @code
1064 * (type *)talloc_size(ctx, sizeof(type) * count);
1065 * @endcode
1067 * except that it provides integer overflow protection for the multiply,
1068 * returning NULL if the multiply overflows.
1070 * @param[in] ctx The talloc context to hang the result off.
1072 * @param[in] type The type that we want to allocate.
1074 * @param[in] count The number of 'type' elements you want to allocate.
1076 * @return The allocated result, properly cast to 'type *', NULL on
1077 * error.
1079 * Example:
1080 * @code
1081 * unsigned int *a, *b;
1082 * a = talloc_zero(NULL, unsigned int);
1083 * b = talloc_array(a, unsigned int, 100);
1084 * @endcode
1086 * @see talloc()
1087 * @see talloc_zero_array()
1089 void *talloc_array(const void *ctx, #type, unsigned count);
1090 #else
1091 #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
1092 void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1093 #endif
1095 #ifdef DOXYGEN
1097 * @brief Allocate an array.
1099 * @param[in] ctx The talloc context to hang the result off.
1101 * @param[in] size The size of an array element.
1103 * @param[in] count The number of elements you want to allocate.
1105 * @return The allocated result, NULL on error.
1107 void *talloc_array_size(const void *ctx, size_t size, unsigned count);
1108 #else
1109 #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
1110 #endif
1112 #ifdef DOXYGEN
1114 * @brief Allocate an array into a typed pointer.
1116 * The macro should be used when you have a pointer to an array and want to
1117 * allocate memory of an array to point at with this pointer. When compiling
1118 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_array_size()
1119 * and talloc_get_name() will return the current location in the source file
1120 * and not the type.
1122 * @param[in] ctx The talloc context to hang the result off.
1124 * @param[in] ptr The pointer you want to assign the result to.
1126 * @param[in] count The number of elements you want to allocate.
1128 * @return The allocated memory chunk, properly casted. NULL on
1129 * error.
1131 void *talloc_array_ptrtype(const void *ctx, const void *ptr, unsigned count);
1132 #else
1133 #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
1134 #endif
1136 #ifdef DOXYGEN
1138 * @brief Get the number of elements in a talloc'ed array.
1140 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
1141 * necessary to store the number of elements explicitly.
1143 * @param[in] ctx The allocated array.
1145 * @return The number of elements in ctx.
1147 size_t talloc_array_length(const void *ctx);
1148 #else
1149 #define talloc_array_length(ctx) (talloc_get_size(ctx)/sizeof(*ctx))
1150 #endif
1152 #ifdef DOXYGEN
1154 * @brief Allocate a zero-initialized array
1156 * @param[in] ctx The talloc context to hang the result off.
1158 * @param[in] type The type that we want to allocate.
1160 * @param[in] count The number of "type" elements you want to allocate.
1162 * @return The allocated result casted to "type *", NULL on error.
1164 * The talloc_zero_array() macro is equivalent to:
1166 * @code
1167 * ptr = talloc_array(ctx, type, count);
1168 * if (ptr) memset(ptr, sizeof(type) * count);
1169 * @endcode
1171 void *talloc_zero_array(const void *ctx, #type, unsigned count);
1172 #else
1173 #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
1174 void *_talloc_zero_array(const void *ctx,
1175 size_t el_size,
1176 unsigned count,
1177 const char *name);
1178 #endif
1180 #ifdef DOXYGEN
1182 * @brief Change the size of a talloc array.
1184 * The macro changes the size of a talloc pointer. The 'count' argument is the
1185 * number of elements of type 'type' that you want the resulting pointer to
1186 * hold.
1188 * talloc_realloc() has the following equivalences:
1190 * @code
1191 * talloc_realloc(ctx, NULL, type, 1) ==> talloc(ctx, type);
1192 * talloc_realloc(ctx, NULL, type, N) ==> talloc_array(ctx, type, N);
1193 * talloc_realloc(ctx, ptr, type, 0) ==> talloc_free(ptr);
1194 * @endcode
1196 * The "context" argument is only used if "ptr" is NULL, otherwise it is
1197 * ignored.
1199 * @param[in] ctx The parent context used if ptr is NULL.
1201 * @param[in] ptr The chunk to be resized.
1203 * @param[in] type The type of the array element inside ptr.
1205 * @param[in] count The intended number of array elements.
1207 * @return The new array, NULL on error. The call will fail either
1208 * due to a lack of memory, or because the pointer has more
1209 * than one parent (see talloc_reference()).
1211 void *talloc_realloc(const void *ctx, void *ptr, #type, size_t count);
1212 #else
1213 #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
1214 void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name);
1215 #endif
1217 #ifdef DOXYGEN
1219 * @brief Untyped realloc to change the size of a talloc array.
1221 * The macro is useful when the type is not known so the typesafe
1222 * talloc_realloc() cannot be used.
1224 * @param[in] ctx The parent context used if 'ptr' is NULL.
1226 * @param[in] ptr The chunk to be resized.
1228 * @param[in] size The new chunk size.
1230 * @return The new array, NULL on error.
1232 void *talloc_realloc_size(const void *ctx, void *ptr, size_t size);
1233 #else
1234 #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
1235 void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name);
1236 #endif
1239 * @brief Provide a function version of talloc_realloc_size.
1241 * This is a non-macro version of talloc_realloc(), which is useful as
1242 * libraries sometimes want a ralloc function pointer. A realloc()
1243 * implementation encapsulates the functionality of malloc(), free() and
1244 * realloc() in one call, which is why it is useful to be able to pass around
1245 * a single function pointer.
1247 * @param[in] context The parent context used if ptr is NULL.
1249 * @param[in] ptr The chunk to be resized.
1251 * @param[in] size The new chunk size.
1253 * @return The new chunk, NULL on error.
1255 void *talloc_realloc_fn(const void *context, void *ptr, size_t size);
1257 /* @} ******************************************************************/
1260 * @defgroup talloc_string The talloc string functions.
1261 * @ingroup talloc
1263 * talloc string allocation and manipulation functions.
1264 * @{
1268 * @brief Duplicate a string into a talloc chunk.
1270 * This function is equivalent to:
1272 * @code
1273 * ptr = talloc_size(ctx, strlen(p)+1);
1274 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1275 * @endcode
1277 * This functions sets the name of the new pointer to the passed
1278 * string. This is equivalent to:
1280 * @code
1281 * talloc_set_name_const(ptr, ptr)
1282 * @endcode
1284 * @param[in] t The talloc context to hang the result off.
1286 * @param[in] p The string you want to duplicate.
1288 * @return The duplicated string, NULL on error.
1290 char *talloc_strdup(const void *t, const char *p);
1293 * @brief Append a string to given string and duplicate the result.
1295 * @param[in] s The destination to append to.
1297 * @param[in] a The string you want to append.
1299 * @return The duplicated string, NULL on error.
1301 * @see talloc_strdup()
1303 char *talloc_strdup_append(char *s, const char *a);
1306 * @brief Append a string to a given buffer and duplicate the result.
1308 * @param[in] s The destination buffer to append to.
1310 * @param[in] a The string you want to append.
1312 * @return The duplicated string, NULL on error.
1314 * @see talloc_strdup()
1316 char *talloc_strdup_append_buffer(char *s, const char *a);
1319 * @brief Duplicate a length-limited string into a talloc chunk.
1321 * This function is the talloc equivalent of the C library function strndup(3).
1323 * This functions sets the name of the new pointer to the passed string. This is
1324 * equivalent to:
1326 * @code
1327 * talloc_set_name_const(ptr, ptr)
1328 * @endcode
1330 * @param[in] t The talloc context to hang the result off.
1332 * @param[in] p The string you want to duplicate.
1334 * @param[in] n The maximum string length to duplicate.
1336 * @return The duplicated string, NULL on error.
1338 char *talloc_strndup(const void *t, const char *p, size_t n);
1341 * @brief Append at most n characters of a string to given string and duplicate
1342 * the result.
1344 * @param[in] s The destination string to append to.
1346 * @param[in] a The source string you want to append.
1348 * @param[in] n The number of characters you want to append from the
1349 * string.
1351 * @return The duplicated string, NULL on error.
1353 * @see talloc_strndup()
1355 char *talloc_strndup_append(char *s, const char *a, size_t n);
1358 * @brief Append at most n characters of a string to given buffer and duplicate
1359 * the result.
1361 * @param[in] s The destination buffer to append to.
1363 * @param[in] a The source string you want to append.
1365 * @param[in] n The number of characters you want to append from the
1366 * string.
1368 * @return The duplicated string, NULL on error.
1370 * @see talloc_strndup()
1372 char *talloc_strndup_append_buffer(char *s, const char *a, size_t n);
1375 * @brief Format a string given a va_list.
1377 * This function is the talloc equivalent of the C library function
1378 * vasprintf(3).
1380 * This functions sets the name of the new pointer to the new string. This is
1381 * equivalent to:
1383 * @code
1384 * talloc_set_name_const(ptr, ptr)
1385 * @endcode
1387 * @param[in] t The talloc context to hang the result off.
1389 * @param[in] fmt The format string.
1391 * @param[in] ap The parameters used to fill fmt.
1393 * @return The formatted string, NULL on error.
1395 char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1398 * @brief Format a string given a va_list and append it to the given destination
1399 * string.
1401 * @param[in] s The destination string to append to.
1403 * @param[in] fmt The format string.
1405 * @param[in] ap The parameters used to fill fmt.
1407 * @return The formatted string, NULL on error.
1409 * @see talloc_vasprintf()
1411 char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1414 * @brief Format a string given a va_list and append it to the given destination
1415 * buffer.
1417 * @param[in] s The destination buffer to append to.
1419 * @param[in] fmt The format string.
1421 * @param[in] ap The parameters used to fill fmt.
1423 * @return The formatted string, NULL on error.
1425 * @see talloc_vasprintf()
1427 char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1430 * @brief Format a string.
1432 * This function is the talloc equivalent of the C library function asprintf(3).
1434 * This functions sets the name of the new pointer to the new string. This is
1435 * equivalent to:
1437 * @code
1438 * talloc_set_name_const(ptr, ptr)
1439 * @endcode
1441 * @param[in] t The talloc context to hang the result off.
1443 * @param[in] fmt The format string.
1445 * @param[in] ... The parameters used to fill fmt.
1447 * @return The formatted string, NULL on error.
1449 char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1452 * @brief Append a formatted string to another string.
1454 * This function appends the given formatted string to the given string. Use
1455 * this variant when the string in the current talloc buffer may have been
1456 * truncated in length.
1458 * This functions sets the name of the new pointer to the new
1459 * string. This is equivalent to:
1461 * @code
1462 * talloc_set_name_const(ptr, ptr)
1463 * @endcode
1465 * @param[in] s The string to append to.
1467 * @param[in] fmt The format string.
1469 * @param[in] ... The parameters used to fill fmt.
1471 * @return The formatted string, NULL on error.
1473 char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1476 * @brief Append a formatted string to another string.
1478 * @param[in] s The string to append to
1480 * @param[in] fmt The format string.
1482 * @param[in] ... The parameters used to fill fmt.
1484 * @return The formatted string, NULL on error.
1486 char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1488 /* @} ******************************************************************/
1491 * @defgroup talloc_debug The talloc debugging support functions
1492 * @ingroup talloc
1494 * To aid memory debugging, talloc contains routines to inspect the currently
1495 * allocated memory hierarchy.
1497 * @{
1501 * @brief Walk a complete talloc hierarchy.
1503 * This provides a more flexible reports than talloc_report(). It
1504 * will recursively call the callback for the entire tree of memory
1505 * referenced by the pointer. References in the tree are passed with
1506 * is_ref = 1 and the pointer that is referenced.
1508 * You can pass NULL for the pointer, in which case a report is
1509 * printed for the top level memory context, but only if
1510 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
1511 * has been called.
1513 * The recursion is stopped when depth >= max_depth.
1514 * max_depth = -1 means only stop at leaf nodes.
1516 * @param[in] ptr The talloc chunk.
1518 * @param[in] depth Internal parameter to control recursion. Call with 0.
1520 * @param[in] max_depth Maximum recursion level.
1522 * @param[in] callback Function to be called on every chunk.
1524 * @param[in] private_data Private pointer passed to callback.
1526 void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
1527 void (*callback)(const void *ptr,
1528 int depth, int max_depth,
1529 int is_ref,
1530 void *private_data),
1531 void *private_data);
1534 * @brief Print a talloc hierarchy.
1536 * This provides a more flexible reports than talloc_report(). It
1537 * will let you specify the depth and max_depth.
1539 * @param[in] ptr The talloc chunk.
1541 * @param[in] depth Internal parameter to control recursion. Call with 0.
1543 * @param[in] max_depth Maximum recursion level.
1545 * @param[in] f The file handle to print to.
1547 void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
1550 * @brief Print a summary report of all memory used by ptr.
1552 * This provides a more detailed report than talloc_report(). It will
1553 * recursively print the entire tree of memory referenced by the
1554 * pointer. References in the tree are shown by giving the name of the
1555 * pointer that is referenced.
1557 * You can pass NULL for the pointer, in which case a report is printed
1558 * for the top level memory context, but only if
1559 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1560 * been called.
1562 * @param[in] ptr The talloc chunk.
1564 * @param[in] f The file handle to print to.
1566 * Example:
1567 * @code
1568 * unsigned int *a, *b;
1569 * a = talloc(NULL, unsigned int);
1570 * b = talloc(a, unsigned int);
1571 * fprintf(stderr, "Dumping memory tree for a:\n");
1572 * talloc_report_full(a, stderr);
1573 * @endcode
1575 * @see talloc_report()
1577 void talloc_report_full(const void *ptr, FILE *f);
1580 * @brief Print a summary report of all memory used by ptr.
1582 * This function prints a summary report of all memory used by ptr. One line of
1583 * report is printed for each immediate child of ptr, showing the total memory
1584 * and number of blocks used by that child.
1586 * You can pass NULL for the pointer, in which case a report is printed
1587 * for the top level memory context, but only if talloc_enable_leak_report()
1588 * or talloc_enable_leak_report_full() has been called.
1590 * @param[in] ptr The talloc chunk.
1592 * @param[in] f The file handle to print to.
1594 * Example:
1595 * @code
1596 * unsigned int *a, *b;
1597 * a = talloc(NULL, unsigned int);
1598 * b = talloc(a, unsigned int);
1599 * fprintf(stderr, "Summary of memory tree for a:\n");
1600 * talloc_report(a, stderr);
1601 * @endcode
1603 * @see talloc_report_full()
1605 void talloc_report(const void *ptr, FILE *f);
1608 * @brief Enable tracking the use of NULL memory contexts.
1610 * This enables tracking of the NULL memory context without enabling leak
1611 * reporting on exit. Useful for when you want to do your own leak
1612 * reporting call via talloc_report_null_full();
1614 void talloc_enable_null_tracking(void);
1617 * @brief Enable tracking the use of NULL memory contexts.
1619 * This enables tracking of the NULL memory context without enabling leak
1620 * reporting on exit. Useful for when you want to do your own leak
1621 * reporting call via talloc_report_null_full();
1623 void talloc_enable_null_tracking_no_autofree(void);
1626 * @brief Disable tracking of the NULL memory context.
1628 * This disables tracking of the NULL memory context.
1630 void talloc_disable_null_tracking(void);
1633 * @brief Enable leak report when a program exits.
1635 * This enables calling of talloc_report(NULL, stderr) when the program
1636 * exits. In Samba4 this is enabled by using the --leak-report command
1637 * line option.
1639 * For it to be useful, this function must be called before any other
1640 * talloc function as it establishes a "null context" that acts as the
1641 * top of the tree. If you don't call this function first then passing
1642 * NULL to talloc_report() or talloc_report_full() won't give you the
1643 * full tree printout.
1645 * Here is a typical talloc report:
1647 * @code
1648 * talloc report on 'null_context' (total 267 bytes in 15 blocks)
1649 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1650 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1651 * iconv(UTF8,CP850) contains 42 bytes in 2 blocks
1652 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1653 * iconv(CP850,UTF8) contains 42 bytes in 2 blocks
1654 * iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
1655 * iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
1656 * @endcode
1658 void talloc_enable_leak_report(void);
1661 * @brief Enable full leak report when a program exits.
1663 * This enables calling of talloc_report_full(NULL, stderr) when the
1664 * program exits. In Samba4 this is enabled by using the
1665 * --leak-report-full command line option.
1667 * For it to be useful, this function must be called before any other
1668 * talloc function as it establishes a "null context" that acts as the
1669 * top of the tree. If you don't call this function first then passing
1670 * NULL to talloc_report() or talloc_report_full() won't give you the
1671 * full tree printout.
1673 * Here is a typical full report:
1675 * @code
1676 * full talloc report on 'root' (total 18 bytes in 8 blocks)
1677 * p1 contains 18 bytes in 7 blocks (ref 0)
1678 * r1 contains 13 bytes in 2 blocks (ref 0)
1679 * reference to: p2
1680 * p2 contains 1 bytes in 1 blocks (ref 1)
1681 * x3 contains 1 bytes in 1 blocks (ref 0)
1682 * x2 contains 1 bytes in 1 blocks (ref 0)
1683 * x1 contains 1 bytes in 1 blocks (ref 0)
1684 * @endcode
1686 void talloc_enable_leak_report_full(void);
1688 /* @} ******************************************************************/
1690 void talloc_set_abort_fn(void (*abort_fn)(const char *reason));
1691 void talloc_set_log_fn(void (*log_fn)(const char *message));
1692 void talloc_set_log_stderr(void);
1694 #if TALLOC_DEPRECATED
1695 #define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
1696 #define talloc_p(ctx, type) talloc(ctx, type)
1697 #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
1698 #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
1699 #define talloc_destroy(ctx) talloc_free(ctx)
1700 #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
1701 #endif
1703 #ifndef TALLOC_MAX_DEPTH
1704 #define TALLOC_MAX_DEPTH 10000
1705 #endif
1707 #ifdef __cplusplus
1708 } /* end of extern "C" */
1709 #endif
1711 #endif