Convert the contents of talloc_guide.txt to doxygen-style talloc.h comments
[Samba/gebeck_regimport.git] / lib / talloc / talloc.h
blob4b50ba99c22a308581ed878f67116156ac58ba39
1 #ifndef _TALLOC_H_
2 #define _TALLOC_H_
3 /*
4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
12 ** under the LGPL
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
32 /** \mainpage
34 * \section intro_sec Introduction
36 * Talloc is a hierarchical, reference counted memory pool system with
37 * destructors. Quite a mouthful really, but not too bad once you get used to
38 * it.
40 * Perhaps the biggest difference from other memory pool systems is that there
41 * is no distinction between a "talloc context" and a "talloc pointer". Any
42 * pointer returned from talloc() is itself a valid talloc context. This means
43 * you can do this:
45 * \code
46 * struct foo *X = talloc(mem_ctx, struct foo);
47 * X->name = talloc_strdup(X, "foo");
48 * \endcode
50 * and the pointer X->name would be a "child" of the talloc context "X" which
51 * is itself a child of mem_ctx. So if you do talloc_free(mem_ctx) then it is
52 * all destroyed, whereas if you do talloc_free(X) then just X and X->name are
53 * destroyed, and if you do talloc_free(X->name) then just the name element of
54 * X is destroyed.
56 * If you think about this, then what this effectively gives you is an n-ary
57 * tree, where you can free any part of the tree with talloc_free().
59 * \section named_blocks Named blocks
61 * Every talloc chunk has a name that can be used as a dynamic type-checking
62 * system. If for some reason like a callback function you had to cast a
63 * "struct foo *" to a "void *" variable, later you can safely reassign the
64 * "void *" pointer to a "struct foo *" by using the talloc_get_type() or
65 * talloc_get_type_abort() macros.
67 * \code
68 * struct foo *X = talloc_get_type_abort(ptr, struct foo);
69 * \endcode
71 * This will abort if "ptr" does not contain a pointer that has been created
72 * with talloc(mem_ctx, struct foo).
74 * \section multi_threading Multi-Threading
76 * talloc itself does not deal with threads. It is thread-safe (assuming the
77 * underlying "malloc" is), as long as each thread uses different memory
78 * contexts.
80 * If two threads uses the same context then they need to synchronize in order
81 * to be safe. In particular:
84 * - when using talloc_enable_leak_report(), giving directly NULL as a
85 * parent context implicitly refers to a hidden "null context" global
86 * variable, so this should not be used in a multi-threaded environment
87 * without proper synchronization
88 * - the context returned by talloc_autofree_context() is also global so
89 * shouldn't be used by several threads simultaneously without
90 * synchronization.
93 /** \defgroup talloc_basic Basic Talloc Routines
95 * This module contains the basic talloc routines that are used in everyday
96 * programming.
99 /** \defgroup talloc_ref Talloc References
101 * This module contains the definitions around talloc references
104 /** \defgroup talloc_array Array routines
106 * Talloc contains some handy helpers for handling Arrays conveniently
109 /** \defgroup talloc_string String handling routines
111 * Talloc contains some handy string handling functions
114 /** \defgroup talloc_debug Debugging support routines
116 * To aid memory debugging, talloc contains routines to inspect the currently
117 * allocated memory hierarchy.
121 * \typedef TALLOC_CTX
122 * \brief Define a talloc parent type
123 * \ingroup talloc_basic
125 * As talloc is a hierarchial memory allocator, every talloc chunk is a
126 * potential parent to other talloc chunks. So defining a separate type for a
127 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
128 * as it provides an indicator for function arguments. You will frequently
129 * write code like
131 * \code
132 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
134 * struct foo *result;
135 * result = talloc(mem_ctx, struct foo);
136 * if (result == NULL) return NULL;
137 * ... initialize foo ...
138 * return result;
140 * \endcode
142 * In this type of allocating functions it is handy to have a general
143 * TALLOC_CTX type to indicate which parent to put allocated structures on.
145 typedef void TALLOC_CTX;
148 this uses a little trick to allow __LINE__ to be stringified
150 #ifndef __location__
151 #define __TALLOC_STRING_LINE1__(s) #s
152 #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
153 #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
154 #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
155 #endif
157 #ifndef TALLOC_DEPRECATED
158 #define TALLOC_DEPRECATED 0
159 #endif
161 #ifndef PRINTF_ATTRIBUTE
162 #if (__GNUC__ >= 3)
163 /** Use gcc attribute to check printf fns. a1 is the 1-based index of
164 * the parameter containing the format, and a2 the index of the first
165 * argument. Note that some gcc 2.x versions don't handle this
166 * properly **/
167 #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
168 #else
169 #define PRINTF_ATTRIBUTE(a1, a2)
170 #endif
171 #endif
174 * \def talloc_set_destructor
175 * \brief Assign a function to be called when a chunk is freed
176 * \param ptr The talloc chunk to add a destructor to
177 * \param function The destructor function to be called
178 * \ingroup talloc_basic
180 * The function talloc_set_destructor() sets the "destructor" for the pointer
181 * "ptr". A destructor is a function that is called when the memory used by a
182 * pointer is about to be released. The destructor receives the pointer as an
183 * argument, and should return 0 for success and -1 for failure.
185 * The destructor can do anything it wants to, including freeing other pieces
186 * of memory. A common use for destructors is to clean up operating system
187 * resources (such as open file descriptors) contained in the structure the
188 * destructor is placed on.
190 * You can only place one destructor on a pointer. If you need more than one
191 * destructor then you can create a zero-length child of the pointer and place
192 * an additional destructor on that.
194 * To remove a destructor call talloc_set_destructor() with NULL for the
195 * destructor.
197 * If your destructor attempts to talloc_free() the pointer that it is the
198 * destructor for then talloc_free() will return -1 and the free will be
199 * ignored. This would be a pointless operation anyway, as the destructor is
200 * only called when the memory is just about to go away.
204 * \def talloc_steal(ctx, ptr)
205 * \brief Change a talloc chunk's parent
206 * \param ctx The new parent context
207 * \param ptr The talloc chunk to move
208 * \return ptr
209 * \ingroup talloc_basic
211 * The talloc_steal() function changes the parent context of a talloc
212 * pointer. It is typically used when the context that the pointer is
213 * currently a child of is going to be freed and you wish to keep the
214 * memory for a longer time.
216 * The talloc_steal() function returns the pointer that you pass it. It
217 * does not have any failure modes.
219 * NOTE: It is possible to produce loops in the parent/child relationship
220 * if you are not careful with talloc_steal(). No guarantees are provided
221 * as to your sanity or the safety of your data if you do this.
223 * To make the changed hierarchy less error-prone, you might consider to use
224 * talloc_move().
226 * talloc_steal (ctx, NULL) will return NULL with no sideeffects.
229 /* try to make talloc_set_destructor() and talloc_steal() type safe,
230 if we have a recent gcc */
231 #if (__GNUC__ >= 3)
232 #define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
233 #define talloc_set_destructor(ptr, function) \
234 do { \
235 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
236 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
237 } while(0)
238 /* this extremely strange macro is to avoid some braindamaged warning
239 stupidity in gcc 4.1.x */
240 #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr)); __talloc_steal_ret; })
241 #else
242 #define talloc_set_destructor(ptr, function) \
243 _talloc_set_destructor((ptr), (int (*)(void *))(function))
244 #define _TALLOC_TYPEOF(ptr) void *
245 #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr))
246 #endif
249 * \def talloc_reference(ctx, ptr)
250 * \brief Create an additional talloc parent to a pointer
251 * \param ctx The additional parent
252 * \param ptr The pointer you want to create an additional parent for
253 * \return ptr
254 * \ingroup talloc_ref
256 * The talloc_reference() function makes "context" an additional parent of
257 * "ptr".
259 * The return value of talloc_reference() is always the original pointer
260 * "ptr", unless talloc ran out of memory in creating the reference in which
261 * case it will return NULL (each additional reference consumes around 48
262 * bytes of memory on intel x86 platforms).
264 * If "ptr" is NULL, then the function is a no-op, and simply returns NULL.
266 * After creating a reference you can free it in one of the following ways:
268 * - you can talloc_free() any parent of the original pointer. That
269 * will reduce the number of parents of this pointer by 1, and will
270 * cause this pointer to be freed if it runs out of parents.
272 * - you can talloc_free() the pointer itself. That will destroy the
273 * most recently established parent to the pointer and leave the
274 * pointer as a child of its current parent.
276 * For more control on which parent to remove, see talloc_unlink()
278 #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference((ctx),(ptr))
282 * \def talloc_move(ctx, ptr)
283 * \brief Change a talloc chunk's parent
284 * \param ctx The new parent context
285 * \param ptr Pointer to the talloc chunk to move
286 * \return ptr
287 * \ingroup talloc_basic
289 * talloc_move() has the same effect as talloc_steal(), and additionally sets
290 * the source pointer to NULL. You would use it like this:
292 * \code
293 * struct foo *X = talloc(tmp_ctx, struct foo);
294 * struct foo *Y;
295 * Y = talloc_move(new_ctx, &X);
296 * \endcode
298 #define talloc_move(ctx, ptr) (_TALLOC_TYPEOF(*(ptr)))_talloc_move((ctx),(void *)(ptr))
300 /* useful macros for creating type checked pointers */
303 * \def talloc(ctx, type)
304 * \brief Main entry point to allocate structures
305 * \param ctx The talloc context to hang the result off
306 * \param type The type that we want to allocate
307 * \return Pointer to a piece of memory, properly cast to "type *"
308 * \ingroup talloc_basic
310 * The talloc() macro is the core of the talloc library. It takes a memory
311 * context and a type, and returns a pointer to a new area of memory of the
312 * given type.
314 * The returned pointer is itself a talloc context, so you can use it as the
315 * context argument to more calls to talloc if you wish.
317 * The returned pointer is a "child" of the supplied context. This means that
318 * if you talloc_free() the context then the new child disappears as
319 * well. Alternatively you can free just the child.
321 * The context argument to talloc() can be NULL, in which case a new top
322 * level context is created.
324 #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
327 * \def talloc_size(ctx, size)
328 * \brief Untyped allocation
329 * \param ctx The talloc context to hang the result off
330 * \param size Number of char's that you want to allocate
331 * \return The allocated memory chunk
332 * \ingroup talloc_basic
334 * The function talloc_size() should be used when you don't have a convenient
335 * type to pass to talloc(). Unlike talloc(), it is not type safe (as it
336 * returns a void *), so you are on your own for type checking.
338 #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
341 * \def talloc_ptrtype(ctx, ptr)
342 * \brief Allocate into a typed pointer
343 * \param ctx The talloc context to hang the result off
344 * \param ptr The pointer you want to assign the result to
345 * \result The allocated memory chunk, properly cast
346 * \ingroup talloc_basic
348 * The talloc_ptrtype() macro should be used when you have a pointer and
349 * want to allocate memory to point at with this pointer. When compiling
350 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
351 * and talloc_get_name() will return the current location in the source file.
352 * and not the type.
354 #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
357 * \def talloc_new(ctx)
358 * \brief Allocate a new 0-sized talloc chunk
359 * \param ctx The talloc parent context
360 * \return A new talloc chunk
361 * \ingroup talloc_basic
363 * This is a utility macro that creates a new memory context hanging off an
364 * exiting context, automatically naming it "talloc_new: __location__" where
365 * __location__ is the source line it is called from. It is particularly
366 * useful for creating a new temporary working context.
368 #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
371 * \def talloc_zero(ctx, type)
372 * \brief Allocate a 0-initizialized structure
373 * \param ctx The talloc context to hang the result off
374 * \param type The type that we want to allocate
375 * \return Pointer to a piece of memory, properly cast to "type *"
376 * \ingroup talloc_basic
378 * The talloc_zero() macro is equivalent to:
380 * \code
381 * ptr = talloc(ctx, type);
382 * if (ptr) memset(ptr, 0, sizeof(type));
383 * \endcode
385 #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
388 * \def talloc_zero_size(ctx, size)
389 * \brief Untyped, 0-initialized allocation
390 * \param ctx The talloc context to hang the result off
391 * \param size Number of char's that you want to allocate
392 * \return The allocated memory chunk
393 * \ingroup talloc_basic
395 * The talloc_zero_size() macro is equivalent to:
397 * \code
398 * ptr = talloc_size(ctx, size);
399 * if (ptr) memset(ptr, 0, size);
400 * \endcode
403 #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
405 #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
408 * \def talloc_array(ctx, type, count)
409 * \brief Allocate an array
410 * \param ctx The talloc context to hang the result off
411 * \param type The type that we want to allocate
412 * \param count The number of "type" elements you want to allocate
413 * \return The allocated result, properly cast to "type *"
414 * \ingroup talloc_array
416 * The talloc_array() macro is equivalent to::
418 * \code
419 * (type *)talloc_size(ctx, sizeof(type) * count);
420 * \endcode
422 * except that it provides integer overflow protection for the multiply,
423 * returning NULL if the multiply overflows.
425 #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
428 * \def talloc_array_size(ctx, size, count)
429 * \brief Allocate an array
430 * \param ctx The talloc context to hang the result off
431 * \param size The size of an array element
432 * \param count The number of "type" elements you want to allocate
433 * \return The allocated result, properly cast to "type *"
434 * \ingroup talloc_array
436 * The talloc_array_size() function is useful when the type is not
437 * known. It operates in the same way as talloc_array(), but takes a size
438 * instead of a type.
440 #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
443 * \def talloc_array_ptrtype(ctx, ptr, count)
444 * \brief Allocate an array into a typed pointer
445 * \param ctx The talloc context to hang the result off
446 * \param ptr The pointer you want to assign the result to
447 * \param count The number of elements you want to allocate
448 * \result The allocated memory chunk, properly cast
449 * \ingroup talloc_array
451 * The talloc_array_ptrtype() macro should be used when you have a pointer to
452 * an array and want to allocate memory of an array to point at with this
453 * pointer. When compiling with gcc >= 3 it is typesafe. Note this is a
454 * wrapper of talloc_array_size() and talloc_get_name() will return the
455 * current location in the source file. and not the type.
457 #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
460 * \def talloc_array_length(ctx)
461 * \brief Return the number of elements in a talloc'ed array
462 * \param ctx The talloc'ed array
463 * \return The number of elements in ctx
464 * \ingroup talloc_array
466 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
467 * necessary to store the number of elements explicitly.
469 #define talloc_array_length(ctx) ((ctx) ? talloc_get_size(ctx)/sizeof(*ctx) : 0)
472 * \def talloc_realloc(ctx, p, type, count)
473 * \brief Change the size of a talloc array
474 * \param ctx The parent context used if "p" is NULL
475 * \param p The chunk to be resized
476 * \param type The type of the array element inside p
477 * \param count The intended number of array elements
478 * \return The new array
479 * \ingroup talloc_array
481 * The talloc_realloc() macro changes the size of a talloc
482 * pointer. The "count" argument is the number of elements of type "type"
483 * that you want the resulting pointer to hold.
485 * talloc_realloc() has the following equivalences::
487 * \code
488 * talloc_realloc(context, NULL, type, 1) ==> talloc(context, type);
489 * talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N);
490 * talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr);
491 * \endcode
493 * The "context" argument is only used if "ptr" is NULL, otherwise it is
494 * ignored.
496 * talloc_realloc() returns the new pointer, or NULL on failure. The call
497 * will fail either due to a lack of memory, or because the pointer has
498 * more than one parent (see talloc_reference()).
500 #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
503 * \def talloc_realloc_size(ctx, ptr, size)
504 * \brief Untyped realloc
505 * \param ctx The parent context used if "ptr" is NULL
506 * \param ptr The chunk to be resized
507 * \param size The new chunk size
508 * \return The new chunk
509 * \ingroup talloc_array
511 * The talloc_realloc_size() function is useful when the type is not known so
512 * the typesafe talloc_realloc() cannot be used.
514 #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
517 * \def talloc_memdup(t, p, size)
518 * \brief Duplicate a memory area into a talloc chunk
519 * \param t The talloc context to hang the result off
520 * \param p The memory chunk you want to duplicate
521 * \param size Number of char's that you want copy
522 * \return The allocated memory chunk
523 * \ingroup talloc_basic
525 * The talloc_memdup() function is equivalent to::
527 * \code
528 * ptr = talloc_size(ctx, size);
529 * if (ptr) memcpy(ptr, p, size);
530 * \endcode
532 #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
535 * \def talloc_set_type(ptr, type)
536 * \brief Assign a type to a talloc chunk
537 * \param ptr The talloc chunk to assign the type to
538 * \param type The type to assign
539 * \ingroup talloc_basic
541 * This macro allows you to force the name of a pointer to be a
542 * particular type. This can be used in conjunction with
543 * talloc_get_type() to do type checking on void* pointers.
545 * It is equivalent to this::
547 * \code
548 * talloc_set_name_const(ptr, #type)
549 * \endcode
551 #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
554 * \def talloc_get_type(ptr, type)
555 * \brief Get a typed pointer out of a talloc pointer
556 * \param ptr The talloc pointer to check
557 * \param type The type to check against
558 * \return ptr, properly cast, or NULL
559 * \ingroup talloc_basic
561 * This macro allows you to do type checking on talloc pointers. It is
562 * particularly useful for void* private pointers. It is equivalent to
563 * this:
565 * \code
566 * (type *)talloc_check_name(ptr, #type)
567 * \endcode
570 #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
573 * \def talloc_get_type_abort(ptr, type)
574 * \brief Helper macro to safely turn a void * into a typed pointer
575 * \param ptr The void * to convert
576 * \param type The type that this chunk contains
577 * \return Same value as ptr, type-checked and properly cast
578 * \ingroup talloc_basic
580 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
581 * assing the talloc chunk pointer to some void * variable,
582 * talloc_get_type_abort() is the recommended way to get the convert the void
583 * pointer back to a typed pointer.
585 #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
588 * \def talloc_find_parent_bytype(ptr, type)
589 * \brief Find a parent context by type
590 * \param ptr The talloc chunk to start from
591 * \param type The type of the parent to look for
592 * \ingroup talloc_basic
594 * Find a parent memory context of the current context that has the given
595 * name. This can be very useful in complex programs where it may be
596 * difficult to pass all information down to the level you need, but you
597 * know the structure you want is a parent of another context.
599 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
601 #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
603 #if TALLOC_DEPRECATED
604 #define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
605 #define talloc_p(ctx, type) talloc(ctx, type)
606 #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
607 #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
608 #define talloc_destroy(ctx) talloc_free(ctx)
609 #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
610 #endif
612 #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
614 /* The following definitions come from talloc.c */
615 void *_talloc(const void *context, size_t size);
616 void *talloc_pool(const void *context, size_t size);
617 void _talloc_set_destructor(const void *ptr, int (*destructor)(void *));
620 * \brief Increase the reference count of a talloc chunk
621 * \param ptr
622 * \return success?
623 * \ingroup talloc_ref
625 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
627 * \code
628 * talloc_reference(NULL, ptr);
629 * \endcode
631 * You can use either syntax, depending on which you think is clearer in
632 * your code.
634 * It returns 0 on success and -1 on failure.
636 int talloc_increase_ref_count(const void *ptr);
639 * \brief Return the number of references to a talloc chunk
640 * \param ptr The chunk you are interested in
641 * \return Number of refs
642 * \ingroup talloc_ref
644 size_t talloc_reference_count(const void *ptr);
645 void *_talloc_reference(const void *context, const void *ptr);
648 * \brief Remove a specific parent from a talloc chunk
649 * \param context The talloc parent to remove
650 * \param ptr The talloc ptr you want to remove the parent from
651 * \ingroup talloc_ref
653 * The talloc_unlink() function removes a specific parent from ptr. The
654 * context passed must either be a context used in talloc_reference() with
655 * this pointer, or must be a direct parent of ptr.
657 * Note that if the parent has already been removed using talloc_free() then
658 * this function will fail and will return -1. Likewise, if "ptr" is NULL,
659 * then the function will make no modifications and return -1.
661 * Usually you can just use talloc_free() instead of talloc_unlink(), but
662 * sometimes it is useful to have the additional control on which parent is
663 * removed.
665 int talloc_unlink(const void *context, void *ptr);
668 * \brief Assign a name to a talloc chunk
669 * \param ptr The talloc chunk to assign a name to
670 * \param fmt Format string for the name
671 * \param ... printf-style additional arguments
672 * \return The assigned name
673 * \ingroup talloc_basic
675 * Each talloc pointer has a "name". The name is used principally for
676 * debugging purposes, although it is also possible to set and get the name on
677 * a pointer in as a way of "marking" pointers in your code.
679 * The main use for names on pointer is for "talloc reports". See
680 * talloc_report() and talloc_report_full() for details. Also see
681 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
683 * The talloc_set_name() function allocates memory as a child of the
684 * pointer. It is logically equivalent to:
686 * \code
687 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
688 * \endcode
690 * Note that multiple calls to talloc_set_name() will allocate more memory
691 * without releasing the name. All of the memory is released when the ptr is
692 * freed using talloc_free().
694 const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
697 * \brief Assign a name to a talloc chunk
698 * \param ptr The talloc chunk to assign a name to
699 * \param name Format string for the name
700 * \ingroup talloc_basic
702 * The function talloc_set_name_const() is just like talloc_set_name(), but it
703 * takes a string constant, and is much faster. It is extensively used by the
704 * "auto naming" macros, such as talloc_p().
706 * This function does not allocate any memory. It just copies the supplied
707 * pointer into the internal representation of the talloc ptr. This means you
708 * must not pass a name pointer to memory that will disappear before the ptr
709 * is freed with talloc_free().
711 void talloc_set_name_const(const void *ptr, const char *name);
714 * \brief Create a named talloc chunk
715 * \param context The talloc context to hang the result off
716 * \param size Number of char's that you want to allocate
717 * \param fmt Format string for the name
718 * \param ... printf-style additional arguments
719 * \return The allocated memory chunk
720 * \ingroup talloc_basic
722 * The talloc_named() function creates a named talloc pointer. It is
723 * equivalent to:
725 * \code
726 * ptr = talloc_size(context, size);
727 * talloc_set_name(ptr, fmt, ....);
728 * \endcode
731 void *talloc_named(const void *context, size_t size,
732 const char *fmt, ...) PRINTF_ATTRIBUTE(3,4);
735 * \brief Basic routine to allocate a chunk of memory
736 * \param context The parent context
737 * \param size The number of char's that we want to allocate
738 * \param name The name the talloc block has
739 * \return The allocated chunk
740 * \ingroup talloc_basic
742 * This is equivalent to:
744 * \code
745 * ptr = talloc_size(context, size);
746 * talloc_set_name_const(ptr, name);
747 * \endcode
749 void *talloc_named_const(const void *context, size_t size, const char *name);
752 * \brief Return the name of a talloc chunk
753 * \param ptr The talloc chunk
754 * \return The name
755 * \ingroup talloc_basic
757 * This returns the current name for the given talloc pointer. See
758 * talloc_set_name() for details.
760 const char *talloc_get_name(const void *ptr);
763 * \brief Verify that a talloc chunk carries a specified name
764 * \param ptr The talloc chunk to check
765 * \param name The name to check agains
766 * \ingroup talloc_basic
768 * This function checks if a pointer has the specified name. If it does
769 * then the pointer is returned. It it doesn't then NULL is returned.
771 void *talloc_check_name(const void *ptr, const char *name);
773 void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location);
774 void *talloc_parent(const void *ptr);
775 const char *talloc_parent_name(const void *ptr);
778 * \brief Create a new top level talloc context
779 * \param fmt Format string for the name
780 * \param ... printf-style additional arguments
781 * \return The allocated memory chunk
782 * \ingroup talloc_basic
784 * This function creates a zero length named talloc context as a top level
785 * context. It is equivalent to:
787 * \code
788 * talloc_named(NULL, 0, fmt, ...);
789 * \endcode
791 void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2);
794 * \brief Free a chunk of talloc memory
795 * \param ptr The chunk to be freed
796 * \return success?
797 * \ingroup talloc_basic
799 * The talloc_free() function frees a piece of talloc memory, and all its
800 * children. You can call talloc_free() on any pointer returned by talloc().
802 * The return value of talloc_free() indicates success or failure, with 0
803 * returned for success and -1 for failure. The only possible failure
804 * condition is if the pointer had a destructor attached to it and the
805 * destructor returned -1. See talloc_set_destructor() for details on
806 * destructors.
808 * If this pointer has an additional parent when talloc_free() is called
809 * then the memory is not actually released, but instead the most
810 * recently established parent is destroyed. See talloc_reference() for
811 * details on establishing additional parents.
813 * For more control on which parent is removed, see talloc_unlink()
815 * talloc_free() operates recursively on its children.
817 int talloc_free(void *ptr);
820 * \brief Free a talloc chunk's children
821 * \param ptr The chunk that you want to free the children of
822 * \return success?
823 * \ingroup talloc_basic
825 * The talloc_free_children() walks along the list of all children of a talloc
826 * context and talloc_free()s only the children, not the context itself.
828 void talloc_free_children(void *ptr);
829 void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name);
830 void *_talloc_steal(const void *new_ctx, const void *ptr);
831 void *_talloc_move(const void *new_ctx, const void *pptr);
834 * \brief Return the total size of a talloc chunk including its children
835 * \param ptr The talloc chunk
836 * \return The total size
837 * \ingroup talloc_basic
839 * The talloc_total_size() function returns the total size in bytes used
840 * by this pointer and all child pointers. Mostly useful for debugging.
842 * Passing NULL is allowed, but it will only give a meaningful result if
843 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
844 * been called.
846 size_t talloc_total_size(const void *ptr);
849 * \brief Return the number of talloc chunks hanging off a chunk
850 * \param ptr The talloc chunk
851 * \return The total size
852 * \ingroup talloc_basic
854 * The talloc_total_blocks() function returns the total memory block
855 * count used by this pointer and all child pointers. Mostly useful for
856 * debugging.
858 * Passing NULL is allowed, but it will only give a meaningful result if
859 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
860 * been called.
862 size_t talloc_total_blocks(const void *ptr);
865 * \brief Walk a complete talloc hierarchy
866 * \param ptr The talloc chunk
867 * \param depth Internal parameter to control recursion. Call with 0.
868 * \param max_depth Maximum recursion level.
869 * \param callback Function to be called on every chunk
870 * \param private_data Private pointer passed to callback
871 * \ingroup talloc_debug
873 * This provides a more flexible reports than talloc_report(). It
874 * will recursively call the callback for the entire tree of memory
875 * referenced by the pointer. References in the tree are passed with
876 * is_ref = 1 and the pointer that is referenced.
878 * You can pass NULL for the pointer, in which case a report is
879 * printed for the top level memory context, but only if
880 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
881 * has been called.
883 * The recursion is stopped when depth >= max_depth.
884 * max_depth = -1 means only stop at leaf nodes.
886 void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
887 void (*callback)(const void *ptr,
888 int depth, int max_depth,
889 int is_ref,
890 void *private_data),
891 void *private_data);
894 * \brief Print a talloc hierarchy
895 * \param ptr The talloc chunk
896 * \param depth Internal parameter to control recursion. Call with 0.
897 * \param max_depth Maximum recursion level.
898 * \param f The file handle to print to
899 * \ingroup talloc_debug
901 * This provides a more flexible reports than talloc_report(). It
902 * will let you specify the depth and max_depth.
904 void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
907 * \brief Print a summary report of all memory used by ptr
908 * \param ptr The talloc chunk
909 * \param f The file handle to print to
910 * \ingroup talloc_debug
912 * This provides a more detailed report than talloc_report(). It will
913 * recursively print the ensire tree of memory referenced by the
914 * pointer. References in the tree are shown by giving the name of the
915 * pointer that is referenced.
917 * You can pass NULL for the pointer, in which case a report is printed
918 * for the top level memory context, but only if
919 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
920 * been called.
922 void talloc_report_full(const void *ptr, FILE *f);
925 * \brief Print a summary report of all memory used by ptr
926 * \param ptr The talloc chunk
927 * \param f The file handle to print to
928 * \ingroup talloc_debug
930 * The talloc_report() function prints a summary report of all memory
931 * used by ptr. One line of report is printed for each immediate child of
932 * ptr, showing the total memory and number of blocks used by that child.
934 * You can pass NULL for the pointer, in which case a report is printed
935 * for the top level memory context, but only if
936 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
937 * been called.
939 void talloc_report(const void *ptr, FILE *f);
942 * \brief Enable tracking the use of NULL memory contexts
943 * \ingroup talloc_debug
945 * This enables tracking of the NULL memory context without enabling leak
946 * reporting on exit. Useful for when you want to do your own leak
947 * reporting call via talloc_report_null_full();
949 void talloc_enable_null_tracking(void);
952 * \brief Disable tracking of the NULL memory context
953 * \ingroup talloc_debug
955 * This disables tracking of the NULL memory context.
958 void talloc_disable_null_tracking(void);
961 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
962 * \ingroup talloc_debug
964 * This enables calling of talloc_report(NULL, stderr) when the program
965 * exits. In Samba4 this is enabled by using the --leak-report command
966 * line option.
968 * For it to be useful, this function must be called before any other
969 * talloc function as it establishes a "null context" that acts as the
970 * top of the tree. If you don't call this function first then passing
971 * NULL to talloc_report() or talloc_report_full() won't give you the
972 * full tree printout.
974 * Here is a typical talloc report:
976 \verbatim
977 talloc report on 'null_context' (total 267 bytes in 15 blocks)
978 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
979 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
980 iconv(UTF8,CP850) contains 42 bytes in 2 blocks
981 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
982 iconv(CP850,UTF8) contains 42 bytes in 2 blocks
983 iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
984 iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
985 \endverbatim
987 void talloc_enable_leak_report(void);
990 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
991 * \ingroup talloc_debug
993 * This enables calling of talloc_report_full(NULL, stderr) when the
994 * program exits. In Samba4 this is enabled by using the
995 * --leak-report-full command line option.
997 * For it to be useful, this function must be called before any other
998 * talloc function as it establishes a "null context" that acts as the
999 * top of the tree. If you don't call this function first then passing
1000 * NULL to talloc_report() or talloc_report_full() won't give you the
1001 * full tree printout.
1003 * Here is a typical full report:
1004 \verbatim
1005 full talloc report on 'root' (total 18 bytes in 8 blocks)
1006 p1 contains 18 bytes in 7 blocks (ref 0)
1007 r1 contains 13 bytes in 2 blocks (ref 0)
1008 reference to: p2
1009 p2 contains 1 bytes in 1 blocks (ref 1)
1010 x3 contains 1 bytes in 1 blocks (ref 0)
1011 x2 contains 1 bytes in 1 blocks (ref 0)
1012 x1 contains 1 bytes in 1 blocks (ref 0)
1013 \endverbatim
1015 void talloc_enable_leak_report_full(void);
1016 void *_talloc_zero(const void *ctx, size_t size, const char *name);
1017 void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name);
1018 void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1019 void *_talloc_zero_array(const void *ctx, size_t el_size, unsigned count, const char *name);
1020 void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name);
1023 * \brief Provide a function version of talloc_realloc_size
1024 * \param context The parent context used if "ptr" is NULL
1025 * \param ptr The chunk to be resized
1026 * \param size The new chunk size
1027 * \return The new chunk
1028 * \ingroup talloc_array
1030 * This is a non-macro version of talloc_realloc(), which is useful as
1031 * libraries sometimes want a ralloc function pointer. A realloc()
1032 * implementation encapsulates the functionality of malloc(), free() and
1033 * realloc() in one call, which is why it is useful to be able to pass around
1034 * a single function pointer.
1036 void *talloc_realloc_fn(const void *context, void *ptr, size_t size);
1039 * \brief Provide a talloc context that is freed at program exit
1040 * \return A talloc context
1041 * \ingroup talloc_basic
1043 * This is a handy utility function that returns a talloc context
1044 * which will be automatically freed on program exit. This can be used
1045 * to reduce the noise in memory leak reports.
1047 void *talloc_autofree_context(void);
1050 * \brief Get the size of a talloc chunk
1051 * \param ctx The talloc chunk
1052 * \return The size
1053 * \ingroup talloc_basic
1055 * This function lets you know the amount of memory alloced so far by
1056 * this context. It does NOT account for subcontext memory.
1057 * This can be used to calculate the size of an array.
1059 size_t talloc_get_size(const void *ctx);
1062 * \brief Find a parent context by name
1063 * \param ctx The talloc chunk to start from
1064 * \param name The name of the parent we look for
1065 * \ingroup talloc_basic
1067 * Find a parent memory context of the current context that has the given
1068 * name. This can be very useful in complex programs where it may be
1069 * difficult to pass all information down to the level you need, but you
1070 * know the structure you want is a parent of another context.
1072 void *talloc_find_parent_byname(const void *ctx, const char *name);
1073 void talloc_show_parents(const void *context, FILE *file);
1074 int talloc_is_parent(const void *context, const void *ptr);
1077 * \brief Duplicate a string into a talloc chunk
1078 * \param t The talloc context to hang the result off
1079 * \param p The string you want to duplicate
1080 * \return The duplicated string
1081 * \ingroup talloc_string
1083 * The talloc_strdup() function is equivalent to:
1085 * \code
1086 * ptr = talloc_size(ctx, strlen(p)+1);
1087 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1088 * \endcode
1090 * This functions sets the name of the new pointer to the passed
1091 * string. This is equivalent to:
1093 * \code
1094 * talloc_set_name_const(ptr, ptr)
1095 * \endcode
1097 char *talloc_strdup(const void *t, const char *p);
1098 char *talloc_strdup_append(char *s, const char *a);
1099 char *talloc_strdup_append_buffer(char *s, const char *a);
1102 * \brief Duplicate a length-limited string into a talloc chunk
1103 * \param t The talloc context to hang the result off
1104 * \param p The string you want to duplicate
1105 * \param n The maximum string length to duplicate
1106 * \return The duplicated string
1107 * \ingroup talloc_string
1109 * The talloc_strndup() function is the talloc equivalent of the C
1110 * library function strndup()
1112 * This functions sets the name of the new pointer to the passed
1113 * string. This is equivalent to:
1115 * \code
1116 * talloc_set_name_const(ptr, ptr)
1117 * \endcode
1119 char *talloc_strndup(const void *t, const char *p, size_t n);
1120 char *talloc_strndup_append(char *s, const char *a, size_t n);
1121 char *talloc_strndup_append_buffer(char *s, const char *a, size_t n);
1124 * \brief Format a string given a va_list
1125 * \param t The talloc context to hang the result off
1126 * \param fmt The format string
1127 * \param ap The parameters used to fill fmt
1128 * \return The formatted string
1129 * \ingroup talloc_string
1131 * The talloc_vasprintf() function is the talloc equivalent of the C
1132 * library function vasprintf()
1134 * This functions sets the name of the new pointer to the new
1135 * string. This is equivalent to:
1137 * \code
1138 * talloc_set_name_const(ptr, ptr)
1139 * \endcode
1141 char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1142 char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1143 char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0);
1146 * \brief Format a string
1147 * \param t The talloc context to hang the result off
1148 * \param fmt The format string
1149 * \param ... The parameters used to fill fmt
1150 * \return The formatted string
1151 * \ingroup talloc_string
1153 * The talloc_asprintf() function is the talloc equivalent of the C
1154 * library function asprintf()
1156 * This functions sets the name of the new pointer to the new
1157 * string. This is equivalent to:
1159 * \code
1160 * talloc_set_name_const(ptr, ptr)
1161 * \endcode
1163 char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1166 * \brief Append a formatted string to another string
1167 * \param s The string to append to
1168 * \param fmt The format string
1169 * \param ... The parameters used to fill fmt
1170 * \return The formatted string
1171 * \ingroup talloc_string
1173 * The talloc_asprintf_append() function appends the given formatted string to
1174 * the given string. Use this varient when the string in the current talloc
1175 * buffer may have been truncated in length.
1177 * This functions sets the name of the new pointer to the new
1178 * string. This is equivalent to:
1180 * \code
1181 * talloc_set_name_const(ptr, ptr)
1182 * \endcode
1184 char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1187 * \brief Append a formatted string to another string
1188 * \param s The string to append to
1189 * \param fmt The format string
1190 * \param ... The parameters used to fill fmt
1191 * \return The formatted string
1192 * \ingroup talloc_string
1194 * The talloc_asprintf_append() function appends the given formatted string to
1195 * the end of the currently allocated talloc buffer. This routine should be
1196 * used if you create a large string step by step. talloc_asprintf() or
1197 * talloc_asprintf_append() call strlen() at every
1198 * step. talloc_asprintf_append_buffer() uses the existing buffer size of the
1199 * talloc chunk to calculate where to append the string.
1201 * This functions sets the name of the new pointer to the new
1202 * string. This is equivalent to:
1204 * \code
1205 * talloc_set_name_const(ptr, ptr)
1206 * \endcode
1208 char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3);
1210 void talloc_set_abort_fn(void (*abort_fn)(const char *reason));
1212 #endif