Add some static ...
[Samba/gebeck_regimport.git] / source3 / utils / editreg.c
blob8418a6ecc102ca2868ae761dd02588aa7864ea31
1 /*
2 Samba Unix/Linux SMB client utility editreg.c
3 Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19 /*************************************************************************
21 A utility to edit a Windows NT/2K etc registry file.
23 Many of the ideas in here come from other people and software.
24 I first looked in Wine in misc/registry.c and was also influenced by
25 http://www.wednesday.demon.co.uk/dosreg.html
27 Which seems to contain comments from someone else. I reproduce them here
28 incase the site above disappears. It actually comes from
29 http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt.
31 The goal here is to read the registry into memory, manipulate it, and then
32 write it out if it was changed by any actions of the user.
34 The windows NT registry has 2 different blocks, where one can occur many
35 times...
37 the "regf"-Block
38 ================
40 "regf" is obviosly the abbreviation for "Registry file". "regf" is the
41 signature of the header-block which is always 4kb in size, although only
42 the first 64 bytes seem to be used and a checksum is calculated over
43 the first 0x200 bytes only!
45 Offset Size Contents
46 0x00000000 D-Word ID: ASCII-"regf" = 0x66676572
47 0x00000004 D-Word ???? //see struct REGF
48 0x00000008 D-Word ???? Always the same value as at 0x00000004
49 0x0000000C Q-Word last modify date in WinNT date-format
50 0x00000014 D-Word 1
51 0x00000018 D-Word 3
52 0x0000001C D-Word 0
53 0x00000020 D-Word 1
54 0x00000024 D-Word Offset of 1st key record
55 0x00000028 D-Word Size of the data-blocks (Filesize-4kb)
56 0x0000002C D-Word 1
57 0x000001FC D-Word Sum of all D-Words from 0x00000000 to
58 0x000001FB //XOR of all words. Nigel
60 I have analyzed more registry files (from multiple machines running
61 NT 4.0 german version) and could not find an explanation for the values
62 marked with ???? the rest of the first 4kb page is not important...
64 the "hbin"-Block
65 ================
66 I don't know what "hbin" stands for, but this block is always a multiple
67 of 4kb in size.
69 Inside these hbin-blocks the different records are placed. The memory-
70 management looks like a C-compiler heap management to me...
72 hbin-Header
73 ===========
74 Offset Size Contents
75 0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268
76 0x0004 D-Word Offset from the 1st hbin-Block
77 0x0008 D-Word Offset to the next hbin-Block
78 0x001C D-Word Block-size
80 The values in 0x0008 and 0x001C should be the same, so I don't know
81 if they are correct or swapped...
83 From offset 0x0020 inside a hbin-block data is stored with the following
84 format:
86 Offset Size Contents
87 0x0000 D-Word Data-block size //this size must be a
88 multiple of 8. Nigel
89 0x0004 ???? Data
91 If the size field is negative (bit 31 set), the corresponding block
92 is free and has a size of -blocksize!
94 That does not seem to be true. All block lengths seem to be negative!
95 (Richard Sharpe)
97 The data is stored as one record per block. Block size is a multiple
98 of 4 and the last block reaches the next hbin-block, leaving no room.
100 (That also seems incorrect, in that the block size if a multiple of 8.
101 That is, the block, including the 4 byte header, is always a multiple of
102 8 bytes. Richard Sharpe.)
104 Records in the hbin-blocks
105 ==========================
107 nk-Record
109 The nk-record can be treated as a kombination of tree-record and
110 key-record of the win 95 registry.
112 lf-Record
114 The lf-record is the counterpart to the RGKN-record (the
115 hash-function)
117 vk-Record
119 The vk-record consists information to a single value.
121 sk-Record
123 sk (? Security Key ?) is the ACL of the registry.
125 Value-Lists
127 The value-lists contain information about which values are inside a
128 sub-key and don't have a header.
130 Datas
132 The datas of the registry are (like the value-list) stored without a
133 header.
135 All offset-values are relative to the first hbin-block and point to the
136 block-size field of the record-entry. to get the file offset, you have to add
137 the header size (4kb) and the size field (4 bytes)...
139 the nk-Record
140 =============
141 Offset Size Contents
142 0x0000 Word ID: ASCII-"nk" = 0x6B6E
143 0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel
144 0x0004 Q-Word write-date/time in windows nt notation
145 0x0010 D-Word Offset of Owner/Parent key
146 0x0014 D-Word number of sub-Keys
147 0x001C D-Word Offset of the sub-key lf-Records
148 0x0024 D-Word number of values
149 0x0028 D-Word Offset of the Value-List
150 0x002C D-Word Offset of the sk-Record
152 0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel
153 0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel
154 0x0048 Word name-length
155 0x004A Word class-name length
156 0x004C ???? key-name
158 the Value-List
159 ==============
160 Offset Size Contents
161 0x0000 D-Word Offset 1st Value
162 0x0004 D-Word Offset 2nd Value
163 0x???? D-Word Offset nth Value
165 To determine the number of values, you have to look at the owner-nk-record!
167 Der vk-Record
168 =============
169 Offset Size Contents
170 0x0000 Word ID: ASCII-"vk" = 0x6B76
171 0x0002 Word name length
172 0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel
173 0x0008 D-Word Offset of Data
174 0x000C D-Word Type of value
175 0x0010 Word Flag
176 0x0012 Word Unused (data-trash)
177 0x0014 ???? Name
179 If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default)
181 If the data-size is lower 5, the data-offset value is used to store the data itself!
183 The data-types
184 ==============
185 Wert Beteutung
186 0x0001 RegSZ: character string (in UNICODE!)
187 0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!)
188 0x0003 RegBin: raw-binary value
189 0x0004 RegDWord: Dword
190 0x0007 RegMultiSZ: multiple strings, seperated with 0
191 (UNICODE!)
193 The "lf"-record
194 ===============
195 Offset Size Contents
196 0x0000 Word ID: ASCII-"lf" = 0x666C
197 0x0002 Word number of keys
198 0x0004 ???? Hash-Records
200 Hash-Record
201 ===========
202 Offset Size Contents
203 0x0000 D-Word Offset of corresponding "nk"-Record
204 0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0's. Case sensitiv!
206 Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the
207 key-name you have to change the hash-value too!
209 //These hashrecords must be sorted low to high within the lf record. Nigel.
211 The "sk"-block
212 ==============
213 (due to the complexity of the SAM-info, not clear jet)
214 (This is just a self-relative security descriptor in the data. R Sharpe.)
217 Offset Size Contents
218 0x0000 Word ID: ASCII-"sk" = 0x6B73
219 0x0002 Word Unused
220 0x0004 D-Word Offset of previous "sk"-Record
221 0x0008 D-Word Offset of next "sk"-Record
222 0x000C D-Word usage-counter
223 0x0010 D-Word Size of "sk"-record in bytes
224 ???? //standard self
225 relative security desciptor. Nigel
226 ???? ???? Security and auditing settings...
227 ????
229 The usage counter counts the number of references to this
230 "sk"-record. You can use one "sk"-record for the entire registry!
232 Windows nt date/time format
233 ===========================
234 The time-format is a 64-bit integer which is incremented every
235 0,0000001 seconds by 1 (I don't know how accurate it realy is!)
236 It starts with 0 at the 1st of january 1601 0:00! All values are
237 stored in GMT time! The time-zone is important to get the real
238 time!
240 Common values for win95 and win-nt
241 ==================================
242 Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF).
243 If a value has no name (length=0, flag(bit 0)=0), it is treated as the
244 "Default" entry...
245 If a value has no data (length=0), it is displayed as empty.
247 simplyfied win-3.?? registry:
248 =============================
250 +-----------+
251 | next rec. |---+ +----->+------------+
252 | first sub | | | | Usage cnt. |
253 | name | | +-->+------------+ | | length |
254 | value | | | | next rec. | | | text |------->+-------+
255 +-----------+ | | | name rec. |--+ +------------+ | xxxxx |
256 +------------+ | | value rec. |-------->+------------+ +-------+
257 v | +------------+ | Usage cnt. |
258 +-----------+ | | length |
259 | next rec. | | | text |------->+-------+
260 | first sub |------+ +------------+ | xxxxx |
261 | name | +-------+
262 | value |
263 +-----------+
265 Greatly simplyfied structure of the nt-registry:
266 ================================================
268 +---------------------------------------------------------------+
271 +---------+ +---------->+-----------+ +----->+---------+ |
272 | "nk" | | | lf-rec. | | | nk-rec. | |
273 | ID | | | # of keys | | | parent |---+
274 | Date | | | 1st key |--+ | .... |
275 | parent | | +-----------+ +---------+
276 | suk-keys|-----+
277 | values |--------------------->+----------+
278 | SK-rec. |---------------+ | 1. value |--> +----------+
279 | class |--+ | +----------+ | vk-rec. |
280 +---------+ | | | .... |
281 v | | data |--> +-------+
282 +------------+ | +----------+ | xxxxx |
283 | Class name | | +-------+
284 +------------+ |
286 +---------+ +---------+
287 +----->| next sk |--->| Next sk |--+
288 | +---| prev sk |<---| prev sk | |
289 | | | .... | | ... | |
290 | | +---------+ +---------+ |
291 | | ^ |
292 | | | |
293 | +--------------------+ |
294 +----------------------------------+
296 ---------------------------------------------------------------------------
298 Hope this helps.... (Although it was "fun" for me to uncover this things,
299 it took me several sleepless nights ;)
301 B.D.
303 *************************************************************************/
305 #include <stdio.h>
306 #include <stdlib.h>
307 #include <errno.h>
308 #include <assert.h>
309 #include <sys/types.h>
310 #include <sys/stat.h>
311 #include <unistd.h>
312 #include <sys/mman.h>
313 #include <string.h>
314 #include <fcntl.h>
316 #define False 0
317 #define True 1
318 #define REG_KEY_LIST_SIZE 10
321 * Structures for dealing with the on-disk format of the registry
324 #define IVAL(buf) ((unsigned int) \
325 (unsigned int)*((unsigned char *)(buf)+3)<<24| \
326 (unsigned int)*((unsigned char *)(buf)+2)<<16| \
327 (unsigned int)*((unsigned char *)(buf)+1)<<8| \
328 (unsigned int)*((unsigned char *)(buf)+0))
330 #define SVAL(buf) ((unsigned short) \
331 (unsigned short)*((unsigned char *)(buf)+1)<<8| \
332 (unsigned short)*((unsigned char *)(buf)+0))
334 #define CVAL(buf) ((unsigned char)*((unsigned char *)(buf)))
336 #define SIVAL(buf, val) \
337 ((((unsigned char *)(buf))[0])=(unsigned char)((val)&0xFF),\
338 (((unsigned char *)(buf))[1])=(unsigned char)(((val)>>8)&0xFF),\
339 (((unsigned char *)(buf))[2])=(unsigned char)(((val)>>16)&0xFF),\
340 (((unsigned char *)(buf))[3])=(unsigned char)((val)>>24))
342 #define SSVAL(buf, val) \
343 ((((unsigned char *)(buf))[0])=(unsigned char)((val)&0xFF),\
344 (((unsigned char *)(buf))[1])=(unsigned char)((val)>>8))
346 static int verbose = 0;
347 static int print_security = 0;
348 static int full_print = 0;
349 static const char *def_owner_sid_str = NULL;
352 * These definitions are for the in-memory registry structure.
353 * It is a tree structure that mimics what you see with tools like regedit
357 * DateTime struct for Windows
360 typedef struct date_time_s {
361 unsigned int low, high;
362 } NTTIME;
365 * Definition of a Key. It has a name, classname, date/time last modified,
366 * sub-keys, values, and a security descriptor
369 #define REG_ROOT_KEY 1
370 #define REG_SUB_KEY 2
371 #define REG_SYM_LINK 3
373 typedef struct key_sec_desc_s KEY_SEC_DESC;
375 typedef struct reg_key_s {
376 char *name; /* Name of the key */
377 char *class_name;
378 int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */
379 NTTIME last_mod; /* Time last modified */
380 struct reg_key_s *owner;
381 struct key_list_s *sub_keys;
382 struct val_list_s *values;
383 KEY_SEC_DESC *security;
384 unsigned int offset; /* Offset of the record in the file */
385 } REG_KEY;
388 * The KEY_LIST struct lists sub-keys.
391 typedef struct key_list_s {
392 int key_count;
393 int max_keys;
394 REG_KEY *keys[1];
395 } KEY_LIST;
397 typedef struct val_key_s {
398 char *name;
399 int has_name;
400 int data_type;
401 int data_len;
402 void *data_blk; /* Might want a separate block */
403 } VAL_KEY;
405 typedef struct val_list_s {
406 int val_count;
407 int max_vals;
408 VAL_KEY *vals[1];
409 } VAL_LIST;
411 #ifndef MAXSUBAUTHS
412 #define MAXSUBAUTHS 15
413 #endif
415 typedef struct dom_sid_s {
416 unsigned char ver, auths;
417 unsigned char auth[6];
418 unsigned int sub_auths[MAXSUBAUTHS];
419 } DOM_SID;
421 typedef struct ace_struct_s {
422 unsigned char type, flags;
423 unsigned int perms; /* Perhaps a better def is in order */
424 DOM_SID *trustee;
425 } ACE;
427 typedef struct acl_struct_s {
428 unsigned short rev, refcnt;
429 unsigned short num_aces;
430 ACE *aces[1];
431 } ACL;
433 typedef struct sec_desc_s {
434 unsigned int rev, type;
435 DOM_SID *owner, *group;
436 ACL *sacl, *dacl;
437 } SEC_DESC;
439 #define SEC_DESC_NON 0
440 #define SEC_DESC_RES 1
441 #define SEC_DESC_OCU 2
442 #define SEC_DESC_NBK 3
443 typedef struct sk_struct SK_HDR;
444 struct key_sec_desc_s {
445 struct key_sec_desc_s *prev, *next;
446 int ref_cnt;
447 int state;
448 int offset;
449 SK_HDR *sk_hdr; /* This means we must keep the registry in memory */
450 SEC_DESC *sec_desc;
454 * All of the structures below actually have a four-byte length before them
455 * which always seems to be negative. The following macro retrieves that
456 * size as an integer
459 #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1))
461 typedef unsigned int DWORD;
462 typedef unsigned short WORD;
464 #define REG_REGF_ID 0x66676572
466 typedef struct regf_block {
467 DWORD REGF_ID; /* regf */
468 DWORD uk1;
469 DWORD uk2;
470 DWORD tim1, tim2;
471 DWORD uk3; /* 1 */
472 DWORD uk4; /* 3 */
473 DWORD uk5; /* 0 */
474 DWORD uk6; /* 1 */
475 DWORD first_key; /* offset */
476 unsigned int dblk_size;
477 DWORD uk7[116]; /* 1 */
478 DWORD chksum;
479 } REGF_HDR;
481 typedef struct hbin_sub_struct {
482 DWORD dblocksize;
483 char data[1];
484 } HBIN_SUB_HDR;
486 #define REG_HBIN_ID 0x6E696268
488 typedef struct hbin_struct {
489 DWORD HBIN_ID; /* hbin */
490 DWORD off_from_first;
491 DWORD off_to_next;
492 DWORD uk1;
493 DWORD uk2;
494 DWORD uk3;
495 DWORD uk4;
496 DWORD blk_size;
497 HBIN_SUB_HDR hbin_sub_hdr;
498 } HBIN_HDR;
500 #define REG_NK_ID 0x6B6E
502 typedef struct nk_struct {
503 WORD NK_ID;
504 WORD type;
505 DWORD t1, t2;
506 DWORD uk1;
507 DWORD own_off;
508 DWORD subk_num;
509 DWORD uk2;
510 DWORD lf_off;
511 DWORD uk3;
512 DWORD val_cnt;
513 DWORD val_off;
514 DWORD sk_off;
515 DWORD clsnam_off;
516 DWORD unk4[4];
517 DWORD unk5;
518 WORD nam_len;
519 WORD clsnam_len;
520 char key_nam[1]; /* Actual length determined by nam_len */
521 } NK_HDR;
523 #define REG_SK_ID 0x6B73
525 struct sk_struct {
526 WORD SK_ID;
527 WORD uk1;
528 DWORD prev_off;
529 DWORD next_off;
530 DWORD ref_cnt;
531 DWORD rec_size;
532 char sec_desc[1];
535 typedef struct ace_struct {
536 unsigned char type;
537 unsigned char flags;
538 unsigned short length;
539 unsigned int perms;
540 DOM_SID trustee;
541 } REG_ACE;
543 typedef struct acl_struct {
544 WORD rev;
545 WORD size;
546 DWORD num_aces;
547 REG_ACE *aces; /* One or more ACEs */
548 } REG_ACL;
550 typedef struct sec_desc_rec {
551 WORD rev;
552 WORD type;
553 DWORD owner_off;
554 DWORD group_off;
555 DWORD sacl_off;
556 DWORD dacl_off;
557 } REG_SEC_DESC;
559 typedef struct hash_struct {
560 DWORD nk_off;
561 char hash[4];
562 } HASH_REC;
564 #define REG_LF_ID 0x666C
566 typedef struct lf_struct {
567 WORD LF_ID;
568 WORD key_count;
569 struct hash_struct hr[1]; /* Array of hash records, depending on key_count */
570 } LF_HDR;
572 typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */
574 #define REG_VK_ID 0x6B76
576 typedef struct vk_struct {
577 WORD VK_ID;
578 WORD nam_len;
579 DWORD dat_len; /* If top-bit set, offset contains the data */
580 DWORD dat_off;
581 DWORD dat_type;
582 WORD flag; /* =1, has name, else no name (=Default). */
583 WORD unk1;
584 char dat_name[1]; /* Name starts here ... */
585 } VK_HDR;
587 #define REG_TYPE_DELETE -1
588 #define REG_TYPE_NONE 0
589 #define REG_TYPE_REGSZ 1
590 #define REG_TYPE_EXPANDSZ 2
591 #define REG_TYPE_BIN 3
592 #define REG_TYPE_DWORD 4
593 #define REG_TYPE_MULTISZ 7
595 typedef struct _val_str {
596 unsigned int val;
597 const char * str;
598 } VAL_STR;
600 /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */
601 typedef struct sk_map_s {
602 int sk_off;
603 KEY_SEC_DESC *key_sec_desc;
604 } SK_MAP;
607 * This structure keeps track of the output format of the registry
609 #define REG_OUTBLK_HDR 1
610 #define REG_OUTBLK_HBIN 2
612 typedef struct hbin_blk_s {
613 int type, size;
614 struct hbin_blk_s *next;
615 char *data; /* The data block */
616 unsigned int file_offset; /* Offset in file */
617 unsigned int free_space; /* Amount of free space in block */
618 unsigned int fsp_off; /* Start of free space in block */
619 int complete, stored;
620 } HBIN_BLK;
623 * This structure keeps all the registry stuff in one place
625 typedef struct regf_struct_s {
626 int reg_type;
627 char *regfile_name, *outfile_name;
628 int fd;
629 struct stat sbuf;
630 char *base;
631 int modified;
632 NTTIME last_mod_time;
633 REG_KEY *root; /* Root of the tree for this file */
634 int sk_count, sk_map_size;
635 SK_MAP *sk_map;
636 const char *owner_sid_str;
637 SEC_DESC *def_sec_desc;
639 * These next pointers point to the blocks used to contain the
640 * keys when we are preparing to write them to a file
642 HBIN_BLK *blk_head, *blk_tail, *free_space;
643 } REGF;
646 * An API for accessing/creating/destroying items above
650 * Iterate over the keys, depth first, calling a function for each key
651 * and indicating if it is terminal or non-terminal and if it has values.
653 * In addition, for each value in the list, call a value list function
656 typedef int (*key_print_f)(const char *path, char *key_name, char *class_name,
657 int root, int terminal, int values);
659 typedef int (*val_print_f)(const char *path, char *val_name, int val_type,
660 int data_len, void *data_blk, int terminal,
661 int first, int last);
663 typedef int (*sec_print_f)(SEC_DESC *sec_desc);
665 static
666 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
667 key_print_f key_print, sec_print_f sec_print,
668 val_print_f val_print);
670 static
671 int nt_val_list_iterator(REGF *regf, VAL_LIST *val_list, int bf, char *path,
672 int terminal, val_print_f val_print)
674 int i;
676 if (!val_list) return 1;
678 if (!val_print) return 1;
680 for (i=0; i<val_list->val_count; i++) {
681 if (!val_print(path, val_list->vals[i]->name, val_list->vals[i]->data_type,
682 val_list->vals[i]->data_len, val_list->vals[i]->data_blk,
683 terminal,
684 (i == 0),
685 (i == val_list->val_count))) {
687 return 0;
692 return 1;
695 static
696 int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf,
697 const char *path,
698 key_print_f key_print, sec_print_f sec_print,
699 val_print_f val_print)
701 int i;
703 if (!key_list) return 1;
705 for (i=0; i< key_list->key_count; i++) {
706 if (!nt_key_iterator(regf, key_list->keys[i], bf, path, key_print,
707 sec_print, val_print)) {
708 return 0;
711 return 1;
714 static
715 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
716 key_print_f key_print, sec_print_f sec_print,
717 val_print_f val_print)
719 int path_len = strlen(path);
720 char *new_path;
722 if (!regf || !key_tree)
723 return -1;
725 /* List the key first, then the values, then the sub-keys */
727 if (key_print) {
729 if (!(*key_print)(path, key_tree->name,
730 key_tree->class_name,
731 (key_tree->type == REG_ROOT_KEY),
732 (key_tree->sub_keys == NULL),
733 (key_tree->values?(key_tree->values->val_count):0)))
734 return 0;
738 * If we have a security print routine, call it
739 * If the security print routine returns false, stop.
741 if (sec_print) {
742 if (key_tree->security && !(*sec_print)(key_tree->security->sec_desc))
743 return 0;
746 new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1);
747 if (!new_path) return 0; /* Errors? */
748 new_path[0] = '\0';
749 strcat(new_path, path);
750 strcat(new_path, key_tree->name);
751 strcat(new_path, "\\");
754 * Now, iterate through the values in the val_list
757 if (key_tree->values &&
758 !nt_val_list_iterator(regf, key_tree->values, bf, new_path,
759 (key_tree->values!=NULL),
760 val_print)) {
762 free(new_path);
763 return 0;
767 * Now, iterate through the keys in the key list
770 if (key_tree->sub_keys &&
771 !nt_key_list_iterator(regf, key_tree->sub_keys, bf, new_path, key_print,
772 sec_print, val_print)) {
773 free(new_path);
774 return 0;
777 free(new_path);
778 return 1;
781 static
782 REG_KEY *nt_find_key_by_name(REG_KEY *tree, char *key);
785 * Find key by name in a list ...
786 * Take the first component and search for that in the list
788 static
789 REG_KEY *nt_find_key_in_list_by_name(KEY_LIST *list, char *key)
791 int i;
792 REG_KEY *res = NULL;
794 if (!list || !key || !*key) return NULL;
796 for (i = 0; i < list->key_count; i++)
797 if ((res = nt_find_key_by_name(list->keys[i], key)))
798 return res;
800 return NULL;
804 * Find key by name in a tree ... We will assume absolute names here, but we
805 * need the root of the tree ...
807 static
808 REG_KEY *nt_find_key_by_name(REG_KEY *tree, char *key)
810 char *lname = NULL, *c1, *c2;
811 REG_KEY *tmp;
813 if (!tree || !key || !*key) return NULL;
815 lname = strdup(key);
816 if (!lname) return NULL;
819 * Make sure that the first component is correct ...
821 c1 = lname;
822 c2 = strchr(c1, '\\');
823 if (c2) { /* Split here ... */
824 *c2 = 0;
825 c2++;
827 if (strcmp(c1, tree->name) != 0) goto error;
829 if (c2) {
830 tmp = nt_find_key_in_list_by_name(tree->sub_keys, c2);
831 free(lname);
832 return tmp;
834 else {
835 if (lname) free(lname);
836 return tree;
838 error:
839 if (lname) free(lname);
840 return NULL;
843 /* Make, delete keys */
844 static
845 int nt_delete_val_key(VAL_KEY *val_key)
848 if (val_key) {
849 if (val_key->name) free(val_key->name);
850 if (val_key->data_blk) free(val_key->data_blk);
851 free(val_key);
853 return 1;
856 static
857 int nt_delete_val_list(VAL_LIST *vl)
859 int i;
861 if (vl) {
862 for (i=0; i<vl->val_count; i++)
863 nt_delete_val_key(vl->vals[i]);
864 free(vl);
866 return 1;
869 static
870 int nt_delete_reg_key(REG_KEY *key, int delete_name);
872 static
873 int nt_delete_key_list(KEY_LIST *key_list, int delete_name)
875 int i;
877 if (key_list) {
878 for (i=0; i<key_list->key_count; i++)
879 nt_delete_reg_key(key_list->keys[i], False);
880 free(key_list);
882 return 1;
886 * Find the key, and if it exists, delete it ...
888 static
889 int nt_delete_key_by_name(REGF *regf, char *name)
891 REG_KEY *key;
893 if (!name || !*name) return 0;
895 key = nt_find_key_by_name(regf->root, name);
897 if (key) {
898 if (key == regf->root) regf->root = NULL;
899 return nt_delete_reg_key(key, True);
902 return 0;
906 static
907 int nt_delete_sid(DOM_SID *sid)
910 if (sid) free(sid);
911 return 1;
915 static
916 int nt_delete_ace(ACE *ace)
919 if (ace) {
920 nt_delete_sid(ace->trustee);
921 free(ace);
923 return 1;
927 static
928 int nt_delete_acl(ACL *acl)
931 if (acl) {
932 int i;
934 for (i=0; i<acl->num_aces; i++)
935 nt_delete_ace(acl->aces[i]);
937 free(acl);
939 return 1;
942 static
943 int nt_delete_sec_desc(SEC_DESC *sec_desc)
946 if (sec_desc) {
948 nt_delete_sid(sec_desc->owner);
949 nt_delete_sid(sec_desc->group);
950 nt_delete_acl(sec_desc->sacl);
951 nt_delete_acl(sec_desc->dacl);
952 free(sec_desc);
955 return 1;
958 static
959 int nt_delete_key_sec_desc(KEY_SEC_DESC *key_sec_desc)
962 if (key_sec_desc) {
963 key_sec_desc->ref_cnt--;
964 if (key_sec_desc->ref_cnt<=0) {
966 * There should always be a next and prev, even if they point to us
968 key_sec_desc->next->prev = key_sec_desc->prev;
969 key_sec_desc->prev->next = key_sec_desc->next;
970 nt_delete_sec_desc(key_sec_desc->sec_desc);
973 return 1;
976 static
977 int nt_delete_reg_key(REG_KEY *key, int delete_name)
980 if (key) {
981 if (key->name) free(key->name);
982 if (key->class_name) free(key->class_name);
985 * We will delete the owner if we are not the root and told to ...
988 if (key->owner && key->owner->sub_keys && delete_name) {
989 REG_KEY *own;
990 KEY_LIST *kl;
991 int i;
992 /* Find our owner, look in keylist for us and shuffle up */
993 /* Perhaps should be a function */
995 own = key->owner;
996 kl = own->sub_keys;
998 for (i=0; i < kl->key_count && kl->keys[i] != key ; i++) {
999 /* Just find the entry ... */
1002 if (i == kl->key_count) {
1003 fprintf(stderr, "Bad data structure. Key not found in key list of owner\n");
1005 else {
1006 int j;
1009 * Shuffle up. Works for the last one also
1011 for (j = i + 1; j < kl->key_count; j++) {
1012 kl->keys[j - 1] = kl->keys[j];
1015 kl->key_count--;
1019 if (key->sub_keys) nt_delete_key_list(key->sub_keys, False);
1020 if (key->values) nt_delete_val_list(key->values);
1021 if (key->security) nt_delete_key_sec_desc(key->security);
1022 free(key);
1024 return 1;
1028 * Convert a string to a value ...
1029 * FIXME: Error handling and convert this at command parse time ...
1031 static
1032 void *str_to_val(int type, char *val, int *len)
1034 unsigned int *dwordp = NULL;
1036 if (!len || !val) return NULL;
1038 switch (type) {
1039 case REG_TYPE_REGSZ:
1040 *len = strlen(val);
1041 return (void *)val;
1043 case REG_TYPE_DWORD:
1044 dwordp = (unsigned int *)malloc(sizeof(unsigned int));
1045 if (!dwordp) return NULL;
1046 /* Allow for ddddd and 0xhhhhh and 0ooooo */
1047 if (strncmp(val, "0x", 2) == 0 || strncmp(val, "0X", 2) == 0) {
1048 sscanf(&val[2], "%X", dwordp);
1050 else if (*val == '0') {
1051 sscanf(&val[1], "%o", dwordp);
1053 else {
1054 sscanf(val, "%d", dwordp);
1056 *len = sizeof(unsigned int);
1057 return (void *)dwordp;
1059 /* FIXME: Implement more of these */
1061 default:
1062 return NULL;
1065 return NULL;
1069 * Add a value to the key specified ... We have to parse the value some more
1070 * based on the type to get it in the correct internal form
1071 * An empty name will be converted to "<No Name>" before here
1072 * Hmmm, maybe not. has_name is for that
1074 static
1075 VAL_KEY *nt_add_reg_value(REG_KEY *key, char *name, int type, char *value)
1077 int i;
1078 VAL_KEY *tmp = NULL;
1080 if (!key || !key->values || !name || !*name) return NULL;
1082 assert(type != REG_TYPE_DELETE); /* We never process deletes here */
1084 for (i = 0; i < key->values->val_count; i++) {
1085 if ((!key->values->vals[i]->has_name && !*name) ||
1086 (key->values->vals[i]->has_name &&
1087 strcmp(name, key->values->vals[i]->name) == 0)){ /* Change the value */
1088 free(key->values->vals[i]->data_blk);
1089 key->values->vals[i]->data_blk = str_to_val(type, value, &
1090 key->values->vals[i]->data_len);
1091 return key->values->vals[i];
1096 * If we get here, the name was not found, so insert it
1099 tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
1100 if (!tmp) goto error;
1102 bzero(tmp, sizeof(VAL_KEY));
1103 tmp->name = strdup(name);
1104 tmp->has_name = True;
1105 if (!tmp->name) goto error;
1106 tmp->data_type = type;
1107 tmp->data_blk = str_to_val(type, value, &tmp->data_len);
1109 /* Now, add to val list */
1111 if (key->values->val_count >= key->values->max_vals) {
1113 * Allocate some more space
1116 if ((key->values = (VAL_LIST *)realloc(key->values, sizeof(VAL_LIST) +
1117 key->values->val_count - 1 +
1118 REG_KEY_LIST_SIZE))) {
1119 key->values->max_vals += REG_KEY_LIST_SIZE;
1121 else goto error;
1124 i = key->values->val_count;
1125 key->values->val_count++;
1126 key->values->vals[i] = tmp;
1127 return tmp;
1129 error:
1130 if (tmp) nt_delete_val_key(tmp);
1131 return NULL;
1135 * Delete a value. We return the value and let the caller deal with it.
1137 static
1138 VAL_KEY *nt_delete_reg_value(REG_KEY *key, char *name)
1140 int i, j;
1142 if (!key || !key->values || !name || !*name) return NULL;
1144 /* FIXME: Allow empty value name */
1145 for (i = 0; i< key->values->val_count; i++) {
1146 if ((!key->values->vals[i]->has_name && !*name) ||
1147 (key->values->vals[i]->has_name &&
1148 strcmp(name, key->values->vals[i]->name) == 0)) {
1149 VAL_KEY *val;
1151 val = key->values->vals[i];
1153 /* Shuffle down */
1154 for (j = i + 1; j < key->values->val_count; j++)
1155 key->values->vals[j - 1] = key->values->vals[j];
1157 key->values->val_count--;
1159 return val;
1162 return NULL;
1166 * Add a key to the tree ... We walk down the components matching until
1167 * we don't find any. There must be a match on the first component ...
1168 * We return the key structure for the final component as that is
1169 * often where we want to add values ...
1173 * Convert a string of the form S-1-5-x[-y-z-r] to a SID
1175 static
1176 int string_to_sid(DOM_SID **sid, const char *sid_str)
1178 int i = 0, auth;
1179 const char *lstr;
1181 *sid = (DOM_SID *)malloc(sizeof(DOM_SID));
1182 if (!*sid) return 0;
1184 bzero(*sid, sizeof(DOM_SID));
1186 if (strncmp(sid_str, "S-1-5", 5)) {
1187 fprintf(stderr, "Does not conform to S-1-5...: %s\n", sid_str);
1188 return 0;
1191 /* We only allow strings of form S-1-5... */
1193 (*sid)->ver = 1;
1194 (*sid)->auth[5] = 5;
1196 lstr = sid_str + 5;
1198 while (1) {
1199 if (!lstr || !lstr[0] || sscanf(lstr, "-%u", &auth) == 0) {
1200 if (i < 1) {
1201 fprintf(stderr, "Not of form -d-d...: %s, %u\n", lstr, i);
1202 return 0;
1204 (*sid)->auths=i;
1205 return 1;
1208 (*sid)->sub_auths[i] = auth;
1209 i++;
1210 lstr = strchr(lstr + 1, '-');
1213 /*return 1; */ /* Not Reached ... */
1217 * Create an ACE
1219 static
1220 ACE *nt_create_ace(int type, int flags, unsigned int perms, const char *sid)
1222 ACE *ace;
1224 ace = (ACE *)malloc(sizeof(ACE));
1225 if (!ace) goto error;
1226 ace->type = type;
1227 ace->flags = flags;
1228 ace->perms = perms;
1229 if (!string_to_sid(&ace->trustee, sid))
1230 goto error;
1231 return ace;
1233 error:
1234 if (ace) nt_delete_ace(ace);
1235 return NULL;
1239 * Create a default ACL
1241 static
1242 ACL *nt_create_default_acl(REGF *regf)
1244 ACL *acl;
1246 acl = (ACL *)malloc(sizeof(ACL) + 7*sizeof(ACE *));
1247 if (!acl) goto error;
1249 acl->rev = 2;
1250 acl->refcnt = 1;
1251 acl->num_aces = 8;
1253 acl->aces[0] = nt_create_ace(0x00, 0x0, 0xF003F, regf->owner_sid_str);
1254 if (!acl->aces[0]) goto error;
1255 acl->aces[1] = nt_create_ace(0x00, 0x0, 0xF003F, "S-1-5-18");
1256 if (!acl->aces[1]) goto error;
1257 acl->aces[2] = nt_create_ace(0x00, 0x0, 0xF003F, "S-1-5-32-544");
1258 if (!acl->aces[2]) goto error;
1259 acl->aces[3] = nt_create_ace(0x00, 0x0, 0x20019, "S-1-5-12");
1260 if (!acl->aces[3]) goto error;
1261 acl->aces[4] = nt_create_ace(0x00, 0x0B, 0x10000000, regf->owner_sid_str);
1262 if (!acl->aces[4]) goto error;
1263 acl->aces[5] = nt_create_ace(0x00, 0x0B, 0x10000000, "S-1-5-18");
1264 if (!acl->aces[5]) goto error;
1265 acl->aces[6] = nt_create_ace(0x00, 0x0B, 0x10000000, "S-1-5-32-544");
1266 if (!acl->aces[6]) goto error;
1267 acl->aces[7] = nt_create_ace(0x00, 0x0B, 0x80000000, "S-1-5-12");
1268 if (!acl->aces[7]) goto error;
1269 return acl;
1271 error:
1272 if (acl) nt_delete_acl(acl);
1273 return NULL;
1277 * Create a default security descriptor. We pull in things from env
1278 * if need be
1280 static
1281 SEC_DESC *nt_create_def_sec_desc(REGF *regf)
1283 SEC_DESC *tmp;
1285 tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC));
1286 if (!tmp) return NULL;
1288 tmp->rev = 1;
1289 tmp->type = 0x8004;
1290 if (!string_to_sid(&tmp->owner, "S-1-5-32-544")) goto error;
1291 if (!string_to_sid(&tmp->group, "S-1-5-18")) goto error;
1292 tmp->sacl = NULL;
1293 tmp->dacl = nt_create_default_acl(regf);
1295 return tmp;
1297 error:
1298 if (tmp) nt_delete_sec_desc(tmp);
1299 return NULL;
1303 * We will implement inheritence that is based on what the parent's SEC_DESC
1304 * says, but the Owner and Group SIDs can be overwridden from the command line
1305 * and additional ACEs can be applied from the command line etc.
1307 static
1308 KEY_SEC_DESC *nt_inherit_security(REG_KEY *key)
1311 if (!key) return NULL;
1312 return key->security;
1316 * Create an initial security descriptor and init other structures, if needed
1317 * We assume that the initial security stuff is empty ...
1319 static
1320 KEY_SEC_DESC *nt_create_init_sec(REGF *regf)
1322 KEY_SEC_DESC *tsec = NULL;
1324 tsec = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1325 if (!tsec) return NULL;
1327 tsec->ref_cnt = 1;
1328 tsec->state = SEC_DESC_NBK;
1329 tsec->offset = 0;
1331 tsec->sec_desc = regf->def_sec_desc;
1333 return tsec;
1337 * Add a sub-key
1339 static
1340 REG_KEY *nt_add_reg_key_list(REGF *regf, REG_KEY *key, char * name, int create)
1342 int i;
1343 REG_KEY *ret = NULL, *tmp = NULL;
1344 KEY_LIST *list;
1345 char *lname, *c1, *c2;
1347 if (!key || !name || !*name) return NULL;
1349 list = key->sub_keys;
1350 if (!list) { /* Create an empty list */
1352 list = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (REG_KEY_LIST_SIZE - 1) * sizeof(REG_KEY *));
1353 list->key_count = 0;
1354 list->max_keys = REG_KEY_LIST_SIZE;
1358 lname = strdup(name);
1359 if (!lname) return NULL;
1361 c1 = lname;
1362 c2 = strchr(c1, '\\');
1363 if (c2) { /* Split here ... */
1364 *c2 = 0;
1365 c2++;
1368 for (i = 0; i < list->key_count; i++) {
1369 if (strcmp(list->keys[i]->name, c1) == 0) {
1370 ret = nt_add_reg_key_list(regf, list->keys[i], c2, create);
1371 free(lname);
1372 return ret;
1377 * If we reach here we could not find the the first component
1378 * so create it ...
1381 if (list->key_count < list->max_keys){
1382 list->key_count++;
1384 else { /* Create more space in the list ... */
1385 if (!(list = (KEY_LIST *)realloc(list, sizeof(KEY_LIST) +
1386 (list->max_keys + REG_KEY_LIST_SIZE - 1)
1387 * sizeof(REG_KEY *))))
1388 goto error;
1390 list->max_keys += REG_KEY_LIST_SIZE;
1391 list->key_count++;
1395 * add the new key at the new slot
1396 * FIXME: Sort the list someday
1400 * We want to create the key, and then do the rest
1403 tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
1405 bzero(tmp, sizeof(REG_KEY));
1407 tmp->name = strdup(c1);
1408 if (!tmp->name) goto error;
1409 tmp->owner = key;
1410 tmp->type = REG_SUB_KEY;
1412 * Next, pull security from the parent, but override with
1413 * anything passed in on the command line
1415 tmp->security = nt_inherit_security(key);
1417 list->keys[list->key_count - 1] = tmp;
1419 if (c2) {
1420 ret = nt_add_reg_key_list(regf, key, c2, True);
1423 if (lname) free(lname);
1425 return ret;
1427 error:
1428 if (tmp) free(tmp);
1429 if (lname) free(lname);
1430 return NULL;
1434 * This routine only adds a key from the root down.
1435 * It calls helper functions to handle sub-key lists and sub-keys
1437 static
1438 REG_KEY *nt_add_reg_key(REGF *regf, char *name, int create)
1440 char *lname = NULL, *c1, *c2;
1441 REG_KEY * tmp = NULL;
1444 * Look until we hit the first component that does not exist, and
1445 * then add from there. However, if the first component does not
1446 * match and the path we are given is the root, then it must match
1448 if (!regf || !name || !*name) return NULL;
1450 lname = strdup(name);
1451 if (!lname) return NULL;
1453 c1 = lname;
1454 c2 = strchr(c1, '\\');
1455 if (c2) { /* Split here ... */
1456 *c2 = 0;
1457 c2++;
1461 * If the root does not exist, create it and make it equal to the
1462 * first component ...
1465 if (!regf->root) {
1467 tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
1468 if (!tmp) goto error;
1469 bzero(tmp, sizeof(REG_KEY));
1470 tmp->name = strdup(c1);
1471 if (!tmp->name) goto error;
1472 tmp->security = nt_create_init_sec(regf);
1473 if (!tmp->security) goto error;
1474 regf->root = tmp;
1477 else {
1479 * If we don't match, then we have to return error ...
1480 * If we do match on this component, check the next one in the
1481 * list, and if not found, add it ... short circuit, add all the
1482 * way down
1485 if (strcmp(c1, regf->root->name) != 0)
1486 goto error;
1489 tmp = nt_add_reg_key_list(regf, regf->root, c2, True);
1490 free(lname);
1491 return tmp;
1493 error:
1494 if (tmp) free(tmp);
1495 if (lname) free(lname);
1496 return NULL;
1500 * Load and unload a registry file.
1502 * Load, loads it into memory as a tree, while unload sealizes/flattens it
1506 * Get the starting record for NT Registry file
1510 * Where we keep all the regf stuff for one registry.
1511 * This is the structure that we use to tie the in memory tree etc
1512 * together. By keeping separate structs, we can operate on different
1513 * registries at the same time.
1514 * Currently, the SK_MAP is an array of mapping structure.
1515 * Since we only need this on input and output, we fill in the structure
1516 * as we go on input. On output, we know how many SK items we have, so
1517 * we can allocate the structure as we need to.
1518 * If you add stuff here that is dynamically allocated, add the
1519 * appropriate free statements below.
1522 #define REGF_REGTYPE_NONE 0
1523 #define REGF_REGTYPE_NT 1
1524 #define REGF_REGTYPE_W9X 2
1526 #define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \
1527 (r)->last_mod_time.high = (t2);
1529 #define REGF_HDR_BLKSIZ 0x1000
1531 #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4)
1532 #define LOCN(base, f) ((base) + OFF(f))
1534 const VAL_STR reg_type_names[] = {
1535 { REG_TYPE_REGSZ, "REG_SZ" },
1536 { REG_TYPE_EXPANDSZ, "REG_EXPAND_SZ" },
1537 { REG_TYPE_BIN, "REG_BIN" },
1538 { REG_TYPE_DWORD, "REG_DWORD" },
1539 { REG_TYPE_MULTISZ, "REG_MULTI_SZ" },
1540 { 0, NULL },
1543 static
1544 const char *val_to_str(unsigned int val, const VAL_STR *val_array)
1546 int i = 0;
1548 if (!val_array) return NULL;
1550 while (val_array[i].val && val_array[i].str) {
1552 if (val_array[i].val == val) return val_array[i].str;
1553 i++;
1557 return NULL;
1562 * Convert from UniCode to Ascii ... Does not take into account other lang
1563 * Restrict by ascii_max if > 0
1565 static
1566 int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max,
1567 int uni_max)
1569 int i = 0;
1571 while (i < ascii_max && !(!uni[i*2] && !uni[i*2+1])) {
1572 if (uni_max > 0 && (i*2) >= uni_max) break;
1573 ascii[i] = uni[i*2];
1574 i++;
1578 ascii[i] = '\0';
1580 return i;
1584 * Convert a data value to a string for display
1586 static
1587 int data_to_ascii(unsigned char *datap, int len, int type, char *ascii, int ascii_max)
1589 unsigned char *asciip;
1590 int i;
1592 switch (type) {
1593 case REG_TYPE_REGSZ:
1594 if (verbose) fprintf(stderr, "Len: %d\n", len);
1595 /* FIXME. This has to be fixed. It has to be UNICODE */
1596 return uni_to_ascii(datap, ascii, len, ascii_max);
1597 break; /*NOTREACHED*/
1599 case REG_TYPE_EXPANDSZ:
1600 return uni_to_ascii(datap, ascii, len, ascii_max);
1601 break;
1603 case REG_TYPE_BIN:
1604 asciip = ascii;
1605 for (i=0; (i<len)&&(i+1)*3<ascii_max; i++) {
1606 int str_rem = ascii_max - ((int)asciip - (int)ascii);
1607 asciip += snprintf(asciip, str_rem, "%02x", *(unsigned char *)(datap+i));
1608 if (i < len && str_rem > 0)
1609 *asciip = ' '; asciip++;
1611 *asciip = '\0';
1612 return ((int)asciip - (int)ascii);
1613 break;
1615 case REG_TYPE_DWORD:
1616 if (*(int *)datap == 0)
1617 return snprintf(ascii, ascii_max, "0");
1618 else
1619 return snprintf(ascii, ascii_max, "0x%x", *(int *)datap);
1620 break;
1622 case REG_TYPE_MULTISZ:
1624 break;
1626 default:
1627 return 0;
1628 break;
1631 return len;
1635 static
1636 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent);
1638 static
1639 int nt_set_regf_input_file(REGF *regf, char *filename)
1641 return ((regf->regfile_name = strdup(filename)) != NULL);
1644 static
1645 int nt_set_regf_output_file(REGF *regf, char *filename)
1647 return ((regf->outfile_name = strdup(filename)) != NULL);
1650 /* Create a regf structure and init it */
1652 static
1653 REGF *nt_create_regf(void)
1655 REGF *tmp = (REGF *)malloc(sizeof(REGF));
1656 if (!tmp) return tmp;
1657 bzero(tmp, sizeof(REGF));
1658 tmp->owner_sid_str = def_owner_sid_str;
1659 return tmp;
1662 /* Free all the bits and pieces ... Assumes regf was malloc'd */
1663 /* If you add stuff to REGF, add the relevant free bits here */
1664 static
1665 int nt_free_regf(REGF *regf)
1667 if (!regf) return 0;
1669 if (regf->regfile_name) free(regf->regfile_name);
1670 if (regf->outfile_name) free(regf->outfile_name);
1672 nt_delete_reg_key(regf->root, False); /* Free the tree */
1673 free(regf->sk_map);
1674 regf->sk_count = regf->sk_map_size = 0;
1676 free(regf);
1678 return 1;
1681 /* Get the header of the registry. Return a pointer to the structure
1682 * If the mmap'd area has not been allocated, then mmap the input file
1684 static
1685 REGF_HDR *nt_get_regf_hdr(REGF *regf)
1687 if (!regf)
1688 return NULL; /* What about errors */
1690 if (!regf->regfile_name)
1691 return NULL; /* What about errors */
1693 if (!regf->base) { /* Try to mmap etc the file */
1695 if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) {
1696 return NULL; /* What about errors? */
1699 if (fstat(regf->fd, &regf->sbuf) < 0) {
1700 return NULL;
1703 regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0);
1705 if ((int)regf->base == 1) {
1706 fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name,
1707 strerror(errno));
1708 return NULL;
1713 * At this point, regf->base != NULL, and we should be able to read the
1714 * header
1717 assert(regf->base != NULL);
1719 return (REGF_HDR *)regf->base;
1723 * Validate a regf header
1724 * For now, do nothing, but we should check the checksum
1726 static
1727 int valid_regf_hdr(REGF_HDR *regf_hdr)
1729 if (!regf_hdr) return 0;
1731 return 1;
1735 * Process an SK header ...
1736 * Every time we see a new one, add it to the map. Otherwise, just look it up.
1737 * We will do a simple linear search for the moment, since many KEYs have the
1738 * same security descriptor.
1739 * We allocate the map in increments of 10 entries.
1743 * Create a new entry in the map, and increase the size of the map if needed
1745 static
1746 SK_MAP *alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off)
1748 if (!regf->sk_map) { /* Allocate a block of 10 */
1749 regf->sk_map = (SK_MAP *)malloc(sizeof(SK_MAP) * 10);
1750 if (!regf->sk_map) {
1751 free(tmp);
1752 return NULL;
1754 regf->sk_map_size = 10;
1755 regf->sk_count = 1;
1756 (regf->sk_map)[0].sk_off = sk_off;
1757 (regf->sk_map)[0].key_sec_desc = tmp;
1759 else { /* Simply allocate a new slot, unless we have to expand the list */
1760 int ndx = regf->sk_count;
1761 if (regf->sk_count >= regf->sk_map_size) {
1762 regf->sk_map = (SK_MAP *)realloc(regf->sk_map,
1763 (regf->sk_map_size + 10)*sizeof(SK_MAP));
1764 if (!regf->sk_map) {
1765 free(tmp);
1766 return NULL;
1769 * ndx already points at the first entry of the new block
1771 regf->sk_map_size += 10;
1773 (regf->sk_map)[ndx].sk_off = sk_off;
1774 (regf->sk_map)[ndx].key_sec_desc = tmp;
1775 regf->sk_count++;
1777 return regf->sk_map;
1781 * Search for a KEY_SEC_DESC in the sk_map, but don't create one if not
1782 * found
1784 static
1785 KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off)
1787 int i;
1789 if (!sk_map) return NULL;
1791 for (i = 0; i < count; i++) {
1793 if (sk_map[i].sk_off == sk_off)
1794 return sk_map[i].key_sec_desc;
1798 return NULL;
1803 * Allocate a KEY_SEC_DESC if we can't find one in the map
1805 static
1806 KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off)
1808 KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off);
1810 if (tmp) {
1811 return tmp;
1813 else { /* Allocate a new one */
1814 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1815 if (!tmp) {
1816 return NULL;
1818 bzero(tmp, sizeof(KEY_SEC_DESC)); /* Neatly sets offset to 0 */
1819 tmp->state = SEC_DESC_RES;
1820 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1821 return NULL;
1823 return tmp;
1828 * Allocate storage and duplicate a SID
1829 * We could allocate the SID to be only the size needed, but I am too lazy.
1831 static
1832 DOM_SID *dup_sid(DOM_SID *sid)
1834 DOM_SID *tmp = (DOM_SID *)malloc(sizeof(DOM_SID));
1835 int i;
1837 if (!tmp) return NULL;
1838 tmp->ver = sid->ver;
1839 tmp->auths = sid->auths;
1840 for (i=0; i<6; i++) {
1841 tmp->auth[i] = sid->auth[i];
1843 for (i=0; i<tmp->auths&&i<MAXSUBAUTHS; i++) {
1844 tmp->sub_auths[i] = sid->sub_auths[i];
1846 return tmp;
1850 * Allocate space for an ACE and duplicate the registry encoded one passed in
1852 static
1853 ACE *dup_ace(REG_ACE *ace)
1855 ACE *tmp = NULL;
1857 tmp = (ACE *)malloc(sizeof(ACE));
1859 if (!tmp) return NULL;
1861 tmp->type = CVAL(&ace->type);
1862 tmp->flags = CVAL(&ace->flags);
1863 tmp->perms = IVAL(&ace->perms);
1864 tmp->trustee = dup_sid(&ace->trustee);
1865 return tmp;
1869 * Allocate space for an ACL and duplicate the registry encoded one passed in
1871 static
1872 ACL *dup_acl(REG_ACL *acl)
1874 ACL *tmp = NULL;
1875 REG_ACE* ace;
1876 int i, num_aces;
1878 num_aces = IVAL(&acl->num_aces);
1880 tmp = (ACL *)malloc(sizeof(ACL) + (num_aces - 1)*sizeof(ACE *));
1881 if (!tmp) return NULL;
1883 tmp->num_aces = num_aces;
1884 tmp->refcnt = 1;
1885 tmp->rev = SVAL(&acl->rev);
1886 if (verbose) fprintf(stdout, "ACL: refcnt: %u, rev: %u\n", tmp->refcnt,
1887 tmp->rev);
1888 ace = (REG_ACE *)&acl->aces;
1889 for (i=0; i<num_aces; i++) {
1890 tmp->aces[i] = dup_ace(ace);
1891 ace = (REG_ACE *)((char *)ace + SVAL(&ace->length));
1892 /* XXX: FIXME, should handle malloc errors */
1895 return tmp;
1898 static
1899 SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc)
1901 SEC_DESC *tmp = NULL;
1903 tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC));
1905 if (!tmp) {
1906 return NULL;
1909 tmp->rev = SVAL(&sec_desc->rev);
1910 tmp->type = SVAL(&sec_desc->type);
1911 if (verbose) fprintf(stdout, "SEC_DESC Rev: %0X, Type: %0X\n",
1912 tmp->rev, tmp->type);
1913 if (verbose) fprintf(stdout, "SEC_DESC Owner Off: %0X\n",
1914 IVAL(&sec_desc->owner_off));
1915 if (verbose) fprintf(stdout, "SEC_DESC Group Off: %0X\n",
1916 IVAL(&sec_desc->group_off));
1917 if (verbose) fprintf(stdout, "SEC_DESC DACL Off: %0X\n",
1918 IVAL(&sec_desc->dacl_off));
1919 tmp->owner = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->owner_off)));
1920 if (!tmp->owner) {
1921 free(tmp);
1922 return NULL;
1924 tmp->group = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->group_off)));
1925 if (!tmp->group) {
1926 free(tmp);
1927 return NULL;
1930 /* Now pick up the SACL and DACL */
1932 if (sec_desc->sacl_off)
1933 tmp->sacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->sacl_off)));
1934 else
1935 tmp->sacl = NULL;
1937 if (sec_desc->dacl_off)
1938 tmp->dacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->dacl_off)));
1939 else
1940 tmp->dacl = NULL;
1942 return tmp;
1945 static
1946 KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size)
1948 KEY_SEC_DESC *tmp = NULL;
1949 int sk_next_off, sk_prev_off, sk_size;
1950 REG_SEC_DESC *sec_desc;
1952 if (!sk_hdr) return NULL;
1954 if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) {
1955 fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr,
1956 regf->regfile_name);
1957 return NULL;
1960 if (-size < (sk_size = IVAL(&sk_hdr->rec_size))) {
1961 fprintf(stderr, "Incorrect SK record size: %d vs %d. %s\n",
1962 -size, sk_size, regf->regfile_name);
1963 return NULL;
1967 * Now, we need to look up the SK Record in the map, and return it
1968 * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can
1969 * use that
1972 if (regf->sk_map &&
1973 ((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL)
1974 && (tmp->state == SEC_DESC_OCU)) {
1975 tmp->ref_cnt++;
1976 return tmp;
1979 /* Here, we have an item in the map that has been reserved, or tmp==NULL. */
1981 assert(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON));
1984 * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the
1985 * new KEY_SEC_DESC to the mapping structure, since the offset supplied is
1986 * the actual offset of structure. The same offset will be used by
1987 * all future references to this structure
1988 * We could put all this unpleasantness in a function.
1991 if (!tmp) {
1992 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1993 if (!tmp) return NULL;
1994 bzero(tmp, sizeof(KEY_SEC_DESC));
1997 * Allocate an entry in the SK_MAP ...
1998 * We don't need to free tmp, because that is done for us if the
1999 * sm_map entry can't be expanded when we need more space in the map.
2002 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
2003 return NULL;
2007 tmp->ref_cnt++;
2008 tmp->state = SEC_DESC_OCU;
2011 * Now, process the actual sec desc and plug the values in
2014 sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0];
2015 tmp->sec_desc = process_sec_desc(regf, sec_desc);
2018 * Now forward and back links. Here we allocate an entry in the sk_map
2019 * if it does not exist, and mark it reserved
2022 sk_prev_off = IVAL(&sk_hdr->prev_off);
2023 tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off);
2024 assert(tmp->prev != NULL);
2025 sk_next_off = IVAL(&sk_hdr->next_off);
2026 tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off);
2027 assert(tmp->next != NULL);
2029 return tmp;
2033 * Process a VK header and return a value
2035 static
2036 VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size)
2038 char val_name[1024];
2039 int nam_len, dat_len, flag, dat_type, dat_off, vk_id;
2040 const char *val_type;
2041 VAL_KEY *tmp = NULL;
2043 if (!vk_hdr) return NULL;
2045 if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) {
2046 fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n",
2047 vk_id, (int)vk_hdr, regf->regfile_name);
2048 return NULL;
2051 nam_len = SVAL(&vk_hdr->nam_len);
2052 val_name[nam_len] = '\0';
2053 flag = SVAL(&vk_hdr->flag);
2054 dat_type = IVAL(&vk_hdr->dat_type);
2055 dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */
2056 dat_off = IVAL(&vk_hdr->dat_off);
2058 tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
2059 if (!tmp) {
2060 goto error;
2062 bzero(tmp, sizeof(VAL_KEY));
2063 tmp->has_name = flag;
2064 tmp->data_type = dat_type;
2066 if (flag & 0x01) {
2067 strncpy(val_name, vk_hdr->dat_name, nam_len);
2068 tmp->name = strdup(val_name);
2069 if (!tmp->name) {
2070 goto error;
2073 else
2074 strncpy(val_name, "<No Name>", 10);
2077 * Allocate space and copy the data as a BLOB
2080 if (dat_len) {
2082 char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF);
2084 if (!dtmp) {
2085 goto error;
2088 tmp->data_blk = dtmp;
2090 if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */
2091 char *dat_ptr = LOCN(regf->base, dat_off);
2092 bcopy(dat_ptr, dtmp, dat_len);
2094 else { /* The data is in the offset or type */
2096 * FIXME.
2097 * Some registry files seem to have wierd fields. If top bit is set,
2098 * but len is 0, the type seems to be the value ...
2099 * Not sure how to handle this last type for the moment ...
2101 dat_len = dat_len & 0x7FFFFFFF;
2102 bcopy(&dat_off, dtmp, dat_len);
2105 tmp->data_len = dat_len;
2108 val_type = val_to_str(dat_type, reg_type_names);
2111 * We need to save the data area as well
2114 if (verbose) fprintf(stdout, " %s : %s : \n", val_name, val_type);
2116 return tmp;
2118 error:
2119 if (tmp) nt_delete_val_key(tmp);
2120 return NULL;
2125 * Process a VL Header and return a list of values
2127 static
2128 VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size)
2130 int i, vk_off;
2131 VK_HDR *vk_hdr;
2132 VAL_LIST *tmp = NULL;
2134 if (!vl) return NULL;
2136 if (-size < (count+1)*sizeof(int)){
2137 fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size);
2138 return NULL;
2141 tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *));
2142 if (!tmp) {
2143 goto error;
2146 for (i=0; i<count; i++) {
2147 vk_off = IVAL(&vl[i]);
2148 vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off);
2149 tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr));
2150 if (!tmp->vals[i]){
2151 goto error;
2155 tmp->val_count = count;
2156 tmp->max_vals = count;
2158 return tmp;
2160 error:
2161 /* XXX: FIXME, free the partially allocated structure */
2162 return NULL;
2166 * Process an LF Header and return a list of sub-keys
2168 static
2169 KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size, REG_KEY *parent)
2171 int count, i, nk_off;
2172 unsigned int lf_id;
2173 KEY_LIST *tmp;
2175 if (!lf_hdr) return NULL;
2177 if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) {
2178 fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n",
2179 lf_id, (int)lf_hdr, regf->regfile_name);
2180 return NULL;
2183 assert(size < 0);
2185 count = SVAL(&lf_hdr->key_count);
2186 if (verbose) fprintf(stdout, "Key Count: %u\n", count);
2187 if (count <= 0) return NULL;
2189 /* Now, we should allocate a KEY_LIST struct and fill it in ... */
2191 tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *));
2192 if (!tmp) {
2193 goto error;
2196 tmp->key_count = count;
2197 tmp->max_keys = count;
2199 for (i=0; i<count; i++) {
2200 NK_HDR *nk_hdr;
2202 nk_off = IVAL(&lf_hdr->hr[i].nk_off);
2203 if (verbose) fprintf(stdout, "NK Offset: %0X\n", nk_off);
2204 nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off);
2205 tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr), parent);
2206 if (!tmp->keys[i]) {
2207 goto error;
2211 return tmp;
2213 error:
2214 if (tmp) nt_delete_key_list(tmp, False);
2215 return NULL;
2219 * This routine is passed an NK_HDR pointer and retrieves the entire tree
2220 * from there down. It returns a REG_KEY *.
2222 static
2223 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size, REG_KEY *parent)
2225 REG_KEY *tmp = NULL, *own;
2226 int name_len, clsname_len, lf_off, val_off, val_count, sk_off, own_off;
2227 unsigned int nk_id;
2228 LF_HDR *lf_hdr;
2229 VL_TYPE *vl;
2230 SK_HDR *sk_hdr;
2231 char key_name[1024], cls_name[1024];
2233 if (!nk_hdr) return NULL;
2235 if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) {
2236 fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n",
2237 nk_id, (int)nk_hdr, regf->regfile_name);
2238 return NULL;
2241 assert(size < 0);
2243 name_len = SVAL(&nk_hdr->nam_len);
2244 clsname_len = SVAL(&nk_hdr->clsnam_len);
2247 * The value of -size should be ge
2248 * (sizeof(NK_HDR) - 1 + name_len)
2249 * The -1 accounts for the fact that we included the first byte of
2250 * the name in the structure. clsname_len is the length of the thing
2251 * pointed to by clsnam_off
2254 if (-size < (sizeof(NK_HDR) - 1 + name_len)) {
2255 fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr);
2256 fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n",
2257 sizeof(NK_HDR), name_len, clsname_len);
2258 /*return NULL;*/
2261 if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n",
2262 name_len, clsname_len);
2264 /* Fish out the key name and process the LF list */
2266 assert(name_len < sizeof(key_name));
2268 /* Allocate the key struct now */
2269 tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
2270 if (!tmp) return tmp;
2271 bzero(tmp, sizeof(REG_KEY));
2273 tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY);
2275 strncpy(key_name, nk_hdr->key_nam, name_len);
2276 key_name[name_len] = '\0';
2278 if (verbose) fprintf(stdout, "Key name: %s\n", key_name);
2280 tmp->name = strdup(key_name);
2281 if (!tmp->name) {
2282 goto error;
2286 * Fish out the class name, it is in UNICODE, while the key name is
2287 * ASCII :-)
2290 if (clsname_len) { /* Just print in Ascii for now */
2291 char *clsnamep;
2292 int clsnam_off;
2294 clsnam_off = IVAL(&nk_hdr->clsnam_off);
2295 clsnamep = LOCN(regf->base, clsnam_off);
2296 if (verbose) fprintf(stdout, "Class Name Offset: %0X\n", clsnam_off);
2298 bzero(cls_name, clsname_len);
2299 uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len);
2302 * I am keeping class name as an ascii string for the moment.
2303 * That means it needs to be converted on output.
2304 * It will also piss off people who need Unicode/UTF-8 strings. Sorry.
2305 * XXX: FIXME
2308 tmp->class_name = strdup(cls_name);
2309 if (!tmp->class_name) {
2310 goto error;
2313 if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name);
2318 * Process the owner offset ...
2321 own_off = IVAL(&nk_hdr->own_off);
2322 own = (REG_KEY *)LOCN(regf->base, own_off);
2323 if (verbose) fprintf(stdout, "Owner Offset: %0X\n", own_off);
2325 if (verbose) fprintf(stdout, " Owner locn: %0X, Our locn: %0X\n",
2326 (unsigned int)own, (unsigned int)nk_hdr);
2329 * We should verify that the owner field is correct ...
2330 * for now, we don't worry ...
2333 tmp->owner = parent;
2336 * If there are any values, process them here
2339 val_count = IVAL(&nk_hdr->val_cnt);
2340 if (verbose) fprintf(stdout, "Val Count: %d\n", val_count);
2341 if (val_count) {
2343 val_off = IVAL(&nk_hdr->val_off);
2344 vl = (VL_TYPE *)LOCN(regf->base, val_off);
2345 if (verbose) fprintf(stdout, "Val List Offset: %0X\n", val_off);
2347 tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl));
2348 if (!tmp->values) {
2349 goto error;
2355 * Also handle the SK header ...
2358 sk_off = IVAL(&nk_hdr->sk_off);
2359 sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off);
2360 if (verbose) fprintf(stdout, "SK Offset: %0X\n", sk_off);
2362 if (sk_off != -1) {
2364 tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr));
2368 lf_off = IVAL(&nk_hdr->lf_off);
2369 if (verbose) fprintf(stdout, "SubKey list offset: %0X\n", lf_off);
2372 * No more subkeys if lf_off == -1
2375 if (lf_off != -1) {
2377 lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off);
2379 tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr), tmp);
2380 if (!tmp->sub_keys){
2381 goto error;
2386 return tmp;
2388 error:
2389 if (tmp) nt_delete_reg_key(tmp, False);
2390 return NULL;
2393 static
2394 int nt_load_registry(REGF *regf)
2396 REGF_HDR *regf_hdr;
2397 unsigned int regf_id, hbin_id;
2398 HBIN_HDR *hbin_hdr;
2399 NK_HDR *first_key;
2401 /* Get the header */
2403 if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) {
2404 return -1;
2407 /* Now process that header and start to read the rest in */
2409 if ((regf_id = IVAL(&regf_hdr->REGF_ID)) != REG_REGF_ID) {
2410 fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n",
2411 regf_id, regf->regfile_name);
2412 return -1;
2416 * Validate the header ...
2418 if (!valid_regf_hdr(regf_hdr)) {
2419 fprintf(stderr, "Registry file header does not validate: %s\n",
2420 regf->regfile_name);
2421 return -1;
2424 /* Update the last mod date, and then go get the first NK record and on */
2426 TTTONTTIME(regf, IVAL(&regf_hdr->tim1), IVAL(&regf_hdr->tim2));
2429 * The hbin hdr seems to be just uninteresting garbage. Check that
2430 * it is there, but that is all.
2433 hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ);
2435 if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) {
2436 fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n",
2437 hbin_id, regf->regfile_name);
2438 return -1;
2442 * Get a pointer to the first key from the hreg_hdr
2445 if (verbose) fprintf(stdout, "First Key: %0X\n",
2446 IVAL(&regf_hdr->first_key));
2448 first_key = (NK_HDR *)LOCN(regf->base, IVAL(&regf_hdr->first_key));
2449 if (verbose) fprintf(stdout, "First Key Offset: %0X\n",
2450 IVAL(&regf_hdr->first_key));
2452 if (verbose) fprintf(stdout, "Data Block Size: %d\n",
2453 IVAL(&regf_hdr->dblk_size));
2455 if (verbose) fprintf(stdout, "Offset to next hbin block: %0X\n",
2456 IVAL(&hbin_hdr->off_to_next));
2458 if (verbose) fprintf(stdout, "HBIN block size: %0X\n",
2459 IVAL(&hbin_hdr->blk_size));
2462 * Now, get the registry tree by processing that NK recursively
2465 regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key), NULL);
2467 assert(regf->root != NULL);
2470 * Unmap the registry file, as we might want to read in another
2471 * tree etc.
2474 if (regf->base) munmap(regf->base, regf->sbuf.st_size);
2475 regf->base = NULL;
2476 close(regf->fd); /* Ignore the error :-) */
2478 return 1;
2482 * Allocate a new hbin block, set up the header for the block etc
2484 static
2485 HBIN_BLK *nt_create_hbin_blk(REGF *regf, int size)
2487 HBIN_BLK *tmp;
2488 HBIN_HDR *hdr;
2490 if (!regf || !size) return NULL;
2492 /* Round size up to multiple of REGF_HDR_BLKSIZ */
2494 size = (size + (REGF_HDR_BLKSIZ - 1)) & ~(REGF_HDR_BLKSIZ - 1);
2496 tmp = (HBIN_BLK *)malloc(sizeof(HBIN_BLK));
2497 bzero(tmp, sizeof(HBIN_BLK));
2499 tmp->data = malloc(size);
2500 if (!tmp->data) goto error;
2502 bzero(tmp->data, size); /* Make it pristine */
2504 tmp->size = size;
2505 tmp->file_offset = regf->blk_tail->file_offset + regf->blk_tail->size;
2507 tmp->free_space = size - (sizeof(HBIN_HDR) - sizeof(HBIN_SUB_HDR));
2508 tmp->fsp_off = size - tmp->free_space;
2511 * Now, build the header in the data block
2513 hdr = (HBIN_HDR *)tmp->data;
2514 hdr->HBIN_ID = REG_HBIN_ID;
2515 hdr->off_from_first = tmp->file_offset - REGF_HDR_BLKSIZ;
2516 hdr->off_to_next = tmp->size;
2517 hdr->blk_size = tmp->size;
2520 * Now link it in
2523 regf->blk_tail->next = tmp;
2524 regf->blk_tail = tmp;
2525 if (!regf->free_space) regf->free_space = tmp;
2527 return tmp;
2528 error:
2529 if (tmp) free(tmp);
2530 return NULL;
2534 * Allocate a unit of space ... and return a pointer as function param
2535 * and the block's offset as a side effect
2537 static
2538 void *nt_alloc_regf_space(REGF *regf, int size, unsigned int *off)
2540 int tmp = 0;
2541 void *ret = NULL;
2542 HBIN_BLK *blk;
2544 if (!regf || !size || !off) return NULL;
2546 assert(regf->blk_head != NULL);
2549 * round up size to include header and then to 8-byte boundary
2551 size = (size + 4 + 7) & ~7;
2554 * Check if there is space, if none, grab a block
2556 if (!regf->free_space) {
2557 if (!nt_create_hbin_blk(regf, REGF_HDR_BLKSIZ))
2558 return NULL;
2562 * Now, chain down the list of blocks looking for free space
2565 for (blk = regf->free_space; blk != NULL; blk = blk->next) {
2566 if (blk->free_space <= size) {
2567 tmp = blk->file_offset + blk->fsp_off - REGF_HDR_BLKSIZ;
2568 ret = blk->data + blk->fsp_off;
2569 blk->free_space -= size;
2570 blk->fsp_off += size;
2572 /* Insert the header */
2573 ((HBIN_SUB_HDR *)ret)->dblocksize = -size;
2576 * Fix up the free space ptr
2577 * If it is NULL, we fix it up next time
2580 if (!blk->free_space)
2581 regf->free_space = blk->next;
2583 *off = tmp;
2584 return (((char *)ret)+4);/* The pointer needs to be to the data struct */
2589 * If we got here, we need to add another block, which might be
2590 * larger than one block -- deal with that later
2592 if (nt_create_hbin_blk(regf, REGF_HDR_BLKSIZ)) {
2593 blk = regf->free_space;
2594 tmp = blk->file_offset + blk->fsp_off - REGF_HDR_BLKSIZ;
2595 ret = blk->data + blk->fsp_off;
2596 blk->free_space -= size;
2597 blk->fsp_off += size;
2599 /* Insert the header */
2600 ((HBIN_SUB_HDR *)ret)->dblocksize = -size;
2603 * Fix up the free space ptr
2604 * If it is NULL, we fix it up next time
2607 if (!blk->free_space)
2608 regf->free_space = blk->next;
2610 *off = tmp;
2611 return (((char *)ret) + 4);/* The pointer needs to be to the data struct */
2614 return NULL;
2618 * Compute the size of a SID stored ...
2620 static
2621 unsigned int sid_size(DOM_SID *sid)
2623 unsigned int size;
2625 if (!sid) return 0;
2627 size = 8 + (sid->auths * sizeof(unsigned int));
2629 return size;
2633 * Compute the size of an ACE on disk from its components
2635 static
2636 unsigned int ace_size(ACE *ace)
2638 unsigned int size;
2640 if (!ace) return 0;
2642 size = 8 + sid_size(ace->trustee);
2644 return size;
2648 * Compute the size of an ACL from its components ...
2650 static
2651 unsigned int acl_size(ACL *acl)
2653 unsigned int size;
2654 int i;
2656 if (!acl) return 0;
2658 size = 8;
2659 for (i = 0; i < acl->num_aces; i++)
2660 size += ace_size(acl->aces[i]);
2662 return size;
2666 * Compute the size of the sec desc as a self-relative SD
2668 static
2669 unsigned int sec_desc_size(SEC_DESC *sd)
2671 unsigned int size;
2673 if (!sd) return 0;
2675 size = 20;
2677 if (sd->owner) size += sid_size(sd->owner);
2678 if (sd->group) size += sid_size(sd->group);
2679 if (sd->sacl) size += acl_size(sd->sacl);
2680 if (sd->dacl) size += acl_size(sd->dacl);
2682 return size;
2686 * Store a SID at the location provided
2688 static
2689 int nt_store_SID(REGF *regf, DOM_SID *sid, unsigned char *locn)
2691 int i;
2692 unsigned char *p = locn;
2694 if (!regf || !sid || !locn) return 0;
2696 *p = sid->ver; p++;
2697 *p = sid->auths; p++;
2699 for (i=0; i < 6; i++) {
2700 *p = sid->auth[i]; p++;
2703 for (i=0; i < sid->auths; i++) {
2704 SIVAL(p, sid->sub_auths[i]); p+=4;
2707 return p - locn;
2711 static
2712 int nt_store_ace(REGF *regf, ACE *ace, unsigned char *locn)
2714 int size = 0;
2715 REG_ACE *reg_ace = (REG_ACE *)locn;
2716 unsigned char *p;
2718 if (!regf || !ace || !locn) return 0;
2720 reg_ace->type = ace->type;
2721 reg_ace->flags = ace->flags;
2723 /* Deal with the length when we have stored the SID */
2725 p = (unsigned char *)&reg_ace->perms;
2727 SIVAL(p, ace->perms); p += 4;
2729 size = nt_store_SID(regf, ace->trustee, p);
2731 size += 8; /* Size of the fixed header */
2733 p = (unsigned char *)&reg_ace->length;
2735 SSVAL(p, size);
2737 return size;
2741 * Store an ACL at the location provided
2743 static
2744 int nt_store_acl(REGF *regf, ACL *acl, unsigned char *locn)
2746 int size = 0, i;
2747 unsigned char *p = locn, *s;
2749 if (!regf || !acl || !locn) return 0;
2752 * Now store the header and then the ACEs ...
2755 SSVAL(p, acl->rev);
2757 p += 2; s = p; /* Save this for the size field */
2759 p += 2;
2761 SIVAL(p, acl->num_aces);
2763 p += 4;
2765 for (i = 0; i < acl->num_aces; i++) {
2766 size = nt_store_ace(regf, acl->aces[i], p);
2767 p += size;
2770 size = s - locn;
2771 SSVAL(s, size);
2772 return size;
2776 * Flatten and store the Sec Desc
2777 * Windows lays out the DACL first, but since there is no SACL, it might be
2778 * that first, then the owner, then the group SID. So, we do it that way
2779 * too.
2781 static
2782 unsigned int nt_store_sec_desc(REGF *regf, SEC_DESC *sd, char *locn)
2784 REG_SEC_DESC *rsd = (REG_SEC_DESC *)locn;
2785 unsigned int size = 0, off = 0;
2787 if (!regf || !sd || !locn) return 0;
2790 * Now, fill in the first two fields, then lay out the various fields
2791 * as needed
2794 rsd->rev = 0x01;
2795 /* Self relative, DACL pres, owner and group not defaulted */
2796 rsd->type = 0x8004;
2798 off = 4 * sizeof(DWORD) + 4;
2800 if (sd->sacl){
2801 size = nt_store_acl(regf, sd->sacl, (char *)(locn + off));
2802 rsd->sacl_off = off;
2804 else
2805 rsd->sacl_off = 0;
2807 off += size;
2809 if (sd->dacl) {
2810 rsd->dacl_off = off;
2811 size = nt_store_acl(regf, sd->dacl, (char *)(locn + off));
2813 else {
2814 rsd->dacl_off = 0;
2817 off += size;
2819 /* Now the owner and group SIDs */
2821 if (sd->owner) {
2822 rsd->owner_off = off;
2823 size = nt_store_SID(regf, sd->owner, (char *)(locn + off));
2825 else {
2826 rsd->owner_off = 0;
2829 off += size;
2831 if (sd->group) {
2832 rsd->group_off = off;
2833 size = nt_store_SID(regf, sd->group, (char *)(locn + off));
2835 else {
2836 rsd->group_off = 0;
2839 off += size;
2841 return size;
2845 * Store the security information
2847 * If it has already been stored, just get its offset from record
2848 * otherwise, store it and record its offset
2850 static
2851 unsigned int nt_store_security(REGF *regf, KEY_SEC_DESC *sec)
2853 int size = 0;
2854 unsigned int sk_off;
2855 SK_HDR *sk_hdr;
2857 if (sec->offset) return sec->offset;
2860 * OK, we don't have this one in the file yet. We must compute the
2861 * size taken by the security descriptor as a self-relative SD, which
2862 * means making one pass over each structure and figuring it out
2865 size = sec_desc_size(sec->sec_desc);
2867 /* Allocate that much space */
2869 sk_hdr = nt_alloc_regf_space(regf, size, &sk_off);
2870 sec->sk_hdr = sk_hdr;
2872 if (!sk_hdr) return 0;
2874 /* Now, lay out the sec_desc in the space provided */
2876 sk_hdr->SK_ID = REG_SK_ID;
2879 * We can't deal with the next and prev offset in the SK_HDRs until the
2880 * whole tree has been stored, then we can go and deal with them
2883 sk_hdr->ref_cnt = sec->ref_cnt;
2884 sk_hdr->rec_size = size; /* Is this correct */
2886 /* Now, lay out the sec_desc */
2888 if (!nt_store_sec_desc(regf, sec->sec_desc, (char *)&sk_hdr->sec_desc))
2889 return 0;
2891 return sk_off;
2896 * Store a VAL LIST
2898 static
2899 int nt_store_val_list(REGF *regf, VAL_LIST * values)
2902 return 0;
2906 * Store a KEY in the file ...
2908 * We store this depth first, and defer storing the lf struct until
2909 * all the sub-keys have been stored.
2911 * We store the NK hdr, any SK header, class name, and VK structure, then
2912 * recurse down the LF structures ...
2914 * We return the offset of the NK struct
2915 * FIXME, FIXME, FIXME: Convert to using SIVAL and SSVAL ...
2917 static
2918 int nt_store_reg_key(REGF *regf, REG_KEY *key)
2920 NK_HDR *nk_hdr;
2921 unsigned int nk_off, sk_off, size;
2923 if (!regf || !key) return 0;
2925 size = sizeof(NK_HDR) + strlen(key->name) - 1;
2926 nk_hdr = nt_alloc_regf_space(regf, size, &nk_off);
2927 if (!nk_hdr) goto error;
2929 key->offset = nk_off; /* We will need this later */
2932 * Now fill in each field etc ...
2935 nk_hdr->NK_ID = REG_NK_ID;
2936 if (key->type == REG_ROOT_KEY)
2937 nk_hdr->type = 0x2C;
2938 else
2939 nk_hdr->type = 0x20;
2941 /* FIXME: Fill in the time of last update */
2943 if (key->type != REG_ROOT_KEY)
2944 nk_hdr->own_off = key->owner->offset;
2946 if (key->sub_keys)
2947 nk_hdr->subk_num = key->sub_keys->key_count;
2950 * Now, process the Sec Desc and then store its offset
2953 sk_off = nt_store_security(regf, key->security);
2954 nk_hdr->sk_off = sk_off;
2957 * Then, store the val list and store its offset
2959 if (key->values) {
2960 nk_hdr->val_cnt = key->values->val_count;
2961 nk_hdr->val_off = nt_store_val_list(regf, key->values);
2963 else {
2964 nk_hdr->val_off = -1;
2965 nk_hdr->val_cnt = 0;
2969 * Finally, store the subkeys, and their offsets
2972 error:
2973 return 0;
2977 * Store the registry header ...
2978 * We actually create the registry header block and link it to the chain
2979 * of output blocks.
2981 static
2982 REGF_HDR *nt_get_reg_header(REGF *regf)
2984 HBIN_BLK *tmp = NULL;
2986 tmp = (HBIN_BLK *)malloc(sizeof(HBIN_BLK));
2987 if (!tmp) return 0;
2989 bzero(tmp, sizeof(HBIN_BLK));
2990 tmp->type = REG_OUTBLK_HDR;
2991 tmp->size = REGF_HDR_BLKSIZ;
2992 tmp->data = malloc(REGF_HDR_BLKSIZ);
2993 if (!tmp->data) goto error;
2995 bzero(tmp->data, REGF_HDR_BLKSIZ); /* Make it pristine, unlike Windows */
2996 regf->blk_head = regf->blk_tail = tmp;
2998 return (REGF_HDR *)tmp->data;
3000 error:
3001 if (tmp) free(tmp);
3002 return NULL;
3006 * Store the registry in the output file
3007 * We write out the header and then each of the keys etc into the file
3008 * We have to flatten the data structure ...
3010 * The structures are stored in a depth-first fashion, with all records
3011 * aligned on 8-byte boundaries, with sub-keys and values layed down before
3012 * the lists that contain them. SK records are layed down first, however.
3013 * The lf fields are layed down after all sub-keys have been layed down, it
3014 * seems, including the whole tree associated with each sub-key.
3016 static
3017 int nt_store_registry(REGF *regf)
3019 REGF_HDR *reg;
3020 int fkey, fd;
3023 * Get a header ... and partially fill it in ...
3025 reg = nt_get_reg_header(regf);
3028 * Store the first key, which will store the whole thing
3030 fkey = nt_store_reg_key(regf, regf->root);
3033 * At this point we have the registry as a series of blocks, so
3034 * run down that series of blocks and save them ...
3037 if (!regf->outfile_name) {
3038 fprintf(stderr, "Cannot write file without a name!\n");
3039 return 0;
3042 if ((fd = open(regf->outfile_name, O_WRONLY, 0666)) < 0) {
3043 fprintf(stderr, "Unable to create file %s: %s\n", regf->outfile_name,
3044 strerror(errno));
3045 return 0;
3048 return 1;
3052 * Routines to parse a REGEDIT4 file
3054 * The file consists of:
3056 * REGEDIT4
3057 * \[[-]key-path\]\n
3058 * <value-spec>*
3060 * Format:
3061 * [cmd:]name=type:value
3063 * cmd = a|d|c|add|delete|change|as|ds|cs
3065 * There can be more than one key-path and value-spec.
3067 * Since we want to support more than one type of file format, we
3068 * construct a command-file structure that keeps info about the command file
3071 #define FMT_UNREC -1
3072 #define FMT_REGEDIT4 0
3073 #define FMT_EDITREG1_1 1
3075 #define FMT_STRING_REGEDIT4 "REGEDIT4"
3076 #define FMT_STRING_EDITREG1_0 "EDITREG1.0"
3078 #define CMD_NONE 0
3079 #define CMD_ADD_KEY 1
3080 #define CMD_DEL_KEY 2
3082 #define CMD_KEY 1
3083 #define CMD_VAL 2
3085 typedef struct val_spec_list {
3086 struct val_spec_list *next;
3087 char *name;
3088 int type;
3089 char *val; /* Kept as a char string, really? */
3090 } VAL_SPEC_LIST;
3092 typedef struct command_s {
3093 int cmd;
3094 char *key;
3095 int val_count;
3096 VAL_SPEC_LIST *val_spec_list, *val_spec_last;
3097 } CMD;
3099 typedef struct cmd_line {
3100 int len, line_len;
3101 char *line;
3102 } CMD_LINE;
3104 static
3105 void free_val_spec_list(VAL_SPEC_LIST *vl)
3107 if (!vl) return;
3108 if (vl->name) free(vl->name);
3109 if (vl->val) free(vl->val);
3110 free(vl);
3115 * Some routines to handle lines of info in the command files
3117 static
3118 void skip_to_eol(int fd)
3120 int rc;
3121 char ch = 0;
3123 while ((rc = read(fd, &ch, 1)) == 1) {
3124 if (ch == 0x0A) return;
3126 if (rc < 0) {
3127 fprintf(stderr, "Could not read file descriptor: %d, %s\n",
3128 fd, strerror(errno));
3129 exit(1);
3133 static
3134 void free_cmd(CMD *cmd)
3136 if (!cmd) return;
3138 while (cmd->val_spec_list) {
3139 VAL_SPEC_LIST *tmp;
3141 tmp = cmd->val_spec_list;
3142 cmd->val_spec_list = tmp->next;
3143 free(tmp);
3146 free(cmd);
3150 static
3151 void free_cmd_line(CMD_LINE *cmd_line)
3153 if (cmd_line) {
3154 if (cmd_line->line) free(cmd_line->line);
3155 free(cmd_line);
3159 static
3160 void print_line(struct cmd_line *cl)
3162 char *pl;
3164 if (!cl) return;
3166 if ((pl = malloc(cl->line_len + 1)) == NULL) {
3167 fprintf(stderr, "Unable to allocate space to print line: %s\n",
3168 strerror(errno));
3169 exit(1);
3172 strncpy(pl, cl->line, cl->line_len);
3173 pl[cl->line_len] = 0;
3175 fprintf(stdout, "%s\n", pl);
3176 free(pl);
3179 #define INIT_ALLOC 10
3182 * Read a line from the input file.
3183 * NULL returned when EOF and no chars read
3184 * Otherwise we return a cmd_line *
3185 * Exit if other errors
3187 static
3188 struct cmd_line *get_cmd_line(int fd)
3190 struct cmd_line *cl = (CMD_LINE *)malloc(sizeof(CMD_LINE));
3191 int i = 0, rc;
3192 unsigned char ch;
3194 if (!cl) {
3195 fprintf(stderr, "Unable to allocate structure for command line: %s\n",
3196 strerror(errno));
3197 exit(1);
3200 cl->len = INIT_ALLOC;
3203 * Allocate some space for the line. We extend later if needed.
3206 if ((cl->line = (char *)malloc(INIT_ALLOC)) == NULL) {
3207 fprintf(stderr, "Unable to allocate initial space for line: %s\n",
3208 strerror(errno));
3209 exit(1);
3213 * Now read in the chars to EOL. Don't store the EOL in the
3214 * line. What about CR?
3217 while ((rc = read(fd, &ch, 1)) == 1 && ch != '\n') {
3218 if (ch == '\r') continue; /* skip CR */
3219 if (i == cl->len) {
3221 * Allocate some more memory
3223 if ((cl->line = realloc(cl->line, cl->len + INIT_ALLOC)) == NULL) {
3224 fprintf(stderr, "Unable to realloc space for line: %s\n",
3225 strerror(errno));
3226 exit(1);
3228 cl->len += INIT_ALLOC;
3230 cl->line[i] = ch;
3231 i++;
3234 /* read 0 and we were at loc'n 0, return NULL */
3235 if (rc == 0 && i == 0) {
3236 free_cmd_line(cl);
3237 return NULL;
3240 cl->line_len = i;
3242 return cl;
3247 * parse_value: parse out a value. We pull it apart as:
3249 * <value> ::= <value-name>=<type>:<value-string>
3251 * <value-name> ::= char-string-without-spaces | '"' char-string '"'
3253 * If it parsed OK, return the <value-name> as a string, and the
3254 * value type and value-string in parameters.
3256 * The value name can be empty. There can only be one empty name in
3257 * a list of values. A value of - removes the value entirely.
3259 static
3260 char *dup_str(char *s, int len)
3262 char *nstr;
3263 nstr = (char *)malloc(len + 1);
3264 if (nstr) {
3265 memcpy(nstr, s, len);
3266 nstr[len] = 0;
3268 return nstr;
3271 static
3272 char *parse_name(char *nstr)
3274 int len = 0, start = 0;
3275 if (!nstr) return NULL;
3277 len = strlen(nstr);
3279 while (len && nstr[len - 1] == ' ') len--;
3281 nstr[len] = 0; /* Trim any spaces ... if there were none, doesn't matter */
3284 * Beginning and end should be '"' or neither should be so
3286 if ((nstr[0] == '"' && nstr[len - 1] != '"') ||
3287 (nstr[0] != '"' && nstr[len - 1] == '"'))
3288 return NULL;
3290 if (nstr[0] == '"') {
3291 start = 1;
3292 len -= 2;
3295 return dup_str(&nstr[start], len);
3298 static
3299 int parse_value_type(char *tstr)
3301 int len = strlen(tstr);
3303 while (len && tstr[len - 1] == ' ') len--;
3304 tstr[len] = 0;
3306 if (strcmp(tstr, "REG_DWORD") == 0)
3307 return REG_TYPE_DWORD;
3308 else if (strcmp(tstr, "dword") == 0)
3309 return REG_TYPE_DWORD;
3310 else if (strcmp(tstr, "REG_EXPAND_SZ") == 0)
3311 return REG_TYPE_EXPANDSZ;
3312 else if (strcmp(tstr, "REG_BIN") == 0)
3313 return REG_TYPE_BIN;
3314 else if (strcmp(tstr, "REG_SZ") == 0)
3315 return REG_TYPE_REGSZ;
3316 else if (strcmp(tstr, "REG_MULTI_SZ") == 0)
3317 return REG_TYPE_MULTISZ;
3318 else if (strcmp(tstr, "-") == 0)
3319 return REG_TYPE_DELETE;
3321 return 0;
3324 static
3325 char *parse_val_str(char *vstr)
3328 return dup_str(vstr, strlen(vstr));
3332 static
3333 char *parse_value(struct cmd_line *cl, int *vtype, char **val)
3335 char *p1 = NULL, *p2 = NULL, *nstr = NULL, *tstr = NULL, *vstr = NULL;
3337 if (!cl || !vtype || !val) return NULL;
3338 if (!cl->line_len) return NULL;
3340 p1 = dup_str(cl->line, cl->line_len);
3341 /* FIXME: Better return codes etc ... */
3342 if (!p1) return NULL;
3343 p2 = strchr(p1, '=');
3344 if (!p2) return NULL;
3346 *p2 = 0; p2++; /* Split into two strings at p2 */
3348 /* Now, parse the name ... */
3350 nstr = parse_name(p1);
3351 if (!nstr) goto error;
3353 /* Now, split the remainder and parse on type and val ... */
3355 tstr = p2;
3356 while (*tstr == ' ') tstr++; /* Skip leading white space */
3357 p2 = strchr(p2, ':');
3359 if (p2) {
3360 *p2 = 0; p2++; /* split on the : */
3363 *vtype = parse_value_type(tstr);
3365 if (!vtype) goto error;
3367 if (!p2 || !*p2) return nstr;
3369 /* Now, parse the value string. It should return a newly malloc'd string */
3371 while (*p2 == ' ') p2++; /* Skip leading space */
3372 vstr = parse_val_str(p2);
3374 if (!vstr) goto error;
3376 *val = vstr;
3378 return nstr;
3380 error:
3381 if (p1) free(p1);
3382 if (nstr) free(nstr);
3383 if (vstr) free(vstr);
3384 return NULL;
3388 * Parse out a key. Look for a correctly formatted key [...]
3389 * and whether it is a delete or add? A delete is signalled
3390 * by a - in front of the key.
3391 * Assumes that there are no leading and trailing spaces
3394 static
3395 char *parse_key(struct cmd_line *cl, int *cmd)
3397 int start = 1;
3398 char *tmp;
3400 if (cl->line[0] != '[' ||
3401 cl->line[cl->line_len - 1] != ']') return NULL;
3402 if (cl->line_len == 2) return NULL;
3403 *cmd = CMD_ADD_KEY;
3404 if (cl->line[1] == '-') {
3405 if (cl->line_len == 3) return NULL;
3406 start = 2;
3407 *cmd = CMD_DEL_KEY;
3409 tmp = malloc(cl->line_len - 1 - start + 1);
3410 if (!tmp) return tmp; /* Bail out on no mem ... FIXME */
3411 strncpy(tmp, &cl->line[start], cl->line_len - 1 - start);
3412 tmp[cl->line_len - 1 - start] = 0;
3413 return tmp;
3417 * Parse a line to determine if we have a key or a value
3418 * We only check for key or val ...
3421 static
3422 int parse_line(struct cmd_line *cl)
3425 if (!cl || cl->len == 0) return 0;
3427 if (cl->line[0] == '[') /* No further checking for now */
3428 return CMD_KEY;
3429 else
3430 return CMD_VAL;
3434 * We seek to offset 0, read in the required number of bytes,
3435 * and compare to the correct value.
3436 * We then seek back to the original location
3438 static
3439 int regedit4_file_type(int fd)
3441 int cur_ofs = 0;
3442 char desc[9];
3444 cur_ofs = lseek(fd, 0, SEEK_CUR); /* Get current offset */
3445 if (cur_ofs < 0) {
3446 fprintf(stderr, "Unable to get current offset: %s\n", strerror(errno));
3447 exit(1); /* FIXME */
3450 if (cur_ofs) {
3451 lseek(fd, 0, SEEK_SET);
3454 if (read(fd, desc, 8) < 8) {
3455 fprintf(stderr, "Unable to read command file format\n");
3456 exit(2); /* FIXME */
3459 desc[8] = 0;
3461 if (strcmp(desc, FMT_STRING_REGEDIT4) == 0) {
3462 if (cur_ofs) {
3463 lseek(fd, cur_ofs, SEEK_SET);
3465 else {
3466 skip_to_eol(fd);
3468 return FMT_REGEDIT4;
3471 return FMT_UNREC;
3475 * Run though the data in the line and strip anything after a comment
3476 * char.
3478 static
3479 void strip_comment(struct cmd_line *cl)
3481 int i;
3483 if (!cl) return;
3485 for (i = 0; i < cl->line_len; i++) {
3486 if (cl->line[i] == ';') {
3487 cl->line_len = i;
3488 return;
3494 * trim leading space
3497 static
3498 void trim_leading_spaces(struct cmd_line *cl)
3500 int i;
3502 if (!cl) return;
3504 for (i = 0; i < cl->line_len; i++) {
3505 if (cl->line[i] != ' '){
3506 if (i) memcpy(cl->line, &cl->line[i], cl->line_len - i);
3507 return;
3513 * trim trailing spaces
3515 void trim_trailing_spaces(struct cmd_line *cl)
3517 int i;
3519 if (!cl) return;
3521 for (i = cl->line_len; i == 0; i--) {
3522 if (cl->line[i-1] != ' ' &&
3523 cl->line[i-1] != '\t') {
3524 cl->line_len = i;
3530 * Get a command ... This consists of possibly multiple lines:
3531 * [key]
3532 * values*
3533 * possibly Empty line
3535 * value ::= <value-name>=<value-type>':'<value-string>
3536 * <value-name> is some path, possibly enclosed in quotes ...
3537 * We alctually look for the next key to terminate a previous key
3538 * if <value-type> == '-', then it is a delete type.
3540 CMD *regedit4_get_cmd(int fd)
3542 struct command_s *cmd = NULL;
3543 struct cmd_line *cl = NULL;
3544 struct val_spec_list *vl = NULL;
3546 if ((cmd = (struct command_s *)malloc(sizeof(struct command_s))) == NULL) {
3547 fprintf(stderr, "Unable to malloc space for command: %s\n",
3548 strerror(errno));
3549 exit(1);
3552 cmd->cmd = CMD_NONE;
3553 cmd->key = NULL;
3554 cmd->val_count = 0;
3555 cmd->val_spec_list = cmd->val_spec_last = NULL;
3556 while ((cl = get_cmd_line(fd))) {
3559 * If it is an empty command line, and we already have a key
3560 * then exit from here ... FIXME: Clean up the parser
3563 if (cl->line_len == 0 && cmd->key) {
3564 free_cmd_line(cl);
3565 break;
3568 strip_comment(cl); /* remove anything beyond a comment char */
3569 trim_trailing_spaces(cl);
3570 trim_leading_spaces(cl);
3572 if (cl->line_len == 0) { /* An empty line */
3573 free_cmd_line(cl);
3575 else { /* Else, non-empty ... */
3577 * Parse out the bits ...
3579 switch (parse_line(cl)) {
3580 case CMD_KEY:
3581 if ((cmd->key = parse_key(cl, &cmd->cmd)) == NULL) {
3582 fprintf(stderr, "Error parsing key from line: ");
3583 print_line(cl);
3584 fprintf(stderr, "\n");
3586 break;
3588 case CMD_VAL:
3590 * We need to add the value stuff to the list
3591 * There could be a \ on the end which we need to
3592 * handle at some time
3594 vl = (struct val_spec_list *)malloc(sizeof(struct val_spec_list));
3595 if (!vl) goto error;
3596 vl->next = NULL;
3597 vl->val = NULL;
3598 vl->name = parse_value(cl, &vl->type, &vl->val);
3599 if (!vl->name) goto error;
3600 if (cmd->val_spec_list == NULL) {
3601 cmd->val_spec_list = cmd->val_spec_last = vl;
3603 else {
3604 cmd->val_spec_last->next = vl;
3605 cmd->val_spec_last = vl;
3607 cmd->val_count++;
3608 break;
3610 default:
3611 fprintf(stderr, "Unrecognized line in command file: \n");
3612 print_line(cl);
3613 break;
3618 if (!cmd->cmd) goto error; /* End of file ... */
3620 return cmd;
3622 error:
3623 if (vl) free(vl);
3624 if (cmd) free_cmd(cmd);
3625 return NULL;
3628 int regedit4_exec_cmd(CMD *cmd)
3631 return 0;
3634 int editreg_1_0_file_type(int fd)
3636 int cur_ofs = 0;
3637 char desc[11];
3639 cur_ofs = lseek(fd, 0, SEEK_CUR); /* Get current offset */
3640 if (cur_ofs < 0) {
3641 fprintf(stderr, "Unable to get current offset: %s\n", strerror(errno));
3642 exit(1); /* FIXME */
3645 if (cur_ofs) {
3646 lseek(fd, 0, SEEK_SET);
3649 if (read(fd, desc, 10) < 10) {
3650 fprintf(stderr, "Unable to read command file format\n");
3651 exit(2); /* FIXME */
3654 desc[10] = 0;
3656 if (strcmp(desc, FMT_STRING_EDITREG1_0) == 0) {
3657 lseek(fd, cur_ofs, SEEK_SET);
3658 return FMT_REGEDIT4;
3661 return FMT_UNREC;
3664 CMD *editreg_1_0_get_cmd(int fd)
3666 return NULL;
3669 int editreg_1_0_exec_cmd(CMD *cmd)
3672 return -1;
3675 typedef struct command_ops_s {
3676 int type;
3677 int (*file_type)(int fd);
3678 CMD *(*get_cmd)(int fd);
3679 int (*exec_cmd)(CMD *cmd);
3680 } CMD_OPS;
3682 CMD_OPS default_cmd_ops[] = {
3683 {0, regedit4_file_type, regedit4_get_cmd, regedit4_exec_cmd},
3684 {1, editreg_1_0_file_type, editreg_1_0_get_cmd, editreg_1_0_exec_cmd},
3685 {-1, NULL, NULL, NULL}
3688 typedef struct command_file_s {
3689 char *name;
3690 int type, fd;
3691 CMD_OPS cmd_ops;
3692 } CMD_FILE;
3695 * Create a new command file structure
3698 CMD_FILE *cmd_file_create(char *file)
3700 CMD_FILE *tmp;
3701 struct stat sbuf;
3702 int i = 0;
3705 * Let's check if the file exists ...
3706 * No use creating the cmd_file structure if the file does not exist
3709 if (stat(file, &sbuf) < 0) { /* Not able to access file */
3711 return NULL;
3714 tmp = (CMD_FILE *)malloc(sizeof(CMD_FILE));
3715 if (!tmp) {
3716 return NULL;
3720 * Let's fill in some of the fields;
3723 tmp->name = strdup(file);
3725 if ((tmp->fd = open(file, O_RDONLY, 666)) < 0) {
3726 free(tmp);
3727 return NULL;
3731 * Now, try to find the format by indexing through the table
3733 while (default_cmd_ops[i].type != -1) {
3734 if ((tmp->type = default_cmd_ops[i].file_type(tmp->fd)) >= 0) {
3735 tmp->cmd_ops = default_cmd_ops[i];
3736 return tmp;
3738 i++;
3742 * If we got here, return NULL, as we could not figure out the type
3743 * of command file.
3745 * What about errors?
3748 free(tmp);
3749 return NULL;
3753 * Extract commands from the command file, and execute them.
3754 * We pass a table of command callbacks for that
3758 * Main code from here on ...
3762 * key print function here ...
3765 int print_key(const char *path, char *name, char *class_name, int root,
3766 int terminal, int vals)
3769 if (full_print || terminal) fprintf(stdout, "[%s%s]\n", path, name);
3771 return 1;
3775 * Sec Desc print functions
3778 void print_type(unsigned char type)
3780 switch (type) {
3781 case 0x00:
3782 fprintf(stdout, " ALLOW");
3783 break;
3784 case 0x01:
3785 fprintf(stdout, " DENY");
3786 break;
3787 case 0x02:
3788 fprintf(stdout, " AUDIT");
3789 break;
3790 case 0x03:
3791 fprintf(stdout, " ALARM");
3792 break;
3793 case 0x04:
3794 fprintf(stdout, "ALLOW CPD");
3795 break;
3796 case 0x05:
3797 fprintf(stdout, "OBJ ALLOW");
3798 break;
3799 case 0x06:
3800 fprintf(stdout, " OBJ DENY");
3801 default:
3802 fprintf(stdout, " UNKNOWN");
3803 break;
3807 void print_flags(unsigned char flags)
3809 char flg_output[21];
3810 int some = 0;
3812 flg_output[0] = 0;
3813 if (!flags) {
3814 fprintf(stdout, " ");
3815 return;
3817 if (flags & 0x01) {
3818 if (some) strcat(flg_output, ",");
3819 some = 1;
3820 strcat(flg_output, "OI");
3822 if (flags & 0x02) {
3823 if (some) strcat(flg_output, ",");
3824 some = 1;
3825 strcat(flg_output, "CI");
3827 if (flags & 0x04) {
3828 if (some) strcat(flg_output, ",");
3829 some = 1;
3830 strcat(flg_output, "NP");
3832 if (flags & 0x08) {
3833 if (some) strcat(flg_output, ",");
3834 some = 1;
3835 strcat(flg_output, "IO");
3837 if (flags & 0x10) {
3838 if (some) strcat(flg_output, ",");
3839 some = 1;
3840 strcat(flg_output, "IA");
3842 if (flags == 0xF) {
3843 if (some) strcat(flg_output, ",");
3844 some = 1;
3845 strcat(flg_output, "VI");
3847 fprintf(stdout, " %s", flg_output);
3850 void print_perms(int perms)
3852 fprintf(stdout, " %8X", perms);
3855 void print_sid(DOM_SID *sid)
3857 int i, comps = sid->auths;
3858 fprintf(stdout, "S-%u-%u", sid->ver, sid->auth[5]);
3860 for (i = 0; i < comps; i++) {
3862 fprintf(stdout, "-%u", sid->sub_auths[i]);
3865 fprintf(stdout, "\n");
3868 void print_acl(ACL *acl, const char *prefix)
3870 int i;
3872 for (i = 0; i < acl->num_aces; i++) {
3873 fprintf(stdout, ";;%s", prefix);
3874 print_type(acl->aces[i]->type);
3875 print_flags(acl->aces[i]->flags);
3876 print_perms(acl->aces[i]->perms);
3877 fprintf(stdout, " ");
3878 print_sid(acl->aces[i]->trustee);
3882 int print_sec(SEC_DESC *sec_desc)
3884 if (!print_security) return 1;
3885 fprintf(stdout, ";; SECURITY\n");
3886 fprintf(stdout, ";; Owner: ");
3887 print_sid(sec_desc->owner);
3888 fprintf(stdout, ";; Group: ");
3889 print_sid(sec_desc->group);
3890 if (sec_desc->sacl) {
3891 fprintf(stdout, ";; SACL:\n");
3892 print_acl(sec_desc->sacl, " ");
3894 if (sec_desc->dacl) {
3895 fprintf(stdout, ";; DACL:\n");
3896 print_acl(sec_desc->dacl, " ");
3898 return 1;
3902 * Value print function here ...
3904 int print_val(const char *path, char *val_name, int val_type, int data_len,
3905 void *data_blk, int terminal, int first, int last)
3907 char data_asc[1024];
3909 bzero(data_asc, sizeof(data_asc));
3910 if (!terminal && first)
3911 fprintf(stdout, "%s\n", path);
3912 data_to_ascii((unsigned char *)data_blk, data_len, val_type, data_asc,
3913 sizeof(data_asc) - 1);
3914 fprintf(stdout, " %s = %s : %s\n", (val_name?val_name:"<No Name>"),
3915 val_to_str(val_type, reg_type_names), data_asc);
3916 return 1;
3919 void usage(void)
3921 fprintf(stderr, "Usage: editreg [-f] [-v] [-p] [-k] [-s] [-c <command-file>] <registryfile>\n");
3922 fprintf(stderr, "Version: 0.1\n\n");
3923 fprintf(stderr, "\n\t-v\t sets verbose mode");
3924 fprintf(stderr, "\n\t-f\t sets full print mode where non-terminals are printed");
3925 fprintf(stderr, "\n\t-p\t prints the registry");
3926 fprintf(stderr, "\n\t-s\t prints security descriptors");
3927 fprintf(stderr, "\n\t-c <command-file>\t specifies a command file");
3928 fprintf(stderr, "\n");
3931 int main(int argc, char *argv[])
3933 REGF *regf;
3934 extern char *optarg;
3935 extern int optind;
3936 int opt, print_keys = 0;
3937 int regf_opt = 1; /* Command name */
3938 int commands = 0, modified = 0;
3939 char *cmd_file_name = NULL;
3940 char *out_file_name = NULL;
3941 CMD_FILE *cmd_file = NULL;
3942 DOM_SID *lsid;
3944 if (argc < 2) {
3945 usage();
3946 exit(1);
3950 * Now, process the arguments
3953 while ((opt = getopt(argc, argv, "fspvko:O:c:")) != EOF) {
3954 switch (opt) {
3955 case 'c':
3956 commands = 1;
3957 cmd_file_name = optarg;
3958 regf_opt += 2;
3959 break;
3961 case 'f':
3962 full_print = 1;
3963 regf_opt++;
3964 break;
3966 case 'o':
3967 out_file_name = optarg;
3968 regf_opt += 2;
3969 break;
3971 case 'O':
3972 def_owner_sid_str = strdup(optarg);
3973 regf_opt += 2;
3974 if (!string_to_sid(&lsid, def_owner_sid_str)) {
3975 fprintf(stderr, "Default Owner SID: %s is incorrectly formatted\n",
3976 def_owner_sid_str);
3977 free(&def_owner_sid_str[0]);
3978 def_owner_sid_str = NULL;
3980 else
3981 nt_delete_sid(lsid);
3982 break;
3984 case 'p':
3985 print_keys++;
3986 regf_opt++;
3987 break;
3989 case 's':
3990 print_security++;
3991 full_print++;
3992 regf_opt++;
3993 break;
3995 case 'v':
3996 verbose++;
3997 regf_opt++;
3998 break;
4000 case 'k':
4001 regf_opt++;
4002 break;
4004 default:
4005 usage();
4006 exit(1);
4007 break;
4012 * We only want to complain about the lack of a default owner SID if
4013 * we need one. This approximates that need
4015 if (!def_owner_sid_str) {
4016 def_owner_sid_str = "S-1-5-21-1-2-3-4";
4017 if (out_file_name || verbose)
4018 fprintf(stderr, "Warning, default owner SID not set. Setting to %s\n",
4019 def_owner_sid_str);
4022 if ((regf = nt_create_regf()) == NULL) {
4023 fprintf(stderr, "Could not create registry object: %s\n", strerror(errno));
4024 exit(2);
4027 if (regf_opt < argc) { /* We have a registry file */
4028 if (!nt_set_regf_input_file(regf, argv[regf_opt])) {
4029 fprintf(stderr, "Could not set name of registry file: %s, %s\n",
4030 argv[regf_opt], strerror(errno));
4031 exit(3);
4034 /* Now, open it, and bring it into memory :-) */
4036 if (nt_load_registry(regf) < 0) {
4037 fprintf(stderr, "Could not load registry: %s\n", argv[1]);
4038 exit(4);
4042 if (out_file_name) {
4043 if (!nt_set_regf_output_file(regf, out_file_name)) {
4044 fprintf(stderr, "Could not set name of output registry file: %s, %s\n",
4045 out_file_name, strerror(errno));
4046 exit(3);
4051 if (commands) {
4052 CMD *cmd;
4054 cmd_file = cmd_file_create(cmd_file_name);
4056 while ((cmd = cmd_file->cmd_ops.get_cmd(cmd_file->fd)) != NULL) {
4059 * Now, apply the requests to the tree ...
4061 switch (cmd->cmd) {
4062 case CMD_ADD_KEY: {
4063 REG_KEY *tmp = NULL;
4065 tmp = nt_find_key_by_name(regf->root, cmd->key);
4067 /* If we found it, apply the other bits, else create such a key */
4069 if (!tmp) {
4070 tmp = nt_add_reg_key(regf, cmd->key, True);
4071 modified = 1;
4074 while (cmd->val_count) {
4075 VAL_SPEC_LIST *val = cmd->val_spec_list;
4076 VAL_KEY *reg_val = NULL;
4078 if (val->type == REG_TYPE_DELETE) {
4079 reg_val = nt_delete_reg_value(tmp, val -> name);
4080 if (reg_val) nt_delete_val_key(reg_val);
4081 modified = 1;
4083 else {
4084 reg_val = nt_add_reg_value(tmp, val->name, val->type,
4085 val->val);
4086 modified = 1;
4089 cmd->val_spec_list = val->next;
4090 free_val_spec_list(val);
4091 cmd->val_count--;
4094 break;
4097 case CMD_DEL_KEY:
4099 * Any value does not matter ...
4100 * Find the key if it exists, and delete it ...
4103 nt_delete_key_by_name(regf, cmd->key);
4104 modified = 1;
4105 break;
4108 free_cmd(cmd);
4112 * At this point, we should have a registry in memory and should be able
4113 * to iterate over it.
4116 if (print_keys) {
4117 nt_key_iterator(regf, regf->root, 0, "", print_key, print_sec, print_val);
4121 * If there was an out_file_name and the tree was modified, print it
4123 if (modified && out_file_name)
4124 if (!nt_store_registry(regf)) {
4125 fprintf(stdout, "Error storing registry\n");
4128 return 0;