util: strhex_to_str() fixed to handle '0x' correctly
[Samba/ekacnet.git] / lib / crypto / sha256.c
blob233abe23f8dc6c7aa0085a7e30ca977b0f1ac48b
1 /*
2 based on heildal lib/hcrypto/sha256.c. Copied to lib/crypto to avoid a link
3 problem. Hopefully will be removed once we solve this link problem
5 (tridge)
6 */
8 /*
9 * Copyright (c) 2006 Kungliga Tekniska Högskolan
10 * (Royal Institute of Technology, Stockholm, Sweden).
11 * All rights reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the Institute nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
41 #include "includes.h"
42 #include "sha256.h"
44 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
45 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
47 #define ROTR(x,n) (((x)>>(n)) | ((x) << (32 - (n))))
49 #define Sigma0(x) (ROTR(x,2) ^ ROTR(x,13) ^ ROTR(x,22))
50 #define Sigma1(x) (ROTR(x,6) ^ ROTR(x,11) ^ ROTR(x,25))
51 #define sigma0(x) (ROTR(x,7) ^ ROTR(x,18) ^ ((x)>>3))
52 #define sigma1(x) (ROTR(x,17) ^ ROTR(x,19) ^ ((x)>>10))
54 #define A m->counter[0]
55 #define B m->counter[1]
56 #define C m->counter[2]
57 #define D m->counter[3]
58 #define E m->counter[4]
59 #define F m->counter[5]
60 #define G m->counter[6]
61 #define H m->counter[7]
63 static const uint32_t constant_256[64] = {
64 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
65 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
66 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
67 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
68 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
69 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
70 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
71 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
72 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
73 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
74 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
75 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
76 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
77 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
78 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
79 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
82 void
83 SHA256_Init (SHA256_CTX *m)
85 m->sz[0] = 0;
86 m->sz[1] = 0;
87 A = 0x6a09e667;
88 B = 0xbb67ae85;
89 C = 0x3c6ef372;
90 D = 0xa54ff53a;
91 E = 0x510e527f;
92 F = 0x9b05688c;
93 G = 0x1f83d9ab;
94 H = 0x5be0cd19;
97 static void
98 calc (SHA256_CTX *m, uint32_t *in)
100 uint32_t AA, BB, CC, DD, EE, FF, GG, HH;
101 uint32_t data[64];
102 int i;
104 AA = A;
105 BB = B;
106 CC = C;
107 DD = D;
108 EE = E;
109 FF = F;
110 GG = G;
111 HH = H;
113 for (i = 0; i < 16; ++i)
114 data[i] = in[i];
115 for (i = 16; i < 64; ++i)
116 data[i] = sigma1(data[i-2]) + data[i-7] +
117 sigma0(data[i-15]) + data[i - 16];
119 for (i = 0; i < 64; i++) {
120 uint32_t T1, T2;
122 T1 = HH + Sigma1(EE) + Ch(EE, FF, GG) + constant_256[i] + data[i];
123 T2 = Sigma0(AA) + Maj(AA,BB,CC);
125 HH = GG;
126 GG = FF;
127 FF = EE;
128 EE = DD + T1;
129 DD = CC;
130 CC = BB;
131 BB = AA;
132 AA = T1 + T2;
135 A += AA;
136 B += BB;
137 C += CC;
138 D += DD;
139 E += EE;
140 F += FF;
141 G += GG;
142 H += HH;
146 * From `Performance analysis of MD5' by Joseph D. Touch <touch@isi.edu>
149 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
150 /* Vector Crays doesn't have a good 32-bit type, or more precisely,
151 int32_t as defined by <bind/bitypes.h> isn't 32 bits, and we don't
152 want to depend in being able to redefine this type. To cope with
153 this we have to clamp the result in some places to [0,2^32); no
154 need to do this on other machines. Did I say this was a mess?
157 #ifdef _CRAY
158 #define CRAYFIX(X) ((X) & 0xffffffff)
159 #else
160 #define CRAYFIX(X) (X)
161 #endif
163 static inline uint32_t
164 cshift (uint32_t x, unsigned int n)
166 x = CRAYFIX(x);
167 return CRAYFIX((x << n) | (x >> (32 - n)));
170 static inline uint32_t
171 swap_uint32_t (uint32_t t)
173 uint32_t temp1, temp2;
175 temp1 = cshift(t, 16);
176 temp2 = temp1 >> 8;
177 temp1 &= 0x00ff00ff;
178 temp2 &= 0x00ff00ff;
179 temp1 <<= 8;
180 return temp1 | temp2;
182 #endif
184 struct x32{
185 unsigned int a:32;
186 unsigned int b:32;
189 void
190 SHA256_Update (SHA256_CTX *m, const void *v, size_t len)
192 const unsigned char *p = (const unsigned char *)v;
193 size_t old_sz = m->sz[0];
194 size_t offset;
196 m->sz[0] += len * 8;
197 if (m->sz[0] < old_sz)
198 ++m->sz[1];
199 offset = (old_sz / 8) % 64;
200 while(len > 0){
201 size_t l = MIN(len, 64 - offset);
202 memcpy(m->save + offset, p, l);
203 offset += l;
204 p += l;
205 len -= l;
206 if(offset == 64){
207 #if !defined(WORDS_BIGENDIAN) || defined(_CRAY)
208 int i;
209 uint32_t current[16];
210 struct x32 *u = (struct x32*)m->save;
211 for(i = 0; i < 8; i++){
212 current[2*i+0] = swap_uint32_t(u[i].a);
213 current[2*i+1] = swap_uint32_t(u[i].b);
215 calc(m, current);
216 #else
217 calc(m, (uint32_t*)m->save);
218 #endif
219 offset = 0;
224 void
225 SHA256_Final (void *res, SHA256_CTX *m)
227 unsigned char zeros[72];
228 unsigned offset = (m->sz[0] / 8) % 64;
229 unsigned int dstart = (120 - offset - 1) % 64 + 1;
231 *zeros = 0x80;
232 memset (zeros + 1, 0, sizeof(zeros) - 1);
233 zeros[dstart+7] = (m->sz[0] >> 0) & 0xff;
234 zeros[dstart+6] = (m->sz[0] >> 8) & 0xff;
235 zeros[dstart+5] = (m->sz[0] >> 16) & 0xff;
236 zeros[dstart+4] = (m->sz[0] >> 24) & 0xff;
237 zeros[dstart+3] = (m->sz[1] >> 0) & 0xff;
238 zeros[dstart+2] = (m->sz[1] >> 8) & 0xff;
239 zeros[dstart+1] = (m->sz[1] >> 16) & 0xff;
240 zeros[dstart+0] = (m->sz[1] >> 24) & 0xff;
241 SHA256_Update (m, zeros, dstart + 8);
243 int i;
244 unsigned char *r = (unsigned char*)res;
246 for (i = 0; i < 8; ++i) {
247 r[4*i+3] = m->counter[i] & 0xFF;
248 r[4*i+2] = (m->counter[i] >> 8) & 0xFF;
249 r[4*i+1] = (m->counter[i] >> 16) & 0xFF;
250 r[4*i] = (m->counter[i] >> 24) & 0xFF;