Revert "s4: Let the "setpassword" script finally use the "samdb_set_password" routine"
[Samba/aatanasov.git] / lib / util / asn1.c
blob317ee1314c6095a7213d8e55c9633aa2798823c3
1 /*
2 Unix SMB/CIFS implementation.
3 simple ASN1 routines
4 Copyright (C) Andrew Tridgell 2001
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "includes.h"
21 #include "../lib/util/asn1.h"
23 /* allocate an asn1 structure */
24 struct asn1_data *asn1_init(TALLOC_CTX *mem_ctx)
26 struct asn1_data *ret = talloc_zero(mem_ctx, struct asn1_data);
27 if (ret == NULL) {
28 DEBUG(0,("asn1_init failed! out of memory\n"));
30 return ret;
33 /* free an asn1 structure */
34 void asn1_free(struct asn1_data *data)
36 talloc_free(data);
39 /* write to the ASN1 buffer, advancing the buffer pointer */
40 bool asn1_write(struct asn1_data *data, const void *p, int len)
42 if (data->has_error) return false;
43 if (data->length < data->ofs+len) {
44 uint8_t *newp;
45 newp = talloc_realloc(data, data->data, uint8_t, data->ofs+len);
46 if (!newp) {
47 asn1_free(data);
48 data->has_error = true;
49 return false;
51 data->data = newp;
52 data->length = data->ofs+len;
54 memcpy(data->data + data->ofs, p, len);
55 data->ofs += len;
56 return true;
59 /* useful fn for writing a uint8_t */
60 bool asn1_write_uint8(struct asn1_data *data, uint8_t v)
62 return asn1_write(data, &v, 1);
65 /* push a tag onto the asn1 data buffer. Used for nested structures */
66 bool asn1_push_tag(struct asn1_data *data, uint8_t tag)
68 struct nesting *nesting;
70 asn1_write_uint8(data, tag);
71 nesting = talloc(data, struct nesting);
72 if (!nesting) {
73 data->has_error = true;
74 return false;
77 nesting->start = data->ofs;
78 nesting->next = data->nesting;
79 data->nesting = nesting;
80 return asn1_write_uint8(data, 0xff);
83 /* pop a tag */
84 bool asn1_pop_tag(struct asn1_data *data)
86 struct nesting *nesting;
87 size_t len;
89 nesting = data->nesting;
91 if (!nesting) {
92 data->has_error = true;
93 return false;
95 len = data->ofs - (nesting->start+1);
96 /* yes, this is ugly. We don't know in advance how many bytes the length
97 of a tag will take, so we assumed 1 byte. If we were wrong then we
98 need to correct our mistake */
99 if (len > 0xFFFFFF) {
100 data->data[nesting->start] = 0x84;
101 if (!asn1_write_uint8(data, 0)) return false;
102 if (!asn1_write_uint8(data, 0)) return false;
103 if (!asn1_write_uint8(data, 0)) return false;
104 if (!asn1_write_uint8(data, 0)) return false;
105 memmove(data->data+nesting->start+5, data->data+nesting->start+1, len);
106 data->data[nesting->start+1] = (len>>24) & 0xFF;
107 data->data[nesting->start+2] = (len>>16) & 0xFF;
108 data->data[nesting->start+3] = (len>>8) & 0xFF;
109 data->data[nesting->start+4] = len&0xff;
110 } else if (len > 0xFFFF) {
111 data->data[nesting->start] = 0x83;
112 if (!asn1_write_uint8(data, 0)) return false;
113 if (!asn1_write_uint8(data, 0)) return false;
114 if (!asn1_write_uint8(data, 0)) return false;
115 memmove(data->data+nesting->start+4, data->data+nesting->start+1, len);
116 data->data[nesting->start+1] = (len>>16) & 0xFF;
117 data->data[nesting->start+2] = (len>>8) & 0xFF;
118 data->data[nesting->start+3] = len&0xff;
119 } else if (len > 255) {
120 data->data[nesting->start] = 0x82;
121 if (!asn1_write_uint8(data, 0)) return false;
122 if (!asn1_write_uint8(data, 0)) return false;
123 memmove(data->data+nesting->start+3, data->data+nesting->start+1, len);
124 data->data[nesting->start+1] = len>>8;
125 data->data[nesting->start+2] = len&0xff;
126 } else if (len > 127) {
127 data->data[nesting->start] = 0x81;
128 if (!asn1_write_uint8(data, 0)) return false;
129 memmove(data->data+nesting->start+2, data->data+nesting->start+1, len);
130 data->data[nesting->start+1] = len;
131 } else {
132 data->data[nesting->start] = len;
135 data->nesting = nesting->next;
136 talloc_free(nesting);
137 return true;
140 /* "i" is the one's complement representation, as is the normal result of an
141 * implicit signed->unsigned conversion */
143 static bool push_int_bigendian(struct asn1_data *data, unsigned int i, bool negative)
145 uint8_t lowest = i & 0xFF;
147 i = i >> 8;
148 if (i != 0)
149 if (!push_int_bigendian(data, i, negative))
150 return false;
152 if (data->nesting->start+1 == data->ofs) {
154 /* We did not write anything yet, looking at the highest
155 * valued byte */
157 if (negative) {
158 /* Don't write leading 0xff's */
159 if (lowest == 0xFF)
160 return true;
162 if ((lowest & 0x80) == 0) {
163 /* The only exception for a leading 0xff is if
164 * the highest bit is 0, which would indicate
165 * a positive value */
166 if (!asn1_write_uint8(data, 0xff))
167 return false;
169 } else {
170 if (lowest & 0x80) {
171 /* The highest bit of a positive integer is 1,
172 * this would indicate a negative number. Push
173 * a 0 to indicate a positive one */
174 if (!asn1_write_uint8(data, 0))
175 return false;
180 return asn1_write_uint8(data, lowest);
183 /* write an Integer without the tag framing. Needed for example for the LDAP
184 * Abandon Operation */
186 bool asn1_write_implicit_Integer(struct asn1_data *data, int i)
188 if (i == -1) {
189 /* -1 is special as it consists of all-0xff bytes. In
190 push_int_bigendian this is the only case that is not
191 properly handled, as all 0xff bytes would be handled as
192 leading ones to be ignored. */
193 return asn1_write_uint8(data, 0xff);
194 } else {
195 return push_int_bigendian(data, i, i<0);
200 /* write an integer */
201 bool asn1_write_Integer(struct asn1_data *data, int i)
203 if (!asn1_push_tag(data, ASN1_INTEGER)) return false;
204 if (!asn1_write_implicit_Integer(data, i)) return false;
205 return asn1_pop_tag(data);
208 bool ber_write_OID_String(DATA_BLOB *blob, const char *OID)
210 uint_t v, v2;
211 const char *p = (const char *)OID;
212 char *newp;
213 int i;
215 v = strtoul(p, &newp, 10);
216 if (newp[0] != '.') return false;
217 p = newp + 1;
219 v2 = strtoul(p, &newp, 10);
220 if (newp[0] != '.') return false;
221 p = newp + 1;
223 /*the ber representation can't use more space then the string one */
224 *blob = data_blob(NULL, strlen(OID));
225 if (!blob->data) return false;
227 blob->data[0] = 40*v + v2;
229 i = 1;
230 while (*p) {
231 v = strtoul(p, &newp, 10);
232 if (newp[0] == '.') {
233 p = newp + 1;
234 } else if (newp[0] == '\0') {
235 p = newp;
236 } else {
237 data_blob_free(blob);
238 return false;
240 if (v >= (1<<28)) blob->data[i++] = (0x80 | ((v>>28)&0x7f));
241 if (v >= (1<<21)) blob->data[i++] = (0x80 | ((v>>21)&0x7f));
242 if (v >= (1<<14)) blob->data[i++] = (0x80 | ((v>>14)&0x7f));
243 if (v >= (1<<7)) blob->data[i++] = (0x80 | ((v>>7)&0x7f));
244 blob->data[i++] = (v&0x7f);
247 blob->length = i;
249 return true;
252 /* write an object ID to a ASN1 buffer */
253 bool asn1_write_OID(struct asn1_data *data, const char *OID)
255 DATA_BLOB blob;
257 if (!asn1_push_tag(data, ASN1_OID)) return false;
259 if (!ber_write_OID_String(&blob, OID)) {
260 data->has_error = true;
261 return false;
264 if (!asn1_write(data, blob.data, blob.length)) {
265 data_blob_free(&blob);
266 data->has_error = true;
267 return false;
269 data_blob_free(&blob);
270 return asn1_pop_tag(data);
273 /* write an octet string */
274 bool asn1_write_OctetString(struct asn1_data *data, const void *p, size_t length)
276 asn1_push_tag(data, ASN1_OCTET_STRING);
277 asn1_write(data, p, length);
278 asn1_pop_tag(data);
279 return !data->has_error;
282 /* write a LDAP string */
283 bool asn1_write_LDAPString(struct asn1_data *data, const char *s)
285 asn1_write(data, s, strlen(s));
286 return !data->has_error;
289 /* write a LDAP string from a DATA_BLOB */
290 bool asn1_write_DATA_BLOB_LDAPString(struct asn1_data *data, const DATA_BLOB *s)
292 asn1_write(data, s->data, s->length);
293 return !data->has_error;
296 /* write a general string */
297 bool asn1_write_GeneralString(struct asn1_data *data, const char *s)
299 asn1_push_tag(data, ASN1_GENERAL_STRING);
300 asn1_write_LDAPString(data, s);
301 asn1_pop_tag(data);
302 return !data->has_error;
305 bool asn1_write_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
307 asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num));
308 asn1_write(data, blob->data, blob->length);
309 asn1_pop_tag(data);
310 return !data->has_error;
313 /* write a BOOLEAN */
314 bool asn1_write_BOOLEAN(struct asn1_data *data, bool v)
316 asn1_push_tag(data, ASN1_BOOLEAN);
317 asn1_write_uint8(data, v ? 0xFF : 0);
318 asn1_pop_tag(data);
319 return !data->has_error;
322 bool asn1_read_BOOLEAN(struct asn1_data *data, bool *v)
324 uint8_t tmp = 0;
325 asn1_start_tag(data, ASN1_BOOLEAN);
326 asn1_read_uint8(data, &tmp);
327 if (tmp == 0xFF) {
328 *v = true;
329 } else {
330 *v = false;
332 asn1_end_tag(data);
333 return !data->has_error;
336 /* write a BOOLEAN in a simple context */
337 bool asn1_write_BOOLEAN_context(struct asn1_data *data, bool v, int context)
339 asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(context));
340 asn1_write_uint8(data, v ? 0xFF : 0);
341 asn1_pop_tag(data);
342 return !data->has_error;
345 bool asn1_read_BOOLEAN_context(struct asn1_data *data, bool *v, int context)
347 uint8_t tmp = 0;
348 asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(context));
349 asn1_read_uint8(data, &tmp);
350 if (tmp == 0xFF) {
351 *v = true;
352 } else {
353 *v = false;
355 asn1_end_tag(data);
356 return !data->has_error;
359 /* check a BOOLEAN */
360 bool asn1_check_BOOLEAN(struct asn1_data *data, bool v)
362 uint8_t b = 0;
364 asn1_read_uint8(data, &b);
365 if (b != ASN1_BOOLEAN) {
366 data->has_error = true;
367 return false;
369 asn1_read_uint8(data, &b);
370 if (b != v) {
371 data->has_error = true;
372 return false;
374 return !data->has_error;
378 /* load a struct asn1_data structure with a lump of data, ready to be parsed */
379 bool asn1_load(struct asn1_data *data, DATA_BLOB blob)
381 ZERO_STRUCTP(data);
382 data->data = (uint8_t *)talloc_memdup(data, blob.data, blob.length);
383 if (!data->data) {
384 data->has_error = true;
385 return false;
387 data->length = blob.length;
388 return true;
391 /* Peek into an ASN1 buffer, not advancing the pointer */
392 bool asn1_peek(struct asn1_data *data, void *p, int len)
394 if (data->has_error)
395 return false;
397 if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len)
398 return false;
400 if (data->ofs + len > data->length) {
401 /* we need to mark the buffer as consumed, so the caller knows
402 this was an out of data error, and not a decode error */
403 data->ofs = data->length;
404 return false;
407 memcpy(p, data->data + data->ofs, len);
408 return true;
411 /* read from a ASN1 buffer, advancing the buffer pointer */
412 bool asn1_read(struct asn1_data *data, void *p, int len)
414 if (!asn1_peek(data, p, len)) {
415 data->has_error = true;
416 return false;
419 data->ofs += len;
420 return true;
423 /* read a uint8_t from a ASN1 buffer */
424 bool asn1_read_uint8(struct asn1_data *data, uint8_t *v)
426 return asn1_read(data, v, 1);
429 bool asn1_peek_uint8(struct asn1_data *data, uint8_t *v)
431 return asn1_peek(data, v, 1);
434 bool asn1_peek_tag(struct asn1_data *data, uint8_t tag)
436 uint8_t b;
438 if (asn1_tag_remaining(data) <= 0) {
439 return false;
442 if (!asn1_peek_uint8(data, &b))
443 return false;
445 return (b == tag);
448 /* start reading a nested asn1 structure */
449 bool asn1_start_tag(struct asn1_data *data, uint8_t tag)
451 uint8_t b;
452 struct nesting *nesting;
454 if (!asn1_read_uint8(data, &b))
455 return false;
457 if (b != tag) {
458 data->has_error = true;
459 return false;
461 nesting = talloc(data, struct nesting);
462 if (!nesting) {
463 data->has_error = true;
464 return false;
467 if (!asn1_read_uint8(data, &b)) {
468 return false;
471 if (b & 0x80) {
472 int n = b & 0x7f;
473 if (!asn1_read_uint8(data, &b))
474 return false;
475 nesting->taglen = b;
476 while (n > 1) {
477 if (!asn1_read_uint8(data, &b))
478 return false;
479 nesting->taglen = (nesting->taglen << 8) | b;
480 n--;
482 } else {
483 nesting->taglen = b;
485 nesting->start = data->ofs;
486 nesting->next = data->nesting;
487 data->nesting = nesting;
488 if (asn1_tag_remaining(data) == -1) {
489 return false;
491 return !data->has_error;
494 /* stop reading a tag */
495 bool asn1_end_tag(struct asn1_data *data)
497 struct nesting *nesting;
499 /* make sure we read it all */
500 if (asn1_tag_remaining(data) != 0) {
501 data->has_error = true;
502 return false;
505 nesting = data->nesting;
507 if (!nesting) {
508 data->has_error = true;
509 return false;
512 data->nesting = nesting->next;
513 talloc_free(nesting);
514 return true;
517 /* work out how many bytes are left in this nested tag */
518 int asn1_tag_remaining(struct asn1_data *data)
520 int remaining;
521 if (data->has_error) {
522 return -1;
525 if (!data->nesting) {
526 data->has_error = true;
527 return -1;
529 remaining = data->nesting->taglen - (data->ofs - data->nesting->start);
530 if (remaining > (data->length - data->ofs)) {
531 data->has_error = true;
532 return -1;
534 return remaining;
537 /* read an object ID from a data blob */
538 bool ber_read_OID_String(TALLOC_CTX *mem_ctx, DATA_BLOB blob, const char **OID)
540 int i;
541 uint8_t *b;
542 uint_t v;
543 char *tmp_oid = NULL;
545 if (blob.length < 2) return false;
547 b = blob.data;
549 tmp_oid = talloc_asprintf(mem_ctx, "%u", b[0]/40);
550 if (!tmp_oid) goto nomem;
551 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", b[0]%40);
552 if (!tmp_oid) goto nomem;
554 for(i = 1, v = 0; i < blob.length; i++) {
555 v = (v<<7) | (b[i]&0x7f);
556 if ( ! (b[i] & 0x80)) {
557 tmp_oid = talloc_asprintf_append_buffer(tmp_oid, ".%u", v);
558 v = 0;
560 if (!tmp_oid) goto nomem;
563 if (v != 0) {
564 talloc_free(tmp_oid);
565 return false;
568 *OID = tmp_oid;
569 return true;
571 nomem:
572 return false;
575 /* read an object ID from a ASN1 buffer */
576 bool asn1_read_OID(struct asn1_data *data, TALLOC_CTX *mem_ctx, const char **OID)
578 DATA_BLOB blob;
579 int len;
581 if (!asn1_start_tag(data, ASN1_OID)) return false;
583 len = asn1_tag_remaining(data);
584 if (len < 0) {
585 data->has_error = true;
586 return false;
589 blob = data_blob(NULL, len);
590 if (!blob.data) {
591 data->has_error = true;
592 return false;
595 asn1_read(data, blob.data, len);
596 asn1_end_tag(data);
597 if (data->has_error) {
598 data_blob_free(&blob);
599 return false;
602 if (!ber_read_OID_String(mem_ctx, blob, OID)) {
603 data->has_error = true;
604 data_blob_free(&blob);
605 return false;
608 data_blob_free(&blob);
609 return true;
612 /* check that the next object ID is correct */
613 bool asn1_check_OID(struct asn1_data *data, const char *OID)
615 const char *id;
617 if (!asn1_read_OID(data, data, &id)) return false;
619 if (strcmp(id, OID) != 0) {
620 talloc_free(discard_const(id));
621 data->has_error = true;
622 return false;
624 talloc_free(discard_const(id));
625 return true;
628 /* read a LDAPString from a ASN1 buffer */
629 bool asn1_read_LDAPString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
631 int len;
632 len = asn1_tag_remaining(data);
633 if (len < 0) {
634 data->has_error = true;
635 return false;
637 *s = talloc_array(mem_ctx, char, len+1);
638 if (! *s) {
639 data->has_error = true;
640 return false;
642 asn1_read(data, *s, len);
643 (*s)[len] = 0;
644 return !data->has_error;
648 /* read a GeneralString from a ASN1 buffer */
649 bool asn1_read_GeneralString(struct asn1_data *data, TALLOC_CTX *mem_ctx, char **s)
651 if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return false;
652 if (!asn1_read_LDAPString(data, mem_ctx, s)) return false;
653 return asn1_end_tag(data);
657 /* read a octet string blob */
658 bool asn1_read_OctetString(struct asn1_data *data, TALLOC_CTX *mem_ctx, DATA_BLOB *blob)
660 int len;
661 ZERO_STRUCTP(blob);
662 if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return false;
663 len = asn1_tag_remaining(data);
664 if (len < 0) {
665 data->has_error = true;
666 return false;
668 *blob = data_blob_talloc(mem_ctx, NULL, len+1);
669 if (!blob->data) {
670 data->has_error = true;
671 return false;
673 asn1_read(data, blob->data, len);
674 asn1_end_tag(data);
675 blob->length--;
676 blob->data[len] = 0;
678 if (data->has_error) {
679 data_blob_free(blob);
680 *blob = data_blob_null;
681 return false;
683 return true;
686 bool asn1_read_ContextSimple(struct asn1_data *data, uint8_t num, DATA_BLOB *blob)
688 int len;
689 ZERO_STRUCTP(blob);
690 if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return false;
691 len = asn1_tag_remaining(data);
692 if (len < 0) {
693 data->has_error = true;
694 return false;
696 *blob = data_blob(NULL, len);
697 if ((len != 0) && (!blob->data)) {
698 data->has_error = true;
699 return false;
701 asn1_read(data, blob->data, len);
702 asn1_end_tag(data);
703 return !data->has_error;
706 /* read an integer without tag*/
707 bool asn1_read_implicit_Integer(struct asn1_data *data, int *i)
709 uint8_t b;
710 *i = 0;
712 while (!data->has_error && asn1_tag_remaining(data)>0) {
713 if (!asn1_read_uint8(data, &b)) return false;
714 *i = (*i << 8) + b;
716 return !data->has_error;
720 /* read an integer */
721 bool asn1_read_Integer(struct asn1_data *data, int *i)
723 *i = 0;
725 if (!asn1_start_tag(data, ASN1_INTEGER)) return false;
726 if (!asn1_read_implicit_Integer(data, i)) return false;
727 return asn1_end_tag(data);
730 /* read an integer */
731 bool asn1_read_enumerated(struct asn1_data *data, int *v)
733 *v = 0;
735 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
736 while (!data->has_error && asn1_tag_remaining(data)>0) {
737 uint8_t b;
738 asn1_read_uint8(data, &b);
739 *v = (*v << 8) + b;
741 return asn1_end_tag(data);
744 /* check a enumerated value is correct */
745 bool asn1_check_enumerated(struct asn1_data *data, int v)
747 uint8_t b;
748 if (!asn1_start_tag(data, ASN1_ENUMERATED)) return false;
749 asn1_read_uint8(data, &b);
750 asn1_end_tag(data);
752 if (v != b)
753 data->has_error = false;
755 return !data->has_error;
758 /* write an enumerated value to the stream */
759 bool asn1_write_enumerated(struct asn1_data *data, uint8_t v)
761 if (!asn1_push_tag(data, ASN1_ENUMERATED)) return false;
762 asn1_write_uint8(data, v);
763 asn1_pop_tag(data);
764 return !data->has_error;
768 Get us the data just written without copying
770 bool asn1_blob(const struct asn1_data *asn1, DATA_BLOB *blob)
772 if (asn1->has_error) {
773 return false;
775 if (asn1->nesting != NULL) {
776 return false;
778 blob->data = asn1->data;
779 blob->length = asn1->length;
780 return true;
784 Fill in an asn1 struct without making a copy
786 void asn1_load_nocopy(struct asn1_data *data, uint8_t *buf, size_t len)
788 ZERO_STRUCTP(data);
789 data->data = buf;
790 data->length = len;
794 check if a ASN.1 blob is a full tag
796 NTSTATUS asn1_full_tag(DATA_BLOB blob, uint8_t tag, size_t *packet_size)
798 struct asn1_data *asn1 = asn1_init(NULL);
799 int size;
801 NT_STATUS_HAVE_NO_MEMORY(asn1);
803 asn1->data = blob.data;
804 asn1->length = blob.length;
805 asn1_start_tag(asn1, tag);
806 if (asn1->has_error) {
807 talloc_free(asn1);
808 return STATUS_MORE_ENTRIES;
810 size = asn1_tag_remaining(asn1) + asn1->ofs;
812 talloc_free(asn1);
814 if (size > blob.length) {
815 return STATUS_MORE_ENTRIES;
818 *packet_size = size;
819 return NT_STATUS_OK;