2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
18 /* This code slightly modified to fit into Samba by
19 abartlet@samba.org Jun 2001 */
26 static void MD5Transform(uint32_t buf
[4], uint32_t const in
[16]);
29 * Note: this code is harmless on little-endian machines.
31 static void byteReverse(uint8_t *buf
, unsigned int longs
)
35 t
= (uint32_t) ((unsigned int) buf
[3] << 8 | buf
[2]) << 16 |
36 ((unsigned int) buf
[1] << 8 | buf
[0]);
37 *(uint32_t *) buf
= t
;
43 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
44 * initialization constants.
46 _PUBLIC_
void MD5Init(MD5_CTX
*ctx
)
48 ctx
->buf
[0] = 0x67452301;
49 ctx
->buf
[1] = 0xefcdab89;
50 ctx
->buf
[2] = 0x98badcfe;
51 ctx
->buf
[3] = 0x10325476;
58 * Update context to reflect the concatenation of another buffer full
61 _PUBLIC_
void MD5Update(MD5_CTX
*ctx
, const uint8_t *buf
, size_t len
)
68 if ((ctx
->bits
[0] = t
+ ((uint32_t) len
<< 3)) < t
)
69 ctx
->bits
[1]++; /* Carry from low to high */
70 ctx
->bits
[1] += len
>> 29;
72 t
= (t
>> 3) & 0x3f; /* Bytes already in shsInfo->data */
74 /* Handle any leading odd-sized chunks */
77 uint8_t *p
= (uint8_t *) ctx
->in
+ t
;
85 byteReverse(ctx
->in
, 16);
86 MD5Transform(ctx
->buf
, (uint32_t *) ctx
->in
);
90 /* Process data in 64-byte chunks */
93 memmove(ctx
->in
, buf
, 64);
94 byteReverse(ctx
->in
, 16);
95 MD5Transform(ctx
->buf
, (uint32_t *) ctx
->in
);
100 /* Handle any remaining bytes of data. */
102 memmove(ctx
->in
, buf
, len
);
106 * Final wrapup - pad to 64-byte boundary with the bit pattern
107 * 1 0* (64-bit count of bits processed, MSB-first)
109 _PUBLIC_
void MD5Final(uint8_t digest
[16], MD5_CTX
*ctx
)
114 /* Compute number of bytes mod 64 */
115 count
= (ctx
->bits
[0] >> 3) & 0x3F;
117 /* Set the first char of padding to 0x80. This is safe since there is
118 always at least one byte free */
122 /* Bytes of padding needed to make 64 bytes */
123 count
= 64 - 1 - count
;
125 /* Pad out to 56 mod 64 */
127 /* Two lots of padding: Pad the first block to 64 bytes */
129 byteReverse(ctx
->in
, 16);
130 MD5Transform(ctx
->buf
, (uint32_t *) ctx
->in
);
132 /* Now fill the next block with 56 bytes */
133 memset(ctx
->in
, 0, 56);
135 /* Pad block to 56 bytes */
136 memset(p
, 0, count
- 8);
138 byteReverse(ctx
->in
, 14);
140 /* Append length in bits and transform.
141 * Use memcpy to avoid strict-aliasing problems.
142 * This way it can be optimized.
144 memcpy(&ctx
->in
[14 * sizeof(uint32_t)], &ctx
->bits
[0], sizeof(uint32_t));
145 memcpy(&ctx
->in
[15 * sizeof(uint32_t)], &ctx
->bits
[1], sizeof(uint32_t));
147 MD5Transform(ctx
->buf
, (uint32_t *) ctx
->in
);
148 byteReverse((uint8_t *) ctx
->buf
, 4);
149 memmove(digest
, ctx
->buf
, 16);
150 memset(ctx
, 0, sizeof(*ctx
)); /* In case it's sensitive */
153 /* The four core functions - F1 is optimized somewhat */
155 /* #define F1(x, y, z) (x & y | ~x & z) */
156 #define F1(x, y, z) (z ^ (x & (y ^ z)))
157 #define F2(x, y, z) F1(z, x, y)
158 #define F3(x, y, z) (x ^ y ^ z)
159 #define F4(x, y, z) (y ^ (x | ~z))
161 /* This is the central step in the MD5 algorithm. */
162 #define MD5STEP(f, w, x, y, z, data, s) \
163 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
166 * The core of the MD5 algorithm, this alters an existing MD5 hash to
167 * reflect the addition of 16 longwords of new data. MD5Update blocks
168 * the data and converts bytes into longwords for this routine.
170 static void MD5Transform(uint32_t buf
[4], uint32_t const in
[16])
172 register uint32_t a
, b
, c
, d
;
179 MD5STEP(F1
, a
, b
, c
, d
, in
[0] + 0xd76aa478, 7);
180 MD5STEP(F1
, d
, a
, b
, c
, in
[1] + 0xe8c7b756, 12);
181 MD5STEP(F1
, c
, d
, a
, b
, in
[2] + 0x242070db, 17);
182 MD5STEP(F1
, b
, c
, d
, a
, in
[3] + 0xc1bdceee, 22);
183 MD5STEP(F1
, a
, b
, c
, d
, in
[4] + 0xf57c0faf, 7);
184 MD5STEP(F1
, d
, a
, b
, c
, in
[5] + 0x4787c62a, 12);
185 MD5STEP(F1
, c
, d
, a
, b
, in
[6] + 0xa8304613, 17);
186 MD5STEP(F1
, b
, c
, d
, a
, in
[7] + 0xfd469501, 22);
187 MD5STEP(F1
, a
, b
, c
, d
, in
[8] + 0x698098d8, 7);
188 MD5STEP(F1
, d
, a
, b
, c
, in
[9] + 0x8b44f7af, 12);
189 MD5STEP(F1
, c
, d
, a
, b
, in
[10] + 0xffff5bb1, 17);
190 MD5STEP(F1
, b
, c
, d
, a
, in
[11] + 0x895cd7be, 22);
191 MD5STEP(F1
, a
, b
, c
, d
, in
[12] + 0x6b901122, 7);
192 MD5STEP(F1
, d
, a
, b
, c
, in
[13] + 0xfd987193, 12);
193 MD5STEP(F1
, c
, d
, a
, b
, in
[14] + 0xa679438e, 17);
194 MD5STEP(F1
, b
, c
, d
, a
, in
[15] + 0x49b40821, 22);
196 MD5STEP(F2
, a
, b
, c
, d
, in
[1] + 0xf61e2562, 5);
197 MD5STEP(F2
, d
, a
, b
, c
, in
[6] + 0xc040b340, 9);
198 MD5STEP(F2
, c
, d
, a
, b
, in
[11] + 0x265e5a51, 14);
199 MD5STEP(F2
, b
, c
, d
, a
, in
[0] + 0xe9b6c7aa, 20);
200 MD5STEP(F2
, a
, b
, c
, d
, in
[5] + 0xd62f105d, 5);
201 MD5STEP(F2
, d
, a
, b
, c
, in
[10] + 0x02441453, 9);
202 MD5STEP(F2
, c
, d
, a
, b
, in
[15] + 0xd8a1e681, 14);
203 MD5STEP(F2
, b
, c
, d
, a
, in
[4] + 0xe7d3fbc8, 20);
204 MD5STEP(F2
, a
, b
, c
, d
, in
[9] + 0x21e1cde6, 5);
205 MD5STEP(F2
, d
, a
, b
, c
, in
[14] + 0xc33707d6, 9);
206 MD5STEP(F2
, c
, d
, a
, b
, in
[3] + 0xf4d50d87, 14);
207 MD5STEP(F2
, b
, c
, d
, a
, in
[8] + 0x455a14ed, 20);
208 MD5STEP(F2
, a
, b
, c
, d
, in
[13] + 0xa9e3e905, 5);
209 MD5STEP(F2
, d
, a
, b
, c
, in
[2] + 0xfcefa3f8, 9);
210 MD5STEP(F2
, c
, d
, a
, b
, in
[7] + 0x676f02d9, 14);
211 MD5STEP(F2
, b
, c
, d
, a
, in
[12] + 0x8d2a4c8a, 20);
213 MD5STEP(F3
, a
, b
, c
, d
, in
[5] + 0xfffa3942, 4);
214 MD5STEP(F3
, d
, a
, b
, c
, in
[8] + 0x8771f681, 11);
215 MD5STEP(F3
, c
, d
, a
, b
, in
[11] + 0x6d9d6122, 16);
216 MD5STEP(F3
, b
, c
, d
, a
, in
[14] + 0xfde5380c, 23);
217 MD5STEP(F3
, a
, b
, c
, d
, in
[1] + 0xa4beea44, 4);
218 MD5STEP(F3
, d
, a
, b
, c
, in
[4] + 0x4bdecfa9, 11);
219 MD5STEP(F3
, c
, d
, a
, b
, in
[7] + 0xf6bb4b60, 16);
220 MD5STEP(F3
, b
, c
, d
, a
, in
[10] + 0xbebfbc70, 23);
221 MD5STEP(F3
, a
, b
, c
, d
, in
[13] + 0x289b7ec6, 4);
222 MD5STEP(F3
, d
, a
, b
, c
, in
[0] + 0xeaa127fa, 11);
223 MD5STEP(F3
, c
, d
, a
, b
, in
[3] + 0xd4ef3085, 16);
224 MD5STEP(F3
, b
, c
, d
, a
, in
[6] + 0x04881d05, 23);
225 MD5STEP(F3
, a
, b
, c
, d
, in
[9] + 0xd9d4d039, 4);
226 MD5STEP(F3
, d
, a
, b
, c
, in
[12] + 0xe6db99e5, 11);
227 MD5STEP(F3
, c
, d
, a
, b
, in
[15] + 0x1fa27cf8, 16);
228 MD5STEP(F3
, b
, c
, d
, a
, in
[2] + 0xc4ac5665, 23);
230 MD5STEP(F4
, a
, b
, c
, d
, in
[0] + 0xf4292244, 6);
231 MD5STEP(F4
, d
, a
, b
, c
, in
[7] + 0x432aff97, 10);
232 MD5STEP(F4
, c
, d
, a
, b
, in
[14] + 0xab9423a7, 15);
233 MD5STEP(F4
, b
, c
, d
, a
, in
[5] + 0xfc93a039, 21);
234 MD5STEP(F4
, a
, b
, c
, d
, in
[12] + 0x655b59c3, 6);
235 MD5STEP(F4
, d
, a
, b
, c
, in
[3] + 0x8f0ccc92, 10);
236 MD5STEP(F4
, c
, d
, a
, b
, in
[10] + 0xffeff47d, 15);
237 MD5STEP(F4
, b
, c
, d
, a
, in
[1] + 0x85845dd1, 21);
238 MD5STEP(F4
, a
, b
, c
, d
, in
[8] + 0x6fa87e4f, 6);
239 MD5STEP(F4
, d
, a
, b
, c
, in
[15] + 0xfe2ce6e0, 10);
240 MD5STEP(F4
, c
, d
, a
, b
, in
[6] + 0xa3014314, 15);
241 MD5STEP(F4
, b
, c
, d
, a
, in
[13] + 0x4e0811a1, 21);
242 MD5STEP(F4
, a
, b
, c
, d
, in
[4] + 0xf7537e82, 6);
243 MD5STEP(F4
, d
, a
, b
, c
, in
[11] + 0xbd3af235, 10);
244 MD5STEP(F4
, c
, d
, a
, b
, in
[2] + 0x2ad7d2bb, 15);
245 MD5STEP(F4
, b
, c
, d
, a
, in
[9] + 0xeb86d391, 21);