4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
34 * \section intro_sec Introduction
36 * Talloc is a hierarchical, reference counted memory pool system with
37 * destructors. Quite a mouthful really, but not too bad once you get used to
40 * Perhaps the biggest difference from other memory pool systems is that there
41 * is no distinction between a "talloc context" and a "talloc pointer". Any
42 * pointer returned from talloc() is itself a valid talloc context. This means
46 * struct foo *X = talloc(mem_ctx, struct foo);
47 * X->name = talloc_strdup(X, "foo");
50 * and the pointer X->name would be a "child" of the talloc context "X" which
51 * is itself a child of mem_ctx. So if you do talloc_free(mem_ctx) then it is
52 * all destroyed, whereas if you do talloc_free(X) then just X and X->name are
53 * destroyed, and if you do talloc_free(X->name) then just the name element of
56 * If you think about this, then what this effectively gives you is an n-ary
57 * tree, where you can free any part of the tree with talloc_free().
59 * To start, you should probably first look at the definitions of
60 * ::TALLOC_CTX, talloc_init(), talloc() and talloc_free().
62 * \section named_blocks Named blocks
64 * Every talloc chunk has a name that can be used as a dynamic type-checking
65 * system. If for some reason like a callback function you had to cast a
66 * "struct foo *" to a "void *" variable, later you can safely reassign the
67 * "void *" pointer to a "struct foo *" by using the talloc_get_type() or
68 * talloc_get_type_abort() macros.
71 * struct foo *X = talloc_get_type_abort(ptr, struct foo);
74 * This will abort if "ptr" does not contain a pointer that has been created
75 * with talloc(mem_ctx, struct foo).
77 * \section multi_threading Multi-Threading
79 * talloc itself does not deal with threads. It is thread-safe (assuming the
80 * underlying "malloc" is), as long as each thread uses different memory
83 * If two threads uses the same context then they need to synchronize in order
84 * to be safe. In particular:
87 * - when using talloc_enable_leak_report(), giving directly NULL as a
88 * parent context implicitly refers to a hidden "null context" global
89 * variable, so this should not be used in a multi-threaded environment
90 * without proper synchronization
91 * - the context returned by talloc_autofree_context() is also global so
92 * shouldn't be used by several threads simultaneously without
96 /** \defgroup talloc_basic Basic Talloc Routines
98 * This module contains the basic talloc routines that are used in everyday
103 * \defgroup talloc_ref Talloc References
105 * This module contains the definitions around talloc references
109 * \defgroup talloc_array Array routines
111 * Talloc contains some handy helpers for handling Arrays conveniently
115 * \defgroup talloc_string String handling routines
117 * Talloc contains some handy string handling functions
121 * \defgroup talloc_debug Debugging support routines
123 * To aid memory debugging, talloc contains routines to inspect the currently
124 * allocated memory hierarchy.
128 * \defgroup talloc_internal Internal routines
130 * To achieve type-safety, talloc.h defines a lot of macros with type
131 * casts. These macros define the user interface to the internal routines you
132 * find here. You should not really use these routines directly but go through
137 * \defgroup talloc_undoc Default group of undocumented stuff
139 * This should be empty...
145 * \typedef TALLOC_CTX
146 * \brief Define a talloc parent type
147 * \ingroup talloc_basic
149 * As talloc is a hierarchial memory allocator, every talloc chunk is a
150 * potential parent to other talloc chunks. So defining a separate type for a
151 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
152 * as it provides an indicator for function arguments. You will frequently
156 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
158 * struct foo *result;
159 * result = talloc(mem_ctx, struct foo);
160 * if (result == NULL) return NULL;
161 * ... initialize foo ...
166 * In this type of allocating functions it is handy to have a general
167 * TALLOC_CTX type to indicate which parent to put allocated structures on.
169 typedef void TALLOC_CTX
;
172 this uses a little trick to allow __LINE__ to be stringified
175 #define __TALLOC_STRING_LINE1__(s) #s
176 #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
177 #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
178 #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
181 #ifndef TALLOC_DEPRECATED
182 #define TALLOC_DEPRECATED 0
185 #ifndef PRINTF_ATTRIBUTE
187 /** Use gcc attribute to check printf fns. a1 is the 1-based index of
188 * the parameter containing the format, and a2 the index of the first
189 * argument. Note that some gcc 2.x versions don't handle this
191 #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
193 #define PRINTF_ATTRIBUTE(a1, a2)
198 * \def talloc_set_destructor
199 * \brief Assign a function to be called when a chunk is freed
200 * \param ptr The talloc chunk to add a destructor to
201 * \param function The destructor function to be called
202 * \ingroup talloc_basic
204 * The function talloc_set_destructor() sets the "destructor" for the pointer
205 * "ptr". A destructor is a function that is called when the memory used by a
206 * pointer is about to be released. The destructor receives the pointer as an
207 * argument, and should return 0 for success and -1 for failure.
209 * The destructor can do anything it wants to, including freeing other pieces
210 * of memory. A common use for destructors is to clean up operating system
211 * resources (such as open file descriptors) contained in the structure the
212 * destructor is placed on.
214 * You can only place one destructor on a pointer. If you need more than one
215 * destructor then you can create a zero-length child of the pointer and place
216 * an additional destructor on that.
218 * To remove a destructor call talloc_set_destructor() with NULL for the
221 * If your destructor attempts to talloc_free() the pointer that it is the
222 * destructor for then talloc_free() will return -1 and the free will be
223 * ignored. This would be a pointless operation anyway, as the destructor is
224 * only called when the memory is just about to go away.
228 * \def talloc_steal(ctx, ptr)
229 * \brief Change a talloc chunk's parent
230 * \param ctx The new parent context
231 * \param ptr The talloc chunk to move
233 * \ingroup talloc_basic
235 * The talloc_steal() function changes the parent context of a talloc
236 * pointer. It is typically used when the context that the pointer is
237 * currently a child of is going to be freed and you wish to keep the
238 * memory for a longer time.
240 * The talloc_steal() function returns the pointer that you pass it. It
241 * does not have any failure modes.
243 * NOTE: It is possible to produce loops in the parent/child relationship
244 * if you are not careful with talloc_steal(). No guarantees are provided
245 * as to your sanity or the safety of your data if you do this.
247 * To make the changed hierarchy less error-prone, you might consider to use
250 * talloc_steal (ctx, NULL) will return NULL with no sideeffects.
253 /* try to make talloc_set_destructor() and talloc_steal() type safe,
254 if we have a recent gcc */
256 #define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
257 #define talloc_set_destructor(ptr, function) \
259 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
260 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
262 /* this extremely strange macro is to avoid some braindamaged warning
263 stupidity in gcc 4.1.x */
264 #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr)); __talloc_steal_ret; })
266 #define talloc_set_destructor(ptr, function) \
267 _talloc_set_destructor((ptr), (int (*)(void *))(function))
268 #define _TALLOC_TYPEOF(ptr) void *
269 #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr))
273 * \def talloc_reference(ctx, ptr)
274 * \brief Create an additional talloc parent to a pointer
275 * \param ctx The additional parent
276 * \param ptr The pointer you want to create an additional parent for
278 * \ingroup talloc_ref
280 * The talloc_reference() function makes "context" an additional parent of
283 * The return value of talloc_reference() is always the original pointer
284 * "ptr", unless talloc ran out of memory in creating the reference in which
285 * case it will return NULL (each additional reference consumes around 48
286 * bytes of memory on intel x86 platforms).
288 * If "ptr" is NULL, then the function is a no-op, and simply returns NULL.
290 * After creating a reference you can free it in one of the following ways:
292 * - you can talloc_free() any parent of the original pointer. That
293 * will reduce the number of parents of this pointer by 1, and will
294 * cause this pointer to be freed if it runs out of parents.
296 * - you can talloc_free() the pointer itself. That will destroy the
297 * most recently established parent to the pointer and leave the
298 * pointer as a child of its current parent.
300 * For more control on which parent to remove, see talloc_unlink()
302 #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference((ctx),(ptr))
306 * \def talloc_move(ctx, ptr)
307 * \brief Change a talloc chunk's parent
308 * \param ctx The new parent context
309 * \param ptr Pointer to the talloc chunk to move
311 * \ingroup talloc_basic
313 * talloc_move() has the same effect as talloc_steal(), and additionally sets
314 * the source pointer to NULL. You would use it like this:
317 * struct foo *X = talloc(tmp_ctx, struct foo);
319 * Y = talloc_move(new_ctx, &X);
322 #define talloc_move(ctx, ptr) (_TALLOC_TYPEOF(*(ptr)))_talloc_move((ctx),(void *)(ptr))
324 /* useful macros for creating type checked pointers */
327 * \def talloc(ctx, type)
328 * \brief Main entry point to allocate structures
329 * \param ctx The talloc context to hang the result off
330 * \param type The type that we want to allocate
331 * \return Pointer to a piece of memory, properly cast to "type *"
332 * \ingroup talloc_basic
334 * The talloc() macro is the core of the talloc library. It takes a memory
335 * context and a type, and returns a pointer to a new area of memory of the
338 * The returned pointer is itself a talloc context, so you can use it as the
339 * context argument to more calls to talloc if you wish.
341 * The returned pointer is a "child" of the supplied context. This means that
342 * if you talloc_free() the context then the new child disappears as
343 * well. Alternatively you can free just the child.
345 * The context argument to talloc() can be NULL, in which case a new top
346 * level context is created.
348 #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
351 * \def talloc_size(ctx, size)
352 * \brief Untyped allocation
353 * \param ctx The talloc context to hang the result off
354 * \param size Number of char's that you want to allocate
355 * \return The allocated memory chunk
356 * \ingroup talloc_basic
358 * The function talloc_size() should be used when you don't have a convenient
359 * type to pass to talloc(). Unlike talloc(), it is not type safe (as it
360 * returns a void *), so you are on your own for type checking.
362 #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
365 * \def talloc_ptrtype(ctx, ptr)
366 * \brief Allocate into a typed pointer
367 * \param ctx The talloc context to hang the result off
368 * \param ptr The pointer you want to assign the result to
369 * \result The allocated memory chunk, properly cast
370 * \ingroup talloc_basic
372 * The talloc_ptrtype() macro should be used when you have a pointer and
373 * want to allocate memory to point at with this pointer. When compiling
374 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
375 * and talloc_get_name() will return the current location in the source file.
378 #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
381 * \def talloc_new(ctx)
382 * \brief Allocate a new 0-sized talloc chunk
383 * \param ctx The talloc parent context
384 * \return A new talloc chunk
385 * \ingroup talloc_basic
387 * This is a utility macro that creates a new memory context hanging off an
388 * exiting context, automatically naming it "talloc_new: __location__" where
389 * __location__ is the source line it is called from. It is particularly
390 * useful for creating a new temporary working context.
392 #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
395 * \def talloc_zero(ctx, type)
396 * \brief Allocate a 0-initizialized structure
397 * \param ctx The talloc context to hang the result off
398 * \param type The type that we want to allocate
399 * \return Pointer to a piece of memory, properly cast to "type *"
400 * \ingroup talloc_basic
402 * The talloc_zero() macro is equivalent to:
405 * ptr = talloc(ctx, type);
406 * if (ptr) memset(ptr, 0, sizeof(type));
409 #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
412 * \def talloc_zero_size(ctx, size)
413 * \brief Untyped, 0-initialized allocation
414 * \param ctx The talloc context to hang the result off
415 * \param size Number of char's that you want to allocate
416 * \return The allocated memory chunk
417 * \ingroup talloc_basic
419 * The talloc_zero_size() macro is equivalent to:
422 * ptr = talloc_size(ctx, size);
423 * if (ptr) memset(ptr, 0, size);
427 #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
429 #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
432 * \def talloc_array(ctx, type, count)
433 * \brief Allocate an array
434 * \param ctx The talloc context to hang the result off
435 * \param type The type that we want to allocate
436 * \param count The number of "type" elements you want to allocate
437 * \return The allocated result, properly cast to "type *"
438 * \ingroup talloc_array
440 * The talloc_array() macro is equivalent to::
443 * (type *)talloc_size(ctx, sizeof(type) * count);
446 * except that it provides integer overflow protection for the multiply,
447 * returning NULL if the multiply overflows.
449 #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
452 * \def talloc_array_size(ctx, size, count)
453 * \brief Allocate an array
454 * \param ctx The talloc context to hang the result off
455 * \param size The size of an array element
456 * \param count The number of "type" elements you want to allocate
457 * \return The allocated result, properly cast to "type *"
458 * \ingroup talloc_array
460 * The talloc_array_size() function is useful when the type is not
461 * known. It operates in the same way as talloc_array(), but takes a size
464 #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
467 * \def talloc_array_ptrtype(ctx, ptr, count)
468 * \brief Allocate an array into a typed pointer
469 * \param ctx The talloc context to hang the result off
470 * \param ptr The pointer you want to assign the result to
471 * \param count The number of elements you want to allocate
472 * \result The allocated memory chunk, properly cast
473 * \ingroup talloc_array
475 * The talloc_array_ptrtype() macro should be used when you have a pointer to
476 * an array and want to allocate memory of an array to point at with this
477 * pointer. When compiling with gcc >= 3 it is typesafe. Note this is a
478 * wrapper of talloc_array_size() and talloc_get_name() will return the
479 * current location in the source file. and not the type.
481 #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
484 * \def talloc_array_length(ctx)
485 * \brief Return the number of elements in a talloc'ed array
486 * \param ctx The talloc'ed array
487 * \return The number of elements in ctx
488 * \ingroup talloc_array
490 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
491 * necessary to store the number of elements explicitly.
493 #define talloc_array_length(ctx) ((ctx) ? talloc_get_size(ctx)/sizeof(*ctx) : 0)
496 * \def talloc_realloc(ctx, p, type, count)
497 * \brief Change the size of a talloc array
498 * \param ctx The parent context used if "p" is NULL
499 * \param p The chunk to be resized
500 * \param type The type of the array element inside p
501 * \param count The intended number of array elements
502 * \return The new array
503 * \ingroup talloc_array
505 * The talloc_realloc() macro changes the size of a talloc
506 * pointer. The "count" argument is the number of elements of type "type"
507 * that you want the resulting pointer to hold.
509 * talloc_realloc() has the following equivalences::
512 * talloc_realloc(context, NULL, type, 1) ==> talloc(context, type);
513 * talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N);
514 * talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr);
517 * The "context" argument is only used if "ptr" is NULL, otherwise it is
520 * talloc_realloc() returns the new pointer, or NULL on failure. The call
521 * will fail either due to a lack of memory, or because the pointer has
522 * more than one parent (see talloc_reference()).
524 #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
527 * \def talloc_realloc_size(ctx, ptr, size)
528 * \brief Untyped realloc
529 * \param ctx The parent context used if "ptr" is NULL
530 * \param ptr The chunk to be resized
531 * \param size The new chunk size
532 * \return The new chunk
533 * \ingroup talloc_array
535 * The talloc_realloc_size() function is useful when the type is not known so
536 * the typesafe talloc_realloc() cannot be used.
538 #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
541 * \def talloc_memdup(t, p, size)
542 * \brief Duplicate a memory area into a talloc chunk
543 * \param t The talloc context to hang the result off
544 * \param p The memory chunk you want to duplicate
545 * \param size Number of char's that you want copy
546 * \return The allocated memory chunk
547 * \ingroup talloc_basic
549 * The talloc_memdup() function is equivalent to::
552 * ptr = talloc_size(ctx, size);
553 * if (ptr) memcpy(ptr, p, size);
556 #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
559 * \def talloc_set_type(ptr, type)
560 * \brief Assign a type to a talloc chunk
561 * \param ptr The talloc chunk to assign the type to
562 * \param type The type to assign
563 * \ingroup talloc_basic
565 * This macro allows you to force the name of a pointer to be a
566 * particular type. This can be used in conjunction with
567 * talloc_get_type() to do type checking on void* pointers.
569 * It is equivalent to this::
572 * talloc_set_name_const(ptr, #type)
575 #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
578 * \def talloc_get_type(ptr, type)
579 * \brief Get a typed pointer out of a talloc pointer
580 * \param ptr The talloc pointer to check
581 * \param type The type to check against
582 * \return ptr, properly cast, or NULL
583 * \ingroup talloc_basic
585 * This macro allows you to do type checking on talloc pointers. It is
586 * particularly useful for void* private pointers. It is equivalent to
590 * (type *)talloc_check_name(ptr, #type)
594 #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
597 * \def talloc_get_type_abort(ptr, type)
598 * \brief Helper macro to safely turn a void * into a typed pointer
599 * \param ptr The void * to convert
600 * \param type The type that this chunk contains
601 * \return Same value as ptr, type-checked and properly cast
602 * \ingroup talloc_basic
604 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
605 * assing the talloc chunk pointer to some void * variable,
606 * talloc_get_type_abort() is the recommended way to get the convert the void
607 * pointer back to a typed pointer.
609 #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
612 * \def talloc_find_parent_bytype(ptr, type)
613 * \brief Find a parent context by type
614 * \param ptr The talloc chunk to start from
615 * \param type The type of the parent to look for
616 * \ingroup talloc_basic
618 * Find a parent memory context of the current context that has the given
619 * name. This can be very useful in complex programs where it may be
620 * difficult to pass all information down to the level you need, but you
621 * know the structure you want is a parent of another context.
623 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
625 #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
627 #if TALLOC_DEPRECATED
628 #define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
629 #define talloc_p(ctx, type) talloc(ctx, type)
630 #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
631 #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
632 #define talloc_destroy(ctx) talloc_free(ctx)
633 #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
636 #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0)
639 * \brief Allocate untyped, unnamed memory
640 * \param context The talloc context to hang the result off
641 * \param size Number of char's that you want to allocate
642 * \return The allocated memory chunk
643 * \ingroup talloc_internal
645 * Essentially the same as talloc_size() without setting the chunk name to the
646 * current file/line number.
648 void *_talloc(const void *context
, size_t size
);
651 * \brief Allocate a talloc pool
652 * \param context The talloc context to hang the result off
653 * \param size Size of the talloc pool
654 * \result The talloc pool
655 * \ingroup talloc_basic
657 * A talloc pool is a pure optimization for specific situations. In the
658 * release process for Samba 3.2 we found out that we had become considerably
659 * slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
660 * consumer in benchmarks. For Samba 3.2 we have internally converted many
661 * static buffers to dynamically allocated ones, so malloc(3) being beaten
662 * more was no surprise. But it made us slower.
664 * talloc_pool() is an optimization to call malloc(3) a lot less for the use
665 * pattern Samba has: The SMB protocol is mainly a request/response protocol
666 * where we have to allocate a certain amount of memory per request and free
667 * that after the SMB reply is sent to the client.
669 * talloc_pool() creates a talloc chunk that you can use as a talloc parent
670 * exactly as you would use any other ::TALLOC_CTX. The difference is that
671 * when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
672 * just increments a pointer inside the talloc_pool. This also works
673 * recursively. If you use the child of the talloc pool as a parent for
674 * grand-children, their memory is also taken from the talloc pool.
676 * If you talloc_free() children of a talloc pool, the memory is not given
677 * back to the system. Instead, free(3) is only called if the talloc_pool()
678 * itself is released with talloc_free().
680 * The downside of a talloc pool is that if you talloc_move() a child of a
681 * talloc pool to a talloc parent outside the pool, the whole pool memory is
682 * not free(3)'ed until that moved chunk is also talloc_free()ed.
684 void *talloc_pool(const void *context
, size_t size
);
685 void _talloc_set_destructor(const void *ptr
, int (*destructor
)(void *));
688 * \brief Increase the reference count of a talloc chunk
691 * \ingroup talloc_ref
693 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
696 * talloc_reference(NULL, ptr);
699 * You can use either syntax, depending on which you think is clearer in
702 * It returns 0 on success and -1 on failure.
704 int talloc_increase_ref_count(const void *ptr
);
707 * \brief Return the number of references to a talloc chunk
708 * \param ptr The chunk you are interested in
709 * \return Number of refs
710 * \ingroup talloc_ref
712 size_t talloc_reference_count(const void *ptr
);
713 void *_talloc_reference(const void *context
, const void *ptr
);
716 * \brief Remove a specific parent from a talloc chunk
717 * \param context The talloc parent to remove
718 * \param ptr The talloc ptr you want to remove the parent from
719 * \ingroup talloc_ref
721 * The talloc_unlink() function removes a specific parent from ptr. The
722 * context passed must either be a context used in talloc_reference() with
723 * this pointer, or must be a direct parent of ptr.
725 * Note that if the parent has already been removed using talloc_free() then
726 * this function will fail and will return -1. Likewise, if "ptr" is NULL,
727 * then the function will make no modifications and return -1.
729 * Usually you can just use talloc_free() instead of talloc_unlink(), but
730 * sometimes it is useful to have the additional control on which parent is
733 int talloc_unlink(const void *context
, void *ptr
);
736 * \brief Assign a name to a talloc chunk
737 * \param ptr The talloc chunk to assign a name to
738 * \param fmt Format string for the name
739 * \param ... printf-style additional arguments
740 * \return The assigned name
741 * \ingroup talloc_basic
743 * Each talloc pointer has a "name". The name is used principally for
744 * debugging purposes, although it is also possible to set and get the name on
745 * a pointer in as a way of "marking" pointers in your code.
747 * The main use for names on pointer is for "talloc reports". See
748 * talloc_report() and talloc_report_full() for details. Also see
749 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
751 * The talloc_set_name() function allocates memory as a child of the
752 * pointer. It is logically equivalent to:
755 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
758 * Note that multiple calls to talloc_set_name() will allocate more memory
759 * without releasing the name. All of the memory is released when the ptr is
760 * freed using talloc_free().
762 const char *talloc_set_name(const void *ptr
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
765 * \brief Assign a name to a talloc chunk
766 * \param ptr The talloc chunk to assign a name to
767 * \param name Format string for the name
768 * \ingroup talloc_basic
770 * The function talloc_set_name_const() is just like talloc_set_name(), but it
771 * takes a string constant, and is much faster. It is extensively used by the
772 * "auto naming" macros, such as talloc_p().
774 * This function does not allocate any memory. It just copies the supplied
775 * pointer into the internal representation of the talloc ptr. This means you
776 * must not pass a name pointer to memory that will disappear before the ptr
777 * is freed with talloc_free().
779 void talloc_set_name_const(const void *ptr
, const char *name
);
782 * \brief Create a named talloc chunk
783 * \param context The talloc context to hang the result off
784 * \param size Number of char's that you want to allocate
785 * \param fmt Format string for the name
786 * \param ... printf-style additional arguments
787 * \return The allocated memory chunk
788 * \ingroup talloc_basic
790 * The talloc_named() function creates a named talloc pointer. It is
794 * ptr = talloc_size(context, size);
795 * talloc_set_name(ptr, fmt, ....);
799 void *talloc_named(const void *context
, size_t size
,
800 const char *fmt
, ...) PRINTF_ATTRIBUTE(3,4);
803 * \brief Basic routine to allocate a chunk of memory
804 * \param context The parent context
805 * \param size The number of char's that we want to allocate
806 * \param name The name the talloc block has
807 * \return The allocated chunk
808 * \ingroup talloc_basic
810 * This is equivalent to:
813 * ptr = talloc_size(context, size);
814 * talloc_set_name_const(ptr, name);
817 void *talloc_named_const(const void *context
, size_t size
, const char *name
);
820 * \brief Return the name of a talloc chunk
821 * \param ptr The talloc chunk
823 * \ingroup talloc_basic
825 * This returns the current name for the given talloc pointer. See
826 * talloc_set_name() for details.
828 const char *talloc_get_name(const void *ptr
);
831 * \brief Verify that a talloc chunk carries a specified name
832 * \param ptr The talloc chunk to check
833 * \param name The name to check agains
834 * \ingroup talloc_basic
836 * This function checks if a pointer has the specified name. If it does
837 * then the pointer is returned. It it doesn't then NULL is returned.
839 void *talloc_check_name(const void *ptr
, const char *name
);
841 void *_talloc_get_type_abort(const void *ptr
, const char *name
, const char *location
);
842 void *talloc_parent(const void *ptr
);
843 const char *talloc_parent_name(const void *ptr
);
846 * \brief Create a new top level talloc context
847 * \param fmt Format string for the name
848 * \param ... printf-style additional arguments
849 * \return The allocated memory chunk
850 * \ingroup talloc_basic
852 * This function creates a zero length named talloc context as a top level
853 * context. It is equivalent to:
856 * talloc_named(NULL, 0, fmt, ...);
859 void *talloc_init(const char *fmt
, ...) PRINTF_ATTRIBUTE(1,2);
862 * \brief Free a chunk of talloc memory
863 * \param ptr The chunk to be freed
865 * \ingroup talloc_basic
867 * The talloc_free() function frees a piece of talloc memory, and all its
868 * children. You can call talloc_free() on any pointer returned by talloc().
870 * The return value of talloc_free() indicates success or failure, with 0
871 * returned for success and -1 for failure. The only possible failure
872 * condition is if the pointer had a destructor attached to it and the
873 * destructor returned -1. See talloc_set_destructor() for details on
876 * If this pointer has an additional parent when talloc_free() is called
877 * then the memory is not actually released, but instead the most
878 * recently established parent is destroyed. See talloc_reference() for
879 * details on establishing additional parents.
881 * For more control on which parent is removed, see talloc_unlink()
883 * talloc_free() operates recursively on its children.
885 int talloc_free(void *ptr
);
888 * \brief Free a talloc chunk's children
889 * \param ptr The chunk that you want to free the children of
891 * \ingroup talloc_basic
893 * The talloc_free_children() walks along the list of all children of a talloc
894 * context and talloc_free()s only the children, not the context itself.
896 void talloc_free_children(void *ptr
);
897 void *_talloc_realloc(const void *context
, void *ptr
, size_t size
, const char *name
);
898 void *_talloc_steal(const void *new_ctx
, const void *ptr
);
899 void *_talloc_move(const void *new_ctx
, const void *pptr
);
902 * \brief Return the total size of a talloc chunk including its children
903 * \param ptr The talloc chunk
904 * \return The total size
905 * \ingroup talloc_basic
907 * The talloc_total_size() function returns the total size in bytes used
908 * by this pointer and all child pointers. Mostly useful for debugging.
910 * Passing NULL is allowed, but it will only give a meaningful result if
911 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
914 size_t talloc_total_size(const void *ptr
);
917 * \brief Return the number of talloc chunks hanging off a chunk
918 * \param ptr The talloc chunk
919 * \return The total size
920 * \ingroup talloc_basic
922 * The talloc_total_blocks() function returns the total memory block
923 * count used by this pointer and all child pointers. Mostly useful for
926 * Passing NULL is allowed, but it will only give a meaningful result if
927 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
930 size_t talloc_total_blocks(const void *ptr
);
933 * \brief Walk a complete talloc hierarchy
934 * \param ptr The talloc chunk
935 * \param depth Internal parameter to control recursion. Call with 0.
936 * \param max_depth Maximum recursion level.
937 * \param callback Function to be called on every chunk
938 * \param private_data Private pointer passed to callback
939 * \ingroup talloc_debug
941 * This provides a more flexible reports than talloc_report(). It
942 * will recursively call the callback for the entire tree of memory
943 * referenced by the pointer. References in the tree are passed with
944 * is_ref = 1 and the pointer that is referenced.
946 * You can pass NULL for the pointer, in which case a report is
947 * printed for the top level memory context, but only if
948 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
951 * The recursion is stopped when depth >= max_depth.
952 * max_depth = -1 means only stop at leaf nodes.
954 void talloc_report_depth_cb(const void *ptr
, int depth
, int max_depth
,
955 void (*callback
)(const void *ptr
,
956 int depth
, int max_depth
,
962 * \brief Print a talloc hierarchy
963 * \param ptr The talloc chunk
964 * \param depth Internal parameter to control recursion. Call with 0.
965 * \param max_depth Maximum recursion level.
966 * \param f The file handle to print to
967 * \ingroup talloc_debug
969 * This provides a more flexible reports than talloc_report(). It
970 * will let you specify the depth and max_depth.
972 void talloc_report_depth_file(const void *ptr
, int depth
, int max_depth
, FILE *f
);
975 * \brief Print a summary report of all memory used by ptr
976 * \param ptr The talloc chunk
977 * \param f The file handle to print to
978 * \ingroup talloc_debug
980 * This provides a more detailed report than talloc_report(). It will
981 * recursively print the ensire tree of memory referenced by the
982 * pointer. References in the tree are shown by giving the name of the
983 * pointer that is referenced.
985 * You can pass NULL for the pointer, in which case a report is printed
986 * for the top level memory context, but only if
987 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
990 void talloc_report_full(const void *ptr
, FILE *f
);
993 * \brief Print a summary report of all memory used by ptr
994 * \param ptr The talloc chunk
995 * \param f The file handle to print to
996 * \ingroup talloc_debug
998 * The talloc_report() function prints a summary report of all memory
999 * used by ptr. One line of report is printed for each immediate child of
1000 * ptr, showing the total memory and number of blocks used by that child.
1002 * You can pass NULL for the pointer, in which case a report is printed
1003 * for the top level memory context, but only if
1004 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1007 void talloc_report(const void *ptr
, FILE *f
);
1010 * \brief Enable tracking the use of NULL memory contexts
1011 * \ingroup talloc_debug
1013 * This enables tracking of the NULL memory context without enabling leak
1014 * reporting on exit. Useful for when you want to do your own leak
1015 * reporting call via talloc_report_null_full();
1017 void talloc_enable_null_tracking(void);
1020 * \brief Disable tracking of the NULL memory context
1021 * \ingroup talloc_debug
1023 * This disables tracking of the NULL memory context.
1026 void talloc_disable_null_tracking(void);
1029 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
1030 * \ingroup talloc_debug
1032 * This enables calling of talloc_report(NULL, stderr) when the program
1033 * exits. In Samba4 this is enabled by using the --leak-report command
1036 * For it to be useful, this function must be called before any other
1037 * talloc function as it establishes a "null context" that acts as the
1038 * top of the tree. If you don't call this function first then passing
1039 * NULL to talloc_report() or talloc_report_full() won't give you the
1040 * full tree printout.
1042 * Here is a typical talloc report:
1045 talloc report on 'null_context' (total 267 bytes in 15 blocks)
1046 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1047 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1048 iconv(UTF8,CP850) contains 42 bytes in 2 blocks
1049 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1050 iconv(CP850,UTF8) contains 42 bytes in 2 blocks
1051 iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
1052 iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
1055 void talloc_enable_leak_report(void);
1058 * \brief Enable calling of talloc_report(NULL, stderr) when a program exits
1059 * \ingroup talloc_debug
1061 * This enables calling of talloc_report_full(NULL, stderr) when the
1062 * program exits. In Samba4 this is enabled by using the
1063 * --leak-report-full command line option.
1065 * For it to be useful, this function must be called before any other
1066 * talloc function as it establishes a "null context" that acts as the
1067 * top of the tree. If you don't call this function first then passing
1068 * NULL to talloc_report() or talloc_report_full() won't give you the
1069 * full tree printout.
1071 * Here is a typical full report:
1073 full talloc report on 'root' (total 18 bytes in 8 blocks)
1074 p1 contains 18 bytes in 7 blocks (ref 0)
1075 r1 contains 13 bytes in 2 blocks (ref 0)
1077 p2 contains 1 bytes in 1 blocks (ref 1)
1078 x3 contains 1 bytes in 1 blocks (ref 0)
1079 x2 contains 1 bytes in 1 blocks (ref 0)
1080 x1 contains 1 bytes in 1 blocks (ref 0)
1083 void talloc_enable_leak_report_full(void);
1084 void *_talloc_zero(const void *ctx
, size_t size
, const char *name
);
1085 void *_talloc_memdup(const void *t
, const void *p
, size_t size
, const char *name
);
1086 void *_talloc_array(const void *ctx
, size_t el_size
, unsigned count
, const char *name
);
1087 void *_talloc_zero_array(const void *ctx
, size_t el_size
, unsigned count
, const char *name
);
1088 void *_talloc_realloc_array(const void *ctx
, void *ptr
, size_t el_size
, unsigned count
, const char *name
);
1091 * \brief Provide a function version of talloc_realloc_size
1092 * \param context The parent context used if "ptr" is NULL
1093 * \param ptr The chunk to be resized
1094 * \param size The new chunk size
1095 * \return The new chunk
1096 * \ingroup talloc_array
1098 * This is a non-macro version of talloc_realloc(), which is useful as
1099 * libraries sometimes want a ralloc function pointer. A realloc()
1100 * implementation encapsulates the functionality of malloc(), free() and
1101 * realloc() in one call, which is why it is useful to be able to pass around
1102 * a single function pointer.
1104 void *talloc_realloc_fn(const void *context
, void *ptr
, size_t size
);
1107 * \brief Provide a talloc context that is freed at program exit
1108 * \return A talloc context
1109 * \ingroup talloc_basic
1111 * This is a handy utility function that returns a talloc context
1112 * which will be automatically freed on program exit. This can be used
1113 * to reduce the noise in memory leak reports.
1115 void *talloc_autofree_context(void);
1118 * \brief Get the size of a talloc chunk
1119 * \param ctx The talloc chunk
1121 * \ingroup talloc_basic
1123 * This function lets you know the amount of memory alloced so far by
1124 * this context. It does NOT account for subcontext memory.
1125 * This can be used to calculate the size of an array.
1127 size_t talloc_get_size(const void *ctx
);
1130 * \brief Find a parent context by name
1131 * \param ctx The talloc chunk to start from
1132 * \param name The name of the parent we look for
1133 * \ingroup talloc_basic
1135 * Find a parent memory context of the current context that has the given
1136 * name. This can be very useful in complex programs where it may be
1137 * difficult to pass all information down to the level you need, but you
1138 * know the structure you want is a parent of another context.
1140 void *talloc_find_parent_byname(const void *ctx
, const char *name
);
1141 void talloc_show_parents(const void *context
, FILE *file
);
1142 int talloc_is_parent(const void *context
, const void *ptr
);
1145 * \brief Duplicate a string into a talloc chunk
1146 * \param t The talloc context to hang the result off
1147 * \param p The string you want to duplicate
1148 * \return The duplicated string
1149 * \ingroup talloc_string
1151 * The talloc_strdup() function is equivalent to:
1154 * ptr = talloc_size(ctx, strlen(p)+1);
1155 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1158 * This functions sets the name of the new pointer to the passed
1159 * string. This is equivalent to:
1162 * talloc_set_name_const(ptr, ptr)
1165 char *talloc_strdup(const void *t
, const char *p
);
1166 char *talloc_strdup_append(char *s
, const char *a
);
1167 char *talloc_strdup_append_buffer(char *s
, const char *a
);
1170 * \brief Duplicate a length-limited string into a talloc chunk
1171 * \param t The talloc context to hang the result off
1172 * \param p The string you want to duplicate
1173 * \param n The maximum string length to duplicate
1174 * \return The duplicated string
1175 * \ingroup talloc_string
1177 * The talloc_strndup() function is the talloc equivalent of the C
1178 * library function strndup()
1180 * This functions sets the name of the new pointer to the passed
1181 * string. This is equivalent to:
1184 * talloc_set_name_const(ptr, ptr)
1187 char *talloc_strndup(const void *t
, const char *p
, size_t n
);
1188 char *talloc_strndup_append(char *s
, const char *a
, size_t n
);
1189 char *talloc_strndup_append_buffer(char *s
, const char *a
, size_t n
);
1192 * \brief Format a string given a va_list
1193 * \param t The talloc context to hang the result off
1194 * \param fmt The format string
1195 * \param ap The parameters used to fill fmt
1196 * \return The formatted string
1197 * \ingroup talloc_string
1199 * The talloc_vasprintf() function is the talloc equivalent of the C
1200 * library function vasprintf()
1202 * This functions sets the name of the new pointer to the new
1203 * string. This is equivalent to:
1206 * talloc_set_name_const(ptr, ptr)
1209 char *talloc_vasprintf(const void *t
, const char *fmt
, va_list ap
) PRINTF_ATTRIBUTE(2,0);
1210 char *talloc_vasprintf_append(char *s
, const char *fmt
, va_list ap
) PRINTF_ATTRIBUTE(2,0);
1211 char *talloc_vasprintf_append_buffer(char *s
, const char *fmt
, va_list ap
) PRINTF_ATTRIBUTE(2,0);
1214 * \brief Format a string
1215 * \param t The talloc context to hang the result off
1216 * \param fmt The format string
1217 * \param ... The parameters used to fill fmt
1218 * \return The formatted string
1219 * \ingroup talloc_string
1221 * The talloc_asprintf() function is the talloc equivalent of the C
1222 * library function asprintf()
1224 * This functions sets the name of the new pointer to the new
1225 * string. This is equivalent to:
1228 * talloc_set_name_const(ptr, ptr)
1231 char *talloc_asprintf(const void *t
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
1234 * \brief Append a formatted string to another string
1235 * \param s The string to append to
1236 * \param fmt The format string
1237 * \param ... The parameters used to fill fmt
1238 * \return The formatted string
1239 * \ingroup talloc_string
1241 * The talloc_asprintf_append() function appends the given formatted string to
1242 * the given string. Use this varient when the string in the current talloc
1243 * buffer may have been truncated in length.
1245 * This functions sets the name of the new pointer to the new
1246 * string. This is equivalent to:
1249 * talloc_set_name_const(ptr, ptr)
1252 char *talloc_asprintf_append(char *s
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
1255 * \brief Append a formatted string to another string
1256 * \param s The string to append to
1257 * \param fmt The format string
1258 * \param ... The parameters used to fill fmt
1259 * \return The formatted string
1260 * \ingroup talloc_string
1262 * The talloc_asprintf_append() function appends the given formatted string to
1263 * the end of the currently allocated talloc buffer. This routine should be
1264 * used if you create a large string step by step. talloc_asprintf() or
1265 * talloc_asprintf_append() call strlen() at every
1266 * step. talloc_asprintf_append_buffer() uses the existing buffer size of the
1267 * talloc chunk to calculate where to append the string.
1269 * This functions sets the name of the new pointer to the new
1270 * string. This is equivalent to:
1273 * talloc_set_name_const(ptr, ptr)
1276 char *talloc_asprintf_append_buffer(char *s
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
1278 void talloc_set_abort_fn(void (*abort_fn
)(const char *reason
));