4 Unix SMB/CIFS implementation.
5 Samba temporary memory allocation functions
7 Copyright (C) Andrew Tridgell 2004-2005
8 Copyright (C) Stefan Metzmacher 2006
10 ** NOTE! The following LGPL license applies to the talloc
11 ** library. This does NOT imply that all of Samba is released
14 This library is free software; you can redistribute it and/or
15 modify it under the terms of the GNU Lesser General Public
16 License as published by the Free Software Foundation; either
17 version 3 of the License, or (at your option) any later version.
19 This library is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 Lesser General Public License for more details.
24 You should have received a copy of the GNU Lesser General Public
25 License along with this library; if not, see <http://www.gnu.org/licenses/>.
37 * @defgroup talloc The talloc API
39 * talloc is a hierarchical, reference counted memory pool system with
40 * destructors. It is the core memory allocator used in Samba.
45 #define TALLOC_VERSION_MAJOR 2
46 #define TALLOC_VERSION_MINOR 1
48 int talloc_version_major(void);
49 int talloc_version_minor(void);
50 /* This is mostly useful only for testing */
51 int talloc_test_get_magic(void);
54 * @brief Define a talloc parent type
56 * As talloc is a hierarchial memory allocator, every talloc chunk is a
57 * potential parent to other talloc chunks. So defining a separate type for a
58 * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless,
59 * as it provides an indicator for function arguments. You will frequently
63 * struct foo *foo_create(TALLOC_CTX *mem_ctx)
66 * result = talloc(mem_ctx, struct foo);
67 * if (result == NULL) return NULL;
68 * ... initialize foo ...
73 * In this type of allocating functions it is handy to have a general
74 * TALLOC_CTX type to indicate which parent to put allocated structures on.
76 typedef void TALLOC_CTX
;
79 this uses a little trick to allow __LINE__ to be stringified
82 #define __TALLOC_STRING_LINE1__(s) #s
83 #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s)
84 #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__)
85 #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__
88 #ifndef TALLOC_DEPRECATED
89 #define TALLOC_DEPRECATED 0
92 #ifndef PRINTF_ATTRIBUTE
94 /** Use gcc attribute to check printf fns. a1 is the 1-based index of
95 * the parameter containing the format, and a2 the index of the first
96 * argument. Note that some gcc 2.x versions don't handle this
98 #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2)))
100 #define PRINTF_ATTRIBUTE(a1, a2)
105 #ifdef HAVE___ATTRIBUTE__
106 #define _DEPRECATED_ __attribute__ ((deprecated))
114 * @brief Create a new talloc context.
116 * The talloc() macro is the core of the talloc library. It takes a memory
117 * context and a type, and returns a pointer to a new area of memory of the
120 * The returned pointer is itself a talloc context, so you can use it as the
121 * context argument to more calls to talloc if you wish.
123 * The returned pointer is a "child" of the supplied context. This means that if
124 * you talloc_free() the context then the new child disappears as well.
125 * Alternatively you can free just the child.
127 * @param[in] ctx A talloc context to create a new reference on or NULL to
128 * create a new top level context.
130 * @param[in] type The type of memory to allocate.
132 * @return A type casted talloc context or NULL on error.
135 * unsigned int *a, *b;
137 * a = talloc(NULL, unsigned int);
138 * b = talloc(a, unsigned int);
146 void *talloc(const void *ctx
, #type);
148 #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type)
149 void *_talloc(const void *context
, size_t size
);
153 * @brief Create a new top level talloc context.
155 * This function creates a zero length named talloc context as a top level
156 * context. It is equivalent to:
159 * talloc_named(NULL, 0, fmt, ...);
161 * @param[in] fmt Format string for the name.
163 * @param[in] ... Additional printf-style arguments.
165 * @return The allocated memory chunk, NULL on error.
167 * @see talloc_named()
169 void *talloc_init(const char *fmt
, ...) PRINTF_ATTRIBUTE(1,2);
173 * @brief Free a chunk of talloc memory.
175 * The talloc_free() function frees a piece of talloc memory, and all its
176 * children. You can call talloc_free() on any pointer returned by
179 * The return value of talloc_free() indicates success or failure, with 0
180 * returned for success and -1 for failure. A possible failure condition
181 * is if the pointer had a destructor attached to it and the destructor
182 * returned -1. See talloc_set_destructor() for details on
183 * destructors. Likewise, if "ptr" is NULL, then the function will make
184 * no modifications and return -1.
186 * From version 2.0 and onwards, as a special case, talloc_free() is
187 * refused on pointers that have more than one parent associated, as talloc
188 * would have no way of knowing which parent should be removed. This is
189 * different from older versions in the sense that always the reference to
190 * the most recently established parent has been destroyed. Hence to free a
191 * pointer that has more than one parent please use talloc_unlink().
193 * To help you find problems in your code caused by this behaviour, if
194 * you do try and free a pointer with more than one parent then the
195 * talloc logging function will be called to give output like this:
198 * ERROR: talloc_free with references at some_dir/source/foo.c:123
199 * reference at some_dir/source/other.c:325
200 * reference at some_dir/source/third.c:121
203 * Please see the documentation for talloc_set_log_fn() and
204 * talloc_set_log_stderr() for more information on talloc logging
207 * If <code>TALLOC_FREE_FILL</code> environment variable is set,
208 * the memory occupied by the context is filled with the value of this variable.
209 * The value should be a numeric representation of the character you want to
212 * talloc_free() operates recursively on its children.
214 * @param[in] ptr The chunk to be freed.
216 * @return Returns 0 on success and -1 on error. A possible
217 * failure condition is if the pointer had a destructor
218 * attached to it and the destructor returned -1. Likewise,
219 * if "ptr" is NULL, then the function will make no
220 * modifications and returns -1.
224 * unsigned int *a, *b;
225 * a = talloc(NULL, unsigned int);
226 * b = talloc(a, unsigned int);
228 * talloc_free(a); // Frees a and b
231 * @see talloc_set_destructor()
232 * @see talloc_unlink()
234 int talloc_free(void *ptr
);
236 #define talloc_free(ctx) _talloc_free(ctx, __location__)
237 int _talloc_free(void *ptr
, const char *location
);
241 * @brief Free a talloc chunk's children.
243 * The function walks along the list of all children of a talloc context and
244 * talloc_free()s only the children, not the context itself.
246 * A NULL argument is handled as no-op.
248 * @param[in] ptr The chunk that you want to free the children of
249 * (NULL is allowed too)
251 void talloc_free_children(void *ptr
);
255 * @brief Assign a destructor function to be called when a chunk is freed.
257 * The function talloc_set_destructor() sets the "destructor" for the pointer
258 * "ptr". A destructor is a function that is called when the memory used by a
259 * pointer is about to be released. The destructor receives the pointer as an
260 * argument, and should return 0 for success and -1 for failure.
262 * The destructor can do anything it wants to, including freeing other pieces
263 * of memory. A common use for destructors is to clean up operating system
264 * resources (such as open file descriptors) contained in the structure the
265 * destructor is placed on.
267 * You can only place one destructor on a pointer. If you need more than one
268 * destructor then you can create a zero-length child of the pointer and place
269 * an additional destructor on that.
271 * To remove a destructor call talloc_set_destructor() with NULL for the
274 * If your destructor attempts to talloc_free() the pointer that it is the
275 * destructor for then talloc_free() will return -1 and the free will be
276 * ignored. This would be a pointless operation anyway, as the destructor is
277 * only called when the memory is just about to go away.
279 * @param[in] ptr The talloc chunk to add a destructor to.
281 * @param[in] destructor The destructor function to be called. NULL to remove
286 * static int destroy_fd(int *fd) {
291 * int *open_file(const char *filename) {
292 * int *fd = talloc(NULL, int);
293 * *fd = open(filename, O_RDONLY);
298 * // Whenever they free this, we close the file.
299 * talloc_set_destructor(fd, destroy_fd);
307 void talloc_set_destructor(const void *ptr
, int (*destructor
)(void *));
310 * @brief Change a talloc chunk's parent.
312 * The talloc_steal() function changes the parent context of a talloc
313 * pointer. It is typically used when the context that the pointer is
314 * currently a child of is going to be freed and you wish to keep the
315 * memory for a longer time.
317 * To make the changed hierarchy less error-prone, you might consider to use
320 * If you try and call talloc_steal() on a pointer that has more than one
321 * parent then the result is ambiguous. Talloc will choose to remove the
322 * parent that is currently indicated by talloc_parent() and replace it with
323 * the chosen parent. You will also get a message like this via the talloc
327 * WARNING: talloc_steal with references at some_dir/source/foo.c:123
328 * reference at some_dir/source/other.c:325
329 * reference at some_dir/source/third.c:121
332 * To unambiguously change the parent of a pointer please see the function
333 * talloc_reparent(). See the talloc_set_log_fn() documentation for more
334 * information on talloc logging.
336 * @param[in] new_ctx The new parent context.
338 * @param[in] ptr The talloc chunk to move.
340 * @return Returns the pointer that you pass it. It does not have
343 * @note It is possible to produce loops in the parent/child relationship
344 * if you are not careful with talloc_steal(). No guarantees are provided
345 * as to your sanity or the safety of your data if you do this.
347 void *talloc_steal(const void *new_ctx
, const void *ptr
);
349 /* try to make talloc_set_destructor() and talloc_steal() type safe,
350 if we have a recent gcc */
352 #define _TALLOC_TYPEOF(ptr) __typeof__(ptr)
353 #define talloc_set_destructor(ptr, function) \
355 int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \
356 _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \
358 /* this extremely strange macro is to avoid some braindamaged warning
359 stupidity in gcc 4.1.x */
360 #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__); __talloc_steal_ret; })
361 #else /* __GNUC__ >= 3 */
362 #define talloc_set_destructor(ptr, function) \
363 _talloc_set_destructor((ptr), (int (*)(void *))(function))
364 #define _TALLOC_TYPEOF(ptr) void *
365 #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal_loc((ctx),(ptr), __location__)
366 #endif /* __GNUC__ >= 3 */
367 void _talloc_set_destructor(const void *ptr
, int (*_destructor
)(void *));
368 void *_talloc_steal_loc(const void *new_ctx
, const void *ptr
, const char *location
);
372 * @brief Assign a name to a talloc chunk.
374 * Each talloc pointer has a "name". The name is used principally for
375 * debugging purposes, although it is also possible to set and get the name on
376 * a pointer in as a way of "marking" pointers in your code.
378 * The main use for names on pointer is for "talloc reports". See
379 * talloc_report() and talloc_report_full() for details. Also see
380 * talloc_enable_leak_report() and talloc_enable_leak_report_full().
382 * The talloc_set_name() function allocates memory as a child of the
383 * pointer. It is logically equivalent to:
386 * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
389 * @param[in] ptr The talloc chunk to assign a name to.
391 * @param[in] fmt Format string for the name.
393 * @param[in] ... Add printf-style additional arguments.
395 * @return The assigned name, NULL on error.
397 * @note Multiple calls to talloc_set_name() will allocate more memory without
398 * releasing the name. All of the memory is released when the ptr is freed
399 * using talloc_free().
401 const char *talloc_set_name(const void *ptr
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
405 * @brief Change a talloc chunk's parent.
407 * This function has the same effect as talloc_steal(), and additionally sets
408 * the source pointer to NULL. You would use it like this:
411 * struct foo *X = talloc(tmp_ctx, struct foo);
413 * Y = talloc_move(new_ctx, &X);
416 * @param[in] new_ctx The new parent context.
418 * @param[in] pptr Pointer to a pointer to the talloc chunk to move.
420 * @return The pointer to the talloc chunk that moved.
421 * It does not have any failure modes.
424 void *talloc_move(const void *new_ctx
, void **pptr
);
426 #define talloc_move(ctx, pptr) (_TALLOC_TYPEOF(*(pptr)))_talloc_move((ctx),(void *)(pptr))
427 void *_talloc_move(const void *new_ctx
, const void *pptr
);
431 * @brief Assign a name to a talloc chunk.
433 * The function is just like talloc_set_name(), but it takes a string constant,
434 * and is much faster. It is extensively used by the "auto naming" macros, such
437 * This function does not allocate any memory. It just copies the supplied
438 * pointer into the internal representation of the talloc ptr. This means you
439 * must not pass a name pointer to memory that will disappear before the ptr
440 * is freed with talloc_free().
442 * @param[in] ptr The talloc chunk to assign a name to.
444 * @param[in] name Format string for the name.
446 void talloc_set_name_const(const void *ptr
, const char *name
);
449 * @brief Create a named talloc chunk.
451 * The talloc_named() function creates a named talloc pointer. It is
455 * ptr = talloc_size(context, size);
456 * talloc_set_name(ptr, fmt, ....);
459 * @param[in] context The talloc context to hang the result off.
461 * @param[in] size Number of char's that you want to allocate.
463 * @param[in] fmt Format string for the name.
465 * @param[in] ... Additional printf-style arguments.
467 * @return The allocated memory chunk, NULL on error.
469 * @see talloc_set_name()
471 void *talloc_named(const void *context
, size_t size
,
472 const char *fmt
, ...) PRINTF_ATTRIBUTE(3,4);
475 * @brief Basic routine to allocate a chunk of memory.
477 * This is equivalent to:
480 * ptr = talloc_size(context, size);
481 * talloc_set_name_const(ptr, name);
484 * @param[in] context The parent context.
486 * @param[in] size The number of char's that we want to allocate.
488 * @param[in] name The name the talloc block has.
490 * @return The allocated memory chunk, NULL on error.
492 void *talloc_named_const(const void *context
, size_t size
, const char *name
);
496 * @brief Untyped allocation.
498 * The function should be used when you don't have a convenient type to pass to
499 * talloc(). Unlike talloc(), it is not type safe (as it returns a void *), so
500 * you are on your own for type checking.
502 * Best to use talloc() or talloc_array() instead.
504 * @param[in] ctx The talloc context to hang the result off.
506 * @param[in] size Number of char's that you want to allocate.
508 * @return The allocated memory chunk, NULL on error.
512 * void *mem = talloc_size(NULL, 100);
515 void *talloc_size(const void *ctx
, size_t size
);
517 #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__)
522 * @brief Allocate into a typed pointer.
524 * The talloc_ptrtype() macro should be used when you have a pointer and want
525 * to allocate memory to point at with this pointer. When compiling with
526 * gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size() and
527 * talloc_get_name() will return the current location in the source file and
530 * @param[in] ctx The talloc context to hang the result off.
532 * @param[in] type The pointer you want to assign the result to.
534 * @return The properly casted allocated memory chunk, NULL on
539 * unsigned int *a = talloc_ptrtype(NULL, a);
542 void *talloc_ptrtype(const void *ctx
, #type);
544 #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr)))
549 * @brief Allocate a new 0-sized talloc chunk.
551 * This is a utility macro that creates a new memory context hanging off an
552 * existing context, automatically naming it "talloc_new: __location__" where
553 * __location__ is the source line it is called from. It is particularly
554 * useful for creating a new temporary working context.
556 * @param[in] ctx The talloc parent context.
558 * @return A new talloc chunk, NULL on error.
560 void *talloc_new(const void *ctx
);
562 #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__)
567 * @brief Allocate a 0-initizialized structure.
569 * The macro is equivalent to:
572 * ptr = talloc(ctx, type);
573 * if (ptr) memset(ptr, 0, sizeof(type));
576 * @param[in] ctx The talloc context to hang the result off.
578 * @param[in] type The type that we want to allocate.
580 * @return Pointer to a piece of memory, properly cast to 'type *',
585 * unsigned int *a, *b;
586 * a = talloc_zero(NULL, unsigned int);
587 * b = talloc_zero(a, unsigned int);
591 * @see talloc_zero_size()
592 * @see talloc_zero_array()
594 void *talloc_zero(const void *ctx
, #type);
597 * @brief Allocate untyped, 0-initialized memory.
599 * @param[in] ctx The talloc context to hang the result off.
601 * @param[in] size Number of char's that you want to allocate.
603 * @return The allocated memory chunk.
605 void *talloc_zero_size(const void *ctx
, size_t size
);
607 #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type)
608 #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__)
609 void *_talloc_zero(const void *ctx
, size_t size
, const char *name
);
613 * @brief Return the name of a talloc chunk.
615 * @param[in] ptr The talloc chunk.
617 * @return The current name for the given talloc pointer.
619 * @see talloc_set_name()
621 const char *talloc_get_name(const void *ptr
);
624 * @brief Verify that a talloc chunk carries a specified name.
626 * This function checks if a pointer has the specified name. If it does
627 * then the pointer is returned.
629 * @param[in] ptr The talloc chunk to check.
631 * @param[in] name The name to check against.
633 * @return The pointer if the name matches, NULL if it doesn't.
635 void *talloc_check_name(const void *ptr
, const char *name
);
638 * @brief Get the parent chunk of a pointer.
640 * @param[in] ptr The talloc pointer to inspect.
642 * @return The talloc parent of ptr, NULL on error.
644 void *talloc_parent(const void *ptr
);
647 * @brief Get a talloc chunk's parent name.
649 * @param[in] ptr The talloc pointer to inspect.
651 * @return The name of ptr's parent chunk.
653 const char *talloc_parent_name(const void *ptr
);
656 * @brief Get the total size of a talloc chunk including its children.
658 * The function returns the total size in bytes used by this pointer and all
659 * child pointers. Mostly useful for debugging.
661 * Passing NULL is allowed, but it will only give a meaningful result if
662 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
665 * @param[in] ptr The talloc chunk.
667 * @return The total size.
669 size_t talloc_total_size(const void *ptr
);
672 * @brief Get the number of talloc chunks hanging off a chunk.
674 * The talloc_total_blocks() function returns the total memory block
675 * count used by this pointer and all child pointers. Mostly useful for
678 * Passing NULL is allowed, but it will only give a meaningful result if
679 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
682 * @param[in] ptr The talloc chunk.
684 * @return The total size.
686 size_t talloc_total_blocks(const void *ptr
);
690 * @brief Duplicate a memory area into a talloc chunk.
692 * The function is equivalent to:
695 * ptr = talloc_size(ctx, size);
696 * if (ptr) memcpy(ptr, p, size);
699 * @param[in] t The talloc context to hang the result off.
701 * @param[in] p The memory chunk you want to duplicate.
703 * @param[in] size Number of char's that you want copy.
705 * @return The allocated memory chunk.
709 void *talloc_memdup(const void *t
, const void *p
, size_t size
);
711 #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__)
712 void *_talloc_memdup(const void *t
, const void *p
, size_t size
, const char *name
);
717 * @brief Assign a type to a talloc chunk.
719 * This macro allows you to force the name of a pointer to be of a particular
720 * type. This can be used in conjunction with talloc_get_type() to do type
721 * checking on void* pointers.
723 * It is equivalent to this:
726 * talloc_set_name_const(ptr, #type)
729 * @param[in] ptr The talloc chunk to assign the type to.
731 * @param[in] type The type to assign.
733 void talloc_set_type(const char *ptr
, #type);
736 * @brief Get a typed pointer out of a talloc pointer.
738 * This macro allows you to do type checking on talloc pointers. It is
739 * particularly useful for void* private pointers. It is equivalent to
743 * (type *)talloc_check_name(ptr, #type)
746 * @param[in] ptr The talloc pointer to check.
748 * @param[in] type The type to check against.
750 * @return The properly casted pointer given by ptr, NULL on error.
752 type
*talloc_get_type(const void *ptr
, #type);
754 #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type)
755 #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type)
760 * @brief Safely turn a void pointer into a typed pointer.
762 * This macro is used together with talloc(mem_ctx, struct foo). If you had to
763 * assign the talloc chunk pointer to some void pointer variable,
764 * talloc_get_type_abort() is the recommended way to get the convert the void
765 * pointer back to a typed pointer.
767 * @param[in] ptr The void pointer to convert.
769 * @param[in] type The type that this chunk contains
771 * @return The same value as ptr, type-checked and properly cast.
773 void *talloc_get_type_abort(const void *ptr
, #type);
775 #ifdef TALLOC_GET_TYPE_ABORT_NOOP
776 #define talloc_get_type_abort(ptr, type) (type *)(ptr)
778 #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__)
780 void *_talloc_get_type_abort(const void *ptr
, const char *name
, const char *location
);
784 * @brief Find a parent context by name.
786 * Find a parent memory context of the current context that has the given
787 * name. This can be very useful in complex programs where it may be
788 * difficult to pass all information down to the level you need, but you
789 * know the structure you want is a parent of another context.
791 * @param[in] ctx The talloc chunk to start from.
793 * @param[in] name The name of the parent we look for.
795 * @return The memory context we are looking for, NULL if not
798 void *talloc_find_parent_byname(const void *ctx
, const char *name
);
802 * @brief Find a parent context by type.
804 * Find a parent memory context of the current context that has the given
805 * name. This can be very useful in complex programs where it may be
806 * difficult to pass all information down to the level you need, but you
807 * know the structure you want is a parent of another context.
809 * Like talloc_find_parent_byname() but takes a type, making it typesafe.
811 * @param[in] ptr The talloc chunk to start from.
813 * @param[in] type The type of the parent to look for.
815 * @return The memory context we are looking for, NULL if not
818 void *talloc_find_parent_bytype(const void *ptr
, #type);
820 #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type)
824 * @brief Allocate a talloc pool.
826 * A talloc pool is a pure optimization for specific situations. In the
827 * release process for Samba 3.2 we found out that we had become considerably
828 * slower than Samba 3.0 was. Profiling showed that malloc(3) was a large CPU
829 * consumer in benchmarks. For Samba 3.2 we have internally converted many
830 * static buffers to dynamically allocated ones, so malloc(3) being beaten
831 * more was no surprise. But it made us slower.
833 * talloc_pool() is an optimization to call malloc(3) a lot less for the use
834 * pattern Samba has: The SMB protocol is mainly a request/response protocol
835 * where we have to allocate a certain amount of memory per request and free
836 * that after the SMB reply is sent to the client.
838 * talloc_pool() creates a talloc chunk that you can use as a talloc parent
839 * exactly as you would use any other ::TALLOC_CTX. The difference is that
840 * when you talloc a child of this pool, no malloc(3) is done. Instead, talloc
841 * just increments a pointer inside the talloc_pool. This also works
842 * recursively. If you use the child of the talloc pool as a parent for
843 * grand-children, their memory is also taken from the talloc pool.
845 * If there is not enough memory in the pool to allocate the new child,
846 * it will create a new talloc chunk as if the parent was a normal talloc
849 * If you talloc_free() children of a talloc pool, the memory is not given
850 * back to the system. Instead, free(3) is only called if the talloc_pool()
851 * itself is released with talloc_free().
853 * The downside of a talloc pool is that if you talloc_move() a child of a
854 * talloc pool to a talloc parent outside the pool, the whole pool memory is
855 * not free(3)'ed until that moved chunk is also talloc_free()ed.
857 * @param[in] context The talloc context to hang the result off.
859 * @param[in] size Size of the talloc pool.
861 * @return The allocated talloc pool, NULL on error.
863 void *talloc_pool(const void *context
, size_t size
);
867 * @brief Allocate a talloc object as/with an additional pool.
869 * This is like talloc_pool(), but's it's more flexible
870 * and allows an object to be a pool for its children.
872 * @param[in] ctx The talloc context to hang the result off.
874 * @param[in] type The type that we want to allocate.
876 * @param[in] num_subobjects The expected number of subobjects, which will
877 * be allocated within the pool. This allocates
878 * space for talloc_chunk headers.
880 * @param[in] total_subobjects_size The size that all subobjects can use in total.
883 * @return The allocated talloc object, NULL on error.
885 void *talloc_pooled_object(const void *ctx
, #type,
886 unsigned num_subobjects
,
887 size_t total_subobjects_size
);
889 #define talloc_pooled_object(_ctx, _type, \
891 _total_subobjects_size) \
892 (_type *)_talloc_pooled_object((_ctx), sizeof(_type), #_type, \
894 (_total_subobjects_size))
895 void *_talloc_pooled_object(const void *ctx
,
897 const char *type_name
,
898 unsigned num_subobjects
,
899 size_t total_subobjects_size
);
903 * @brief Free a talloc chunk and NULL out the pointer.
905 * TALLOC_FREE() frees a pointer and sets it to NULL. Use this if you want
906 * immediate feedback (i.e. crash) if you use a pointer after having free'ed
909 * @param[in] ctx The chunk to be freed.
911 #define TALLOC_FREE(ctx) do { if (ctx != NULL) { talloc_free(ctx); ctx=NULL; } } while(0)
913 /* @} ******************************************************************/
916 * \defgroup talloc_ref The talloc reference function.
919 * This module contains the definitions around talloc references
925 * @brief Increase the reference count of a talloc chunk.
927 * The talloc_increase_ref_count(ptr) function is exactly equivalent to:
930 * talloc_reference(NULL, ptr);
933 * You can use either syntax, depending on which you think is clearer in
936 * @param[in] ptr The pointer to increase the reference count.
938 * @return 0 on success, -1 on error.
940 int talloc_increase_ref_count(const void *ptr
);
943 * @brief Get the number of references to a talloc chunk.
945 * @param[in] ptr The pointer to retrieve the reference count from.
947 * @return The number of references.
949 size_t talloc_reference_count(const void *ptr
);
953 * @brief Create an additional talloc parent to a pointer.
955 * The talloc_reference() function makes "context" an additional parent of
956 * ptr. Each additional reference consumes around 48 bytes of memory on intel
959 * If ptr is NULL, then the function is a no-op, and simply returns NULL.
961 * After creating a reference you can free it in one of the following ways:
963 * - you can talloc_free() any parent of the original pointer. That
964 * will reduce the number of parents of this pointer by 1, and will
965 * cause this pointer to be freed if it runs out of parents.
967 * - you can talloc_free() the pointer itself if it has at maximum one
968 * parent. This behaviour has been changed since the release of version
969 * 2.0. Further informations in the description of "talloc_free".
971 * For more control on which parent to remove, see talloc_unlink()
972 * @param[in] ctx The additional parent.
974 * @param[in] ptr The pointer you want to create an additional parent for.
976 * @return The original pointer 'ptr', NULL if talloc ran out of
977 * memory in creating the reference.
979 * @warning You should try to avoid using this interface. It turns a beautiful
980 * talloc-tree into a graph. It is often really hard to debug if you
981 * screw something up by accident.
985 * unsigned int *a, *b, *c;
986 * a = talloc(NULL, unsigned int);
987 * b = talloc(NULL, unsigned int);
988 * c = talloc(a, unsigned int);
989 * // b also serves as a parent of c.
990 * talloc_reference(b, c);
993 * @see talloc_unlink()
995 void *talloc_reference(const void *ctx
, const void *ptr
);
997 #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference_loc((ctx),(ptr), __location__)
998 void *_talloc_reference_loc(const void *context
, const void *ptr
, const char *location
);
1002 * @brief Remove a specific parent from a talloc chunk.
1004 * The function removes a specific parent from ptr. The context passed must
1005 * either be a context used in talloc_reference() with this pointer, or must be
1006 * a direct parent of ptr.
1008 * You can just use talloc_free() instead of talloc_unlink() if there
1009 * is at maximum one parent. This behaviour has been changed since the
1010 * release of version 2.0. Further informations in the description of
1013 * @param[in] context The talloc parent to remove.
1015 * @param[in] ptr The talloc ptr you want to remove the parent from.
1017 * @return 0 on success, -1 on error.
1019 * @note If the parent has already been removed using talloc_free() then
1020 * this function will fail and will return -1. Likewise, if ptr is NULL,
1021 * then the function will make no modifications and return -1.
1023 * @warning You should try to avoid using this interface. It turns a beautiful
1024 * talloc-tree into a graph. It is often really hard to debug if you
1025 * screw something up by accident.
1029 * unsigned int *a, *b, *c;
1030 * a = talloc(NULL, unsigned int);
1031 * b = talloc(NULL, unsigned int);
1032 * c = talloc(a, unsigned int);
1033 * // b also serves as a parent of c.
1034 * talloc_reference(b, c);
1035 * talloc_unlink(b, c);
1038 int talloc_unlink(const void *context
, void *ptr
);
1041 * @brief Provide a talloc context that is freed at program exit.
1043 * This is a handy utility function that returns a talloc context
1044 * which will be automatically freed on program exit. This can be used
1045 * to reduce the noise in memory leak reports.
1047 * Never use this in code that might be used in objects loaded with
1048 * dlopen and unloaded with dlclose. talloc_autofree_context()
1049 * internally uses atexit(3). Some platforms like modern Linux handles
1050 * this fine, but for example FreeBSD does not deal well with dlopen()
1051 * and atexit() used simultaneously: dlclose() does not clean up the
1052 * list of atexit-handlers, so when the program exits the code that
1053 * was registered from within talloc_autofree_context() is gone, the
1054 * program crashes at exit.
1056 * @return A talloc context, NULL on error.
1058 void *talloc_autofree_context(void) _DEPRECATED_
;
1061 * @brief Get the size of a talloc chunk.
1063 * This function lets you know the amount of memory allocated so far by
1064 * this context. It does NOT account for subcontext memory.
1065 * This can be used to calculate the size of an array.
1067 * @param[in] ctx The talloc chunk.
1069 * @return The size of the talloc chunk.
1071 size_t talloc_get_size(const void *ctx
);
1074 * @brief Show the parentage of a context.
1076 * @param[in] context The talloc context to look at.
1078 * @param[in] file The output to use, a file, stdout or stderr.
1080 void talloc_show_parents(const void *context
, FILE *file
);
1083 * @brief Check if a context is parent of a talloc chunk.
1085 * This checks if context is referenced in the talloc hierarchy above ptr.
1087 * @param[in] context The assumed talloc context.
1089 * @param[in] ptr The talloc chunk to check.
1091 * @return Return 1 if this is the case, 0 if not.
1093 int talloc_is_parent(const void *context
, const void *ptr
);
1096 * @brief Change the parent context of a talloc pointer.
1098 * The function changes the parent context of a talloc pointer. It is typically
1099 * used when the context that the pointer is currently a child of is going to be
1100 * freed and you wish to keep the memory for a longer time.
1102 * The difference between talloc_reparent() and talloc_steal() is that
1103 * talloc_reparent() can specify which parent you wish to change. This is
1104 * useful when a pointer has multiple parents via references.
1106 * @param[in] old_parent
1107 * @param[in] new_parent
1110 * @return Return the pointer you passed. It does not have any
1113 void *talloc_reparent(const void *old_parent
, const void *new_parent
, const void *ptr
);
1115 /* @} ******************************************************************/
1118 * @defgroup talloc_array The talloc array functions
1121 * Talloc contains some handy helpers for handling Arrays conveniently
1128 * @brief Allocate an array.
1130 * The macro is equivalent to:
1133 * (type *)talloc_size(ctx, sizeof(type) * count);
1136 * except that it provides integer overflow protection for the multiply,
1137 * returning NULL if the multiply overflows.
1139 * @param[in] ctx The talloc context to hang the result off.
1141 * @param[in] type The type that we want to allocate.
1143 * @param[in] count The number of 'type' elements you want to allocate.
1145 * @return The allocated result, properly cast to 'type *', NULL on
1150 * unsigned int *a, *b;
1151 * a = talloc_zero(NULL, unsigned int);
1152 * b = talloc_array(a, unsigned int, 100);
1156 * @see talloc_zero_array()
1158 void *talloc_array(const void *ctx
, #type, unsigned count);
1160 #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type)
1161 void *_talloc_array(const void *ctx
, size_t el_size
, unsigned count
, const char *name
);
1166 * @brief Allocate an array.
1168 * @param[in] ctx The talloc context to hang the result off.
1170 * @param[in] size The size of an array element.
1172 * @param[in] count The number of elements you want to allocate.
1174 * @return The allocated result, NULL on error.
1176 void *talloc_array_size(const void *ctx
, size_t size
, unsigned count
);
1178 #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__)
1183 * @brief Allocate an array into a typed pointer.
1185 * The macro should be used when you have a pointer to an array and want to
1186 * allocate memory of an array to point at with this pointer. When compiling
1187 * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_array_size()
1188 * and talloc_get_name() will return the current location in the source file
1191 * @param[in] ctx The talloc context to hang the result off.
1193 * @param[in] ptr The pointer you want to assign the result to.
1195 * @param[in] count The number of elements you want to allocate.
1197 * @return The allocated memory chunk, properly casted. NULL on
1200 void *talloc_array_ptrtype(const void *ctx
, const void *ptr
, unsigned count
);
1202 #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count)
1207 * @brief Get the number of elements in a talloc'ed array.
1209 * A talloc chunk carries its own size, so for talloc'ed arrays it is not
1210 * necessary to store the number of elements explicitly.
1212 * @param[in] ctx The allocated array.
1214 * @return The number of elements in ctx.
1216 size_t talloc_array_length(const void *ctx
);
1218 #define talloc_array_length(ctx) (talloc_get_size(ctx)/sizeof(*ctx))
1223 * @brief Allocate a zero-initialized array
1225 * @param[in] ctx The talloc context to hang the result off.
1227 * @param[in] type The type that we want to allocate.
1229 * @param[in] count The number of "type" elements you want to allocate.
1231 * @return The allocated result casted to "type *", NULL on error.
1233 * The talloc_zero_array() macro is equivalent to:
1236 * ptr = talloc_array(ctx, type, count);
1237 * if (ptr) memset(ptr, 0, sizeof(type) * count);
1240 void *talloc_zero_array(const void *ctx
, #type, unsigned count);
1242 #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type)
1243 void *_talloc_zero_array(const void *ctx
,
1251 * @brief Change the size of a talloc array.
1253 * The macro changes the size of a talloc pointer. The 'count' argument is the
1254 * number of elements of type 'type' that you want the resulting pointer to
1257 * talloc_realloc() has the following equivalences:
1260 * talloc_realloc(ctx, NULL, type, 1) ==> talloc(ctx, type);
1261 * talloc_realloc(ctx, NULL, type, N) ==> talloc_array(ctx, type, N);
1262 * talloc_realloc(ctx, ptr, type, 0) ==> talloc_free(ptr);
1265 * The "context" argument is only used if "ptr" is NULL, otherwise it is
1268 * @param[in] ctx The parent context used if ptr is NULL.
1270 * @param[in] ptr The chunk to be resized.
1272 * @param[in] type The type of the array element inside ptr.
1274 * @param[in] count The intended number of array elements.
1276 * @return The new array, NULL on error. The call will fail either
1277 * due to a lack of memory, or because the pointer has more
1278 * than one parent (see talloc_reference()).
1280 void *talloc_realloc(const void *ctx
, void *ptr
, #type, size_t count);
1282 #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type)
1283 void *_talloc_realloc_array(const void *ctx
, void *ptr
, size_t el_size
, unsigned count
, const char *name
);
1288 * @brief Untyped realloc to change the size of a talloc array.
1290 * The macro is useful when the type is not known so the typesafe
1291 * talloc_realloc() cannot be used.
1293 * @param[in] ctx The parent context used if 'ptr' is NULL.
1295 * @param[in] ptr The chunk to be resized.
1297 * @param[in] size The new chunk size.
1299 * @return The new array, NULL on error.
1301 void *talloc_realloc_size(const void *ctx
, void *ptr
, size_t size
);
1303 #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__)
1304 void *_talloc_realloc(const void *context
, void *ptr
, size_t size
, const char *name
);
1308 * @brief Provide a function version of talloc_realloc_size.
1310 * This is a non-macro version of talloc_realloc(), which is useful as
1311 * libraries sometimes want a ralloc function pointer. A realloc()
1312 * implementation encapsulates the functionality of malloc(), free() and
1313 * realloc() in one call, which is why it is useful to be able to pass around
1314 * a single function pointer.
1316 * @param[in] context The parent context used if ptr is NULL.
1318 * @param[in] ptr The chunk to be resized.
1320 * @param[in] size The new chunk size.
1322 * @return The new chunk, NULL on error.
1324 void *talloc_realloc_fn(const void *context
, void *ptr
, size_t size
);
1326 /* @} ******************************************************************/
1329 * @defgroup talloc_string The talloc string functions.
1332 * talloc string allocation and manipulation functions.
1337 * @brief Duplicate a string into a talloc chunk.
1339 * This function is equivalent to:
1342 * ptr = talloc_size(ctx, strlen(p)+1);
1343 * if (ptr) memcpy(ptr, p, strlen(p)+1);
1346 * This functions sets the name of the new pointer to the passed
1347 * string. This is equivalent to:
1350 * talloc_set_name_const(ptr, ptr)
1353 * @param[in] t The talloc context to hang the result off.
1355 * @param[in] p The string you want to duplicate.
1357 * @return The duplicated string, NULL on error.
1359 char *talloc_strdup(const void *t
, const char *p
);
1362 * @brief Append a string to given string.
1364 * The destination string is reallocated to take
1365 * <code>strlen(s) + strlen(a) + 1</code> characters.
1367 * This functions sets the name of the new pointer to the new
1368 * string. This is equivalent to:
1371 * talloc_set_name_const(ptr, ptr)
1374 * If <code>s == NULL</code> then new context is created.
1376 * @param[in] s The destination to append to.
1378 * @param[in] a The string you want to append.
1380 * @return The concatenated strings, NULL on error.
1382 * @see talloc_strdup()
1383 * @see talloc_strdup_append_buffer()
1385 char *talloc_strdup_append(char *s
, const char *a
);
1388 * @brief Append a string to a given buffer.
1390 * This is a more efficient version of talloc_strdup_append(). It determines the
1391 * length of the destination string by the size of the talloc context.
1393 * Use this very carefully as it produces a different result than
1394 * talloc_strdup_append() when a zero character is in the middle of the
1395 * destination string.
1398 * char *str_a = talloc_strdup(NULL, "hello world");
1399 * char *str_b = talloc_strdup(NULL, "hello world");
1400 * str_a[5] = str_b[5] = '\0'
1402 * char *app = talloc_strdup_append(str_a, ", hello");
1403 * char *buf = talloc_strdup_append_buffer(str_b, ", hello");
1405 * printf("%s\n", app); // hello, hello (app = "hello, hello")
1406 * printf("%s\n", buf); // hello (buf = "hello\0world, hello")
1409 * If <code>s == NULL</code> then new context is created.
1411 * @param[in] s The destination buffer to append to.
1413 * @param[in] a The string you want to append.
1415 * @return The concatenated strings, NULL on error.
1417 * @see talloc_strdup()
1418 * @see talloc_strdup_append()
1419 * @see talloc_array_length()
1421 char *talloc_strdup_append_buffer(char *s
, const char *a
);
1424 * @brief Duplicate a length-limited string into a talloc chunk.
1426 * This function is the talloc equivalent of the C library function strndup(3).
1428 * This functions sets the name of the new pointer to the passed string. This is
1432 * talloc_set_name_const(ptr, ptr)
1435 * @param[in] t The talloc context to hang the result off.
1437 * @param[in] p The string you want to duplicate.
1439 * @param[in] n The maximum string length to duplicate.
1441 * @return The duplicated string, NULL on error.
1443 char *talloc_strndup(const void *t
, const char *p
, size_t n
);
1446 * @brief Append at most n characters of a string to given string.
1448 * The destination string is reallocated to take
1449 * <code>strlen(s) + strnlen(a, n) + 1</code> characters.
1451 * This functions sets the name of the new pointer to the new
1452 * string. This is equivalent to:
1455 * talloc_set_name_const(ptr, ptr)
1458 * If <code>s == NULL</code> then new context is created.
1460 * @param[in] s The destination string to append to.
1462 * @param[in] a The source string you want to append.
1464 * @param[in] n The number of characters you want to append from the
1467 * @return The concatenated strings, NULL on error.
1469 * @see talloc_strndup()
1470 * @see talloc_strndup_append_buffer()
1472 char *talloc_strndup_append(char *s
, const char *a
, size_t n
);
1475 * @brief Append at most n characters of a string to given buffer
1477 * This is a more efficient version of talloc_strndup_append(). It determines
1478 * the length of the destination string by the size of the talloc context.
1480 * Use this very carefully as it produces a different result than
1481 * talloc_strndup_append() when a zero character is in the middle of the
1482 * destination string.
1485 * char *str_a = talloc_strdup(NULL, "hello world");
1486 * char *str_b = talloc_strdup(NULL, "hello world");
1487 * str_a[5] = str_b[5] = '\0'
1489 * char *app = talloc_strndup_append(str_a, ", hello", 7);
1490 * char *buf = talloc_strndup_append_buffer(str_b, ", hello", 7);
1492 * printf("%s\n", app); // hello, hello (app = "hello, hello")
1493 * printf("%s\n", buf); // hello (buf = "hello\0world, hello")
1496 * If <code>s == NULL</code> then new context is created.
1498 * @param[in] s The destination buffer to append to.
1500 * @param[in] a The source string you want to append.
1502 * @param[in] n The number of characters you want to append from the
1505 * @return The concatenated strings, NULL on error.
1507 * @see talloc_strndup()
1508 * @see talloc_strndup_append()
1509 * @see talloc_array_length()
1511 char *talloc_strndup_append_buffer(char *s
, const char *a
, size_t n
);
1514 * @brief Format a string given a va_list.
1516 * This function is the talloc equivalent of the C library function
1519 * This functions sets the name of the new pointer to the new string. This is
1523 * talloc_set_name_const(ptr, ptr)
1526 * @param[in] t The talloc context to hang the result off.
1528 * @param[in] fmt The format string.
1530 * @param[in] ap The parameters used to fill fmt.
1532 * @return The formatted string, NULL on error.
1534 char *talloc_vasprintf(const void *t
, const char *fmt
, va_list ap
) PRINTF_ATTRIBUTE(2,0);
1537 * @brief Format a string given a va_list and append it to the given destination
1540 * @param[in] s The destination string to append to.
1542 * @param[in] fmt The format string.
1544 * @param[in] ap The parameters used to fill fmt.
1546 * @return The formatted string, NULL on error.
1548 * @see talloc_vasprintf()
1550 char *talloc_vasprintf_append(char *s
, const char *fmt
, va_list ap
) PRINTF_ATTRIBUTE(2,0);
1553 * @brief Format a string given a va_list and append it to the given destination
1556 * @param[in] s The destination buffer to append to.
1558 * @param[in] fmt The format string.
1560 * @param[in] ap The parameters used to fill fmt.
1562 * @return The formatted string, NULL on error.
1564 * @see talloc_vasprintf()
1566 char *talloc_vasprintf_append_buffer(char *s
, const char *fmt
, va_list ap
) PRINTF_ATTRIBUTE(2,0);
1569 * @brief Format a string.
1571 * This function is the talloc equivalent of the C library function asprintf(3).
1573 * This functions sets the name of the new pointer to the new string. This is
1577 * talloc_set_name_const(ptr, ptr)
1580 * @param[in] t The talloc context to hang the result off.
1582 * @param[in] fmt The format string.
1584 * @param[in] ... The parameters used to fill fmt.
1586 * @return The formatted string, NULL on error.
1588 char *talloc_asprintf(const void *t
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
1591 * @brief Append a formatted string to another string.
1593 * This function appends the given formatted string to the given string. Use
1594 * this variant when the string in the current talloc buffer may have been
1595 * truncated in length.
1597 * This functions sets the name of the new pointer to the new
1598 * string. This is equivalent to:
1601 * talloc_set_name_const(ptr, ptr)
1604 * If <code>s == NULL</code> then new context is created.
1606 * @param[in] s The string to append to.
1608 * @param[in] fmt The format string.
1610 * @param[in] ... The parameters used to fill fmt.
1612 * @return The formatted string, NULL on error.
1614 char *talloc_asprintf_append(char *s
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
1617 * @brief Append a formatted string to another string.
1619 * This is a more efficient version of talloc_asprintf_append(). It determines
1620 * the length of the destination string by the size of the talloc context.
1622 * Use this very carefully as it produces a different result than
1623 * talloc_asprintf_append() when a zero character is in the middle of the
1624 * destination string.
1627 * char *str_a = talloc_strdup(NULL, "hello world");
1628 * char *str_b = talloc_strdup(NULL, "hello world");
1629 * str_a[5] = str_b[5] = '\0'
1631 * char *app = talloc_asprintf_append(str_a, "%s", ", hello");
1632 * char *buf = talloc_strdup_append_buffer(str_b, "%s", ", hello");
1634 * printf("%s\n", app); // hello, hello (app = "hello, hello")
1635 * printf("%s\n", buf); // hello (buf = "hello\0world, hello")
1638 * If <code>s == NULL</code> then new context is created.
1640 * @param[in] s The string to append to
1642 * @param[in] fmt The format string.
1644 * @param[in] ... The parameters used to fill fmt.
1646 * @return The formatted string, NULL on error.
1648 * @see talloc_asprintf()
1649 * @see talloc_asprintf_append()
1651 char *talloc_asprintf_append_buffer(char *s
, const char *fmt
, ...) PRINTF_ATTRIBUTE(2,3);
1653 /* @} ******************************************************************/
1656 * @defgroup talloc_debug The talloc debugging support functions
1659 * To aid memory debugging, talloc contains routines to inspect the currently
1660 * allocated memory hierarchy.
1666 * @brief Walk a complete talloc hierarchy.
1668 * This provides a more flexible reports than talloc_report(). It
1669 * will recursively call the callback for the entire tree of memory
1670 * referenced by the pointer. References in the tree are passed with
1671 * is_ref = 1 and the pointer that is referenced.
1673 * You can pass NULL for the pointer, in which case a report is
1674 * printed for the top level memory context, but only if
1675 * talloc_enable_leak_report() or talloc_enable_leak_report_full()
1678 * The recursion is stopped when depth >= max_depth.
1679 * max_depth = -1 means only stop at leaf nodes.
1681 * @param[in] ptr The talloc chunk.
1683 * @param[in] depth Internal parameter to control recursion. Call with 0.
1685 * @param[in] max_depth Maximum recursion level.
1687 * @param[in] callback Function to be called on every chunk.
1689 * @param[in] private_data Private pointer passed to callback.
1691 void talloc_report_depth_cb(const void *ptr
, int depth
, int max_depth
,
1692 void (*callback
)(const void *ptr
,
1693 int depth
, int max_depth
,
1695 void *private_data
),
1696 void *private_data
);
1699 * @brief Print a talloc hierarchy.
1701 * This provides a more flexible reports than talloc_report(). It
1702 * will let you specify the depth and max_depth.
1704 * @param[in] ptr The talloc chunk.
1706 * @param[in] depth Internal parameter to control recursion. Call with 0.
1708 * @param[in] max_depth Maximum recursion level.
1710 * @param[in] f The file handle to print to.
1712 void talloc_report_depth_file(const void *ptr
, int depth
, int max_depth
, FILE *f
);
1715 * @brief Print a summary report of all memory used by ptr.
1717 * This provides a more detailed report than talloc_report(). It will
1718 * recursively print the entire tree of memory referenced by the
1719 * pointer. References in the tree are shown by giving the name of the
1720 * pointer that is referenced.
1722 * You can pass NULL for the pointer, in which case a report is printed
1723 * for the top level memory context, but only if
1724 * talloc_enable_leak_report() or talloc_enable_leak_report_full() has
1727 * @param[in] ptr The talloc chunk.
1729 * @param[in] f The file handle to print to.
1733 * unsigned int *a, *b;
1734 * a = talloc(NULL, unsigned int);
1735 * b = talloc(a, unsigned int);
1736 * fprintf(stderr, "Dumping memory tree for a:\n");
1737 * talloc_report_full(a, stderr);
1740 * @see talloc_report()
1742 void talloc_report_full(const void *ptr
, FILE *f
);
1745 * @brief Print a summary report of all memory used by ptr.
1747 * This function prints a summary report of all memory used by ptr. One line of
1748 * report is printed for each immediate child of ptr, showing the total memory
1749 * and number of blocks used by that child.
1751 * You can pass NULL for the pointer, in which case a report is printed
1752 * for the top level memory context, but only if talloc_enable_leak_report()
1753 * or talloc_enable_leak_report_full() has been called.
1755 * @param[in] ptr The talloc chunk.
1757 * @param[in] f The file handle to print to.
1761 * unsigned int *a, *b;
1762 * a = talloc(NULL, unsigned int);
1763 * b = talloc(a, unsigned int);
1764 * fprintf(stderr, "Summary of memory tree for a:\n");
1765 * talloc_report(a, stderr);
1768 * @see talloc_report_full()
1770 void talloc_report(const void *ptr
, FILE *f
);
1773 * @brief Enable tracking the use of NULL memory contexts.
1775 * This enables tracking of the NULL memory context without enabling leak
1776 * reporting on exit. Useful for when you want to do your own leak
1777 * reporting call via talloc_report_null_full();
1779 void talloc_enable_null_tracking(void);
1782 * @brief Enable tracking the use of NULL memory contexts.
1784 * This enables tracking of the NULL memory context without enabling leak
1785 * reporting on exit. Useful for when you want to do your own leak
1786 * reporting call via talloc_report_null_full();
1788 void talloc_enable_null_tracking_no_autofree(void);
1791 * @brief Disable tracking of the NULL memory context.
1793 * This disables tracking of the NULL memory context.
1795 void talloc_disable_null_tracking(void);
1798 * @brief Enable leak report when a program exits.
1800 * This enables calling of talloc_report(NULL, stderr) when the program
1801 * exits. In Samba4 this is enabled by using the --leak-report command
1804 * For it to be useful, this function must be called before any other
1805 * talloc function as it establishes a "null context" that acts as the
1806 * top of the tree. If you don't call this function first then passing
1807 * NULL to talloc_report() or talloc_report_full() won't give you the
1808 * full tree printout.
1810 * Here is a typical talloc report:
1813 * talloc report on 'null_context' (total 267 bytes in 15 blocks)
1814 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1815 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1816 * iconv(UTF8,CP850) contains 42 bytes in 2 blocks
1817 * libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
1818 * iconv(CP850,UTF8) contains 42 bytes in 2 blocks
1819 * iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
1820 * iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
1823 void talloc_enable_leak_report(void);
1826 * @brief Enable full leak report when a program exits.
1828 * This enables calling of talloc_report_full(NULL, stderr) when the
1829 * program exits. In Samba4 this is enabled by using the
1830 * --leak-report-full command line option.
1832 * For it to be useful, this function must be called before any other
1833 * talloc function as it establishes a "null context" that acts as the
1834 * top of the tree. If you don't call this function first then passing
1835 * NULL to talloc_report() or talloc_report_full() won't give you the
1836 * full tree printout.
1838 * Here is a typical full report:
1841 * full talloc report on 'root' (total 18 bytes in 8 blocks)
1842 * p1 contains 18 bytes in 7 blocks (ref 0)
1843 * r1 contains 13 bytes in 2 blocks (ref 0)
1845 * p2 contains 1 bytes in 1 blocks (ref 1)
1846 * x3 contains 1 bytes in 1 blocks (ref 0)
1847 * x2 contains 1 bytes in 1 blocks (ref 0)
1848 * x1 contains 1 bytes in 1 blocks (ref 0)
1851 void talloc_enable_leak_report_full(void);
1854 * @brief Set a custom "abort" function that is called on serious error.
1856 * The default "abort" function is <code>abort()</code>.
1858 * The "abort" function is called when:
1861 * <li>talloc_get_type_abort() fails</li>
1862 * <li>the provided pointer is not a valid talloc context</li>
1863 * <li>when the context meta data are invalid</li>
1864 * <li>when access after free is detected</li>
1870 * void my_abort(const char *reason)
1872 * fprintf(stderr, "talloc abort: %s\n", reason);
1876 * talloc_set_abort_fn(my_abort);
1879 * @param[in] abort_fn The new "abort" function.
1881 * @see talloc_set_log_fn()
1882 * @see talloc_get_type()
1884 void talloc_set_abort_fn(void (*abort_fn
)(const char *reason
));
1887 * @brief Set a logging function.
1889 * @param[in] log_fn The logging function.
1891 * @see talloc_set_log_stderr()
1892 * @see talloc_set_abort_fn()
1894 void talloc_set_log_fn(void (*log_fn
)(const char *message
));
1897 * @brief Set stderr as the output for logs.
1899 * @see talloc_set_log_fn()
1900 * @see talloc_set_abort_fn()
1902 void talloc_set_log_stderr(void);
1905 * @brief Set a max memory limit for the current context hierarchy
1906 * This affects all children of this context and constrain any
1907 * allocation in the hierarchy to never exceed the limit set.
1908 * The limit can be removed by setting 0 (unlimited) as the
1909 * max_size by calling the function again on the same context.
1910 * Memory limits can also be nested, meaning a child can have
1911 * a stricter memory limit than a parent.
1912 * Memory limits are enforced only at memory allocation time.
1913 * Stealing a context into a 'limited' hierarchy properly
1914 * updates memory usage but does *not* cause failure if the
1915 * move causes the new parent to exceed its limits. However
1916 * any further allocation on that hierarchy will then fail.
1918 * @warning talloc memlimit functionality is deprecated. Please
1919 * consider using cgroup memory limits instead.
1921 * @param[in] ctx The talloc context to set the limit on
1922 * @param[in] max_size The (new) max_size
1924 int talloc_set_memlimit(const void *ctx
, size_t max_size
) _DEPRECATED_
;
1926 /* @} ******************************************************************/
1928 #if TALLOC_DEPRECATED
1929 #define talloc_zero_p(ctx, type) talloc_zero(ctx, type)
1930 #define talloc_p(ctx, type) talloc(ctx, type)
1931 #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count)
1932 #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count)
1933 #define talloc_destroy(ctx) talloc_free(ctx)
1934 #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a))
1937 #ifndef TALLOC_MAX_DEPTH
1938 #define TALLOC_MAX_DEPTH 10000
1942 } /* end of extern "C" */