smbd: Fix bug 10284
[Samba.git] / lib / ccan / hash / hash.c
blob0fd6109513e92b5476062906525278bef91ce565
1 /*
2 -------------------------------------------------------------------------------
3 lookup3.c, by Bob Jenkins, May 2006, Public Domain.
5 These are functions for producing 32-bit hashes for hash table lookup.
6 hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
7 are externally useful functions. Routines to test the hash are included
8 if SELF_TEST is defined. You can use this free for any purpose. It's in
9 the public domain. It has no warranty.
11 You probably want to use hashlittle(). hashlittle() and hashbig()
12 hash byte arrays. hashlittle() is is faster than hashbig() on
13 little-endian machines. Intel and AMD are little-endian machines.
14 On second thought, you probably want hashlittle2(), which is identical to
15 hashlittle() except it returns two 32-bit hashes for the price of one.
16 You could implement hashbig2() if you wanted but I haven't bothered here.
18 If you want to find a hash of, say, exactly 7 integers, do
19 a = i1; b = i2; c = i3;
20 mix(a,b,c);
21 a += i4; b += i5; c += i6;
22 mix(a,b,c);
23 a += i7;
24 final(a,b,c);
25 then use c as the hash value. If you have a variable length array of
26 4-byte integers to hash, use hash_word(). If you have a byte array (like
27 a character string), use hashlittle(). If you have several byte arrays, or
28 a mix of things, see the comments above hashlittle().
30 Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
31 then mix those integers. This is fast (you can do a lot more thorough
32 mixing with 12*3 instructions on 3 integers than you can with 3 instructions
33 on 1 byte), but shoehorning those bytes into integers efficiently is messy.
34 -------------------------------------------------------------------------------
36 //#define SELF_TEST 1
38 #if 0
39 #include <stdio.h> /* defines printf for tests */
40 #include <time.h> /* defines time_t for timings in the test */
41 #include <stdint.h> /* defines uint32_t etc */
42 #include <sys/param.h> /* attempt to define endianness */
44 #ifdef linux
45 # include <endian.h> /* attempt to define endianness */
46 #endif
49 * My best guess at if you are big-endian or little-endian. This may
50 * need adjustment.
52 #if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \
53 __BYTE_ORDER == __LITTLE_ENDIAN) || \
54 (defined(i386) || defined(__i386__) || defined(__i486__) || \
55 defined(__i586__) || defined(__i686__) || defined(__x86_64) || \
56 defined(vax) || defined(MIPSEL))
57 # define HASH_LITTLE_ENDIAN 1
58 # define HASH_BIG_ENDIAN 0
59 #elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \
60 __BYTE_ORDER == __BIG_ENDIAN) || \
61 (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel))
62 # define HASH_LITTLE_ENDIAN 0
63 # define HASH_BIG_ENDIAN 1
64 #else
65 # error Unknown endian
66 #endif
67 #endif /* old hash.c headers. */
69 #include "hash.h"
71 #if HAVE_LITTLE_ENDIAN
72 #define HASH_LITTLE_ENDIAN 1
73 #define HASH_BIG_ENDIAN 0
74 #elif HAVE_BIG_ENDIAN
75 #define HASH_LITTLE_ENDIAN 0
76 #define HASH_BIG_ENDIAN 1
77 #else
78 #error Unknown endian
79 #endif
81 #define hashsize(n) ((uint32_t)1<<(n))
82 #define hashmask(n) (hashsize(n)-1)
83 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
86 -------------------------------------------------------------------------------
87 mix -- mix 3 32-bit values reversibly.
89 This is reversible, so any information in (a,b,c) before mix() is
90 still in (a,b,c) after mix().
92 If four pairs of (a,b,c) inputs are run through mix(), or through
93 mix() in reverse, there are at least 32 bits of the output that
94 are sometimes the same for one pair and different for another pair.
95 This was tested for:
96 * pairs that differed by one bit, by two bits, in any combination
97 of top bits of (a,b,c), or in any combination of bottom bits of
98 (a,b,c).
99 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
100 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
101 is commonly produced by subtraction) look like a single 1-bit
102 difference.
103 * the base values were pseudorandom, all zero but one bit set, or
104 all zero plus a counter that starts at zero.
106 Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
107 satisfy this are
108 4 6 8 16 19 4
109 9 15 3 18 27 15
110 14 9 3 7 17 3
111 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
112 for "differ" defined as + with a one-bit base and a two-bit delta. I
113 used http://burtleburtle.net/bob/hash/avalanche.html to choose
114 the operations, constants, and arrangements of the variables.
116 This does not achieve avalanche. There are input bits of (a,b,c)
117 that fail to affect some output bits of (a,b,c), especially of a. The
118 most thoroughly mixed value is c, but it doesn't really even achieve
119 avalanche in c.
121 This allows some parallelism. Read-after-writes are good at doubling
122 the number of bits affected, so the goal of mixing pulls in the opposite
123 direction as the goal of parallelism. I did what I could. Rotates
124 seem to cost as much as shifts on every machine I could lay my hands
125 on, and rotates are much kinder to the top and bottom bits, so I used
126 rotates.
127 -------------------------------------------------------------------------------
129 #define mix(a,b,c) \
131 a -= c; a ^= rot(c, 4); c += b; \
132 b -= a; b ^= rot(a, 6); a += c; \
133 c -= b; c ^= rot(b, 8); b += a; \
134 a -= c; a ^= rot(c,16); c += b; \
135 b -= a; b ^= rot(a,19); a += c; \
136 c -= b; c ^= rot(b, 4); b += a; \
140 -------------------------------------------------------------------------------
141 final -- final mixing of 3 32-bit values (a,b,c) into c
143 Pairs of (a,b,c) values differing in only a few bits will usually
144 produce values of c that look totally different. This was tested for
145 * pairs that differed by one bit, by two bits, in any combination
146 of top bits of (a,b,c), or in any combination of bottom bits of
147 (a,b,c).
148 * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
149 the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
150 is commonly produced by subtraction) look like a single 1-bit
151 difference.
152 * the base values were pseudorandom, all zero but one bit set, or
153 all zero plus a counter that starts at zero.
155 These constants passed:
156 14 11 25 16 4 14 24
157 12 14 25 16 4 14 24
158 and these came close:
159 4 8 15 26 3 22 24
160 10 8 15 26 3 22 24
161 11 8 15 26 3 22 24
162 -------------------------------------------------------------------------------
164 #define final(a,b,c) \
166 c ^= b; c -= rot(b,14); \
167 a ^= c; a -= rot(c,11); \
168 b ^= a; b -= rot(a,25); \
169 c ^= b; c -= rot(b,16); \
170 a ^= c; a -= rot(c,4); \
171 b ^= a; b -= rot(a,14); \
172 c ^= b; c -= rot(b,24); \
176 --------------------------------------------------------------------
177 This works on all machines. To be useful, it requires
178 -- that the key be an array of uint32_t's, and
179 -- that the length be the number of uint32_t's in the key
181 The function hash_word() is identical to hashlittle() on little-endian
182 machines, and identical to hashbig() on big-endian machines,
183 except that the length has to be measured in uint32_ts rather than in
184 bytes. hashlittle() is more complicated than hash_word() only because
185 hashlittle() has to dance around fitting the key bytes into registers.
186 --------------------------------------------------------------------
188 uint32_t hash_u32(
189 const uint32_t *k, /* the key, an array of uint32_t values */
190 size_t length, /* the length of the key, in uint32_ts */
191 uint32_t initval) /* the previous hash, or an arbitrary value */
193 uint32_t a,b,c;
195 /* Set up the internal state */
196 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
198 /*------------------------------------------------- handle most of the key */
199 while (length > 3)
201 a += k[0];
202 b += k[1];
203 c += k[2];
204 mix(a,b,c);
205 length -= 3;
206 k += 3;
209 /*------------------------------------------- handle the last 3 uint32_t's */
210 switch(length) /* all the case statements fall through */
212 case 3 : c+=k[2];
213 case 2 : b+=k[1];
214 case 1 : a+=k[0];
215 final(a,b,c);
216 case 0: /* case 0: nothing left to add */
217 break;
219 /*------------------------------------------------------ report the result */
220 return c;
224 -------------------------------------------------------------------------------
225 hashlittle() -- hash a variable-length key into a 32-bit value
226 k : the key (the unaligned variable-length array of bytes)
227 length : the length of the key, counting by bytes
228 val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
229 Returns a 32-bit value. Every bit of the key affects every bit of
230 the return value. Two keys differing by one or two bits will have
231 totally different hash values. Note that the return value is better
232 mixed than val2, so use that first.
234 The best hash table sizes are powers of 2. There is no need to do
235 mod a prime (mod is sooo slow!). If you need less than 32 bits,
236 use a bitmask. For example, if you need only 10 bits, do
237 h = (h & hashmask(10));
238 In which case, the hash table should have hashsize(10) elements.
240 If you are hashing n strings (uint8_t **)k, do it like this:
241 for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
243 By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
244 code any way you wish, private, educational, or commercial. It's free.
246 Use for hash table lookup, or anything where one collision in 2^^32 is
247 acceptable. Do NOT use for cryptographic purposes.
248 -------------------------------------------------------------------------------
251 static uint32_t hashlittle( const void *key, size_t length, uint32_t *val2 )
253 uint32_t a,b,c; /* internal state */
254 union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
256 /* Set up the internal state */
257 a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
259 u.ptr = key;
260 if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
261 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
262 const uint8_t *k8;
264 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
265 while (length > 12)
267 a += k[0];
268 b += k[1];
269 c += k[2];
270 mix(a,b,c);
271 length -= 12;
272 k += 3;
275 /*----------------------------- handle the last (probably partial) block */
277 * "k[2]&0xffffff" actually reads beyond the end of the string, but
278 * then masks off the part it's not allowed to read. Because the
279 * string is aligned, the masked-off tail is in the same word as the
280 * rest of the string. Every machine with memory protection I've seen
281 * does it on word boundaries, so is OK with this. But VALGRIND will
282 * still catch it and complain. The masking trick does make the hash
283 * noticably faster for short strings (like English words).
285 * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
287 #if 0
288 switch(length)
290 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
291 case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
292 case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
293 case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
294 case 8 : b+=k[1]; a+=k[0]; break;
295 case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
296 case 6 : b+=k[1]&0xffff; a+=k[0]; break;
297 case 5 : b+=k[1]&0xff; a+=k[0]; break;
298 case 4 : a+=k[0]; break;
299 case 3 : a+=k[0]&0xffffff; break;
300 case 2 : a+=k[0]&0xffff; break;
301 case 1 : a+=k[0]&0xff; break;
302 case 0 : return c; /* zero length strings require no mixing */
305 #else /* make valgrind happy */
307 k8 = (const uint8_t *)k;
308 switch(length)
310 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
311 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
312 case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
313 case 9 : c+=k8[8]; /* fall through */
314 case 8 : b+=k[1]; a+=k[0]; break;
315 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
316 case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
317 case 5 : b+=k8[4]; /* fall through */
318 case 4 : a+=k[0]; break;
319 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
320 case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
321 case 1 : a+=k8[0]; break;
322 case 0 : return c;
325 #endif /* !valgrind */
327 } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
328 const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
329 const uint8_t *k8;
331 /*--------------- all but last block: aligned reads and different mixing */
332 while (length > 12)
334 a += k[0] + (((uint32_t)k[1])<<16);
335 b += k[2] + (((uint32_t)k[3])<<16);
336 c += k[4] + (((uint32_t)k[5])<<16);
337 mix(a,b,c);
338 length -= 12;
339 k += 6;
342 /*----------------------------- handle the last (probably partial) block */
343 k8 = (const uint8_t *)k;
344 switch(length)
346 case 12: c+=k[4]+(((uint32_t)k[5])<<16);
347 b+=k[2]+(((uint32_t)k[3])<<16);
348 a+=k[0]+(((uint32_t)k[1])<<16);
349 break;
350 case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
351 case 10: c+=k[4];
352 b+=k[2]+(((uint32_t)k[3])<<16);
353 a+=k[0]+(((uint32_t)k[1])<<16);
354 break;
355 case 9 : c+=k8[8]; /* fall through */
356 case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
357 a+=k[0]+(((uint32_t)k[1])<<16);
358 break;
359 case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
360 case 6 : b+=k[2];
361 a+=k[0]+(((uint32_t)k[1])<<16);
362 break;
363 case 5 : b+=k8[4]; /* fall through */
364 case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
365 break;
366 case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
367 case 2 : a+=k[0];
368 break;
369 case 1 : a+=k8[0];
370 break;
371 case 0 : return c; /* zero length requires no mixing */
374 } else { /* need to read the key one byte at a time */
375 const uint8_t *k = (const uint8_t *)key;
377 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
378 while (length > 12)
380 a += k[0];
381 a += ((uint32_t)k[1])<<8;
382 a += ((uint32_t)k[2])<<16;
383 a += ((uint32_t)k[3])<<24;
384 b += k[4];
385 b += ((uint32_t)k[5])<<8;
386 b += ((uint32_t)k[6])<<16;
387 b += ((uint32_t)k[7])<<24;
388 c += k[8];
389 c += ((uint32_t)k[9])<<8;
390 c += ((uint32_t)k[10])<<16;
391 c += ((uint32_t)k[11])<<24;
392 mix(a,b,c);
393 length -= 12;
394 k += 12;
397 /*-------------------------------- last block: affect all 32 bits of (c) */
398 switch(length) /* all the case statements fall through */
400 case 12: c+=((uint32_t)k[11])<<24;
401 case 11: c+=((uint32_t)k[10])<<16;
402 case 10: c+=((uint32_t)k[9])<<8;
403 case 9 : c+=k[8];
404 case 8 : b+=((uint32_t)k[7])<<24;
405 case 7 : b+=((uint32_t)k[6])<<16;
406 case 6 : b+=((uint32_t)k[5])<<8;
407 case 5 : b+=k[4];
408 case 4 : a+=((uint32_t)k[3])<<24;
409 case 3 : a+=((uint32_t)k[2])<<16;
410 case 2 : a+=((uint32_t)k[1])<<8;
411 case 1 : a+=k[0];
412 break;
413 case 0 : return c;
417 final(a,b,c);
418 *val2 = b;
419 return c;
423 * hashbig():
424 * This is the same as hash_word() on big-endian machines. It is different
425 * from hashlittle() on all machines. hashbig() takes advantage of
426 * big-endian byte ordering.
428 static uint32_t hashbig( const void *key, size_t length, uint32_t *val2)
430 uint32_t a,b,c;
431 union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
433 /* Set up the internal state */
434 a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
436 u.ptr = key;
437 if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
438 const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
439 const uint8_t *k8;
441 /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
442 while (length > 12)
444 a += k[0];
445 b += k[1];
446 c += k[2];
447 mix(a,b,c);
448 length -= 12;
449 k += 3;
452 /*----------------------------- handle the last (probably partial) block */
454 * "k[2]<<8" actually reads beyond the end of the string, but
455 * then shifts out the part it's not allowed to read. Because the
456 * string is aligned, the illegal read is in the same word as the
457 * rest of the string. Every machine with memory protection I've seen
458 * does it on word boundaries, so is OK with this. But VALGRIND will
459 * still catch it and complain. The masking trick does make the hash
460 * noticably faster for short strings (like English words).
462 * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
464 #if 0
465 switch(length)
467 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
468 case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
469 case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
470 case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
471 case 8 : b+=k[1]; a+=k[0]; break;
472 case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
473 case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
474 case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
475 case 4 : a+=k[0]; break;
476 case 3 : a+=k[0]&0xffffff00; break;
477 case 2 : a+=k[0]&0xffff0000; break;
478 case 1 : a+=k[0]&0xff000000; break;
479 case 0 : return c; /* zero length strings require no mixing */
482 #else /* make valgrind happy */
484 k8 = (const uint8_t *)k;
485 switch(length) /* all the case statements fall through */
487 case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
488 case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
489 case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
490 case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
491 case 8 : b+=k[1]; a+=k[0]; break;
492 case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
493 case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
494 case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
495 case 4 : a+=k[0]; break;
496 case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
497 case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
498 case 1 : a+=((uint32_t)k8[0])<<24; break;
499 case 0 : return c;
502 #endif /* !VALGRIND */
504 } else { /* need to read the key one byte at a time */
505 const uint8_t *k = (const uint8_t *)key;
507 /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
508 while (length > 12)
510 a += ((uint32_t)k[0])<<24;
511 a += ((uint32_t)k[1])<<16;
512 a += ((uint32_t)k[2])<<8;
513 a += ((uint32_t)k[3]);
514 b += ((uint32_t)k[4])<<24;
515 b += ((uint32_t)k[5])<<16;
516 b += ((uint32_t)k[6])<<8;
517 b += ((uint32_t)k[7]);
518 c += ((uint32_t)k[8])<<24;
519 c += ((uint32_t)k[9])<<16;
520 c += ((uint32_t)k[10])<<8;
521 c += ((uint32_t)k[11]);
522 mix(a,b,c);
523 length -= 12;
524 k += 12;
527 /*-------------------------------- last block: affect all 32 bits of (c) */
528 switch(length) /* all the case statements fall through */
530 case 12: c+=k[11];
531 case 11: c+=((uint32_t)k[10])<<8;
532 case 10: c+=((uint32_t)k[9])<<16;
533 case 9 : c+=((uint32_t)k[8])<<24;
534 case 8 : b+=k[7];
535 case 7 : b+=((uint32_t)k[6])<<8;
536 case 6 : b+=((uint32_t)k[5])<<16;
537 case 5 : b+=((uint32_t)k[4])<<24;
538 case 4 : a+=k[3];
539 case 3 : a+=((uint32_t)k[2])<<8;
540 case 2 : a+=((uint32_t)k[1])<<16;
541 case 1 : a+=((uint32_t)k[0])<<24;
542 break;
543 case 0 : return c;
547 final(a,b,c);
548 *val2 = b;
549 return c;
552 /* I basically use hashlittle here, but use native endian within each
553 * element. This delivers least-surprise: hash such as "int arr[] = {
554 * 1, 2 }; hash_stable(arr, 2, 0);" will be the same on big and little
555 * endian machines, even though a bytewise hash wouldn't be. */
556 uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base)
558 const uint64_t *k = key;
559 uint32_t a,b,c;
561 /* Set up the internal state */
562 a = b = c = 0xdeadbeef + ((uint32_t)n*8) + (base >> 32) + base;
564 while (n > 3) {
565 a += (uint32_t)k[0];
566 b += (uint32_t)(k[0] >> 32);
567 c += (uint32_t)k[1];
568 mix(a,b,c);
569 a += (uint32_t)(k[1] >> 32);
570 b += (uint32_t)k[2];
571 c += (uint32_t)(k[2] >> 32);
572 mix(a,b,c);
573 n -= 3;
574 k += 3;
576 switch (n) {
577 case 2:
578 a += (uint32_t)k[0];
579 b += (uint32_t)(k[0] >> 32);
580 c += (uint32_t)k[1];
581 mix(a,b,c);
582 a += (uint32_t)(k[1] >> 32);
583 break;
584 case 1:
585 a += (uint32_t)k[0];
586 b += (uint32_t)(k[0] >> 32);
587 break;
588 case 0:
589 return c;
591 final(a,b,c);
592 return ((uint64_t)b << 32) | c;
595 uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base)
597 const uint32_t *k = key;
598 uint32_t a,b,c;
600 /* Set up the internal state */
601 a = b = c = 0xdeadbeef + ((uint32_t)n*4) + (base >> 32) + base;
603 while (n > 3) {
604 a += k[0];
605 b += k[1];
606 c += k[2];
607 mix(a,b,c);
609 n -= 3;
610 k += 3;
612 switch (n) {
613 case 2:
614 b += (uint32_t)k[1];
615 case 1:
616 a += (uint32_t)k[0];
617 break;
618 case 0:
619 return c;
621 final(a,b,c);
622 return ((uint64_t)b << 32) | c;
625 uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base)
627 const uint16_t *k = key;
628 uint32_t a,b,c;
630 /* Set up the internal state */
631 a = b = c = 0xdeadbeef + ((uint32_t)n*2) + (base >> 32) + base;
633 while (n > 6) {
634 a += (uint32_t)k[0] + ((uint32_t)k[1] << 16);
635 b += (uint32_t)k[2] + ((uint32_t)k[3] << 16);
636 c += (uint32_t)k[4] + ((uint32_t)k[5] << 16);
637 mix(a,b,c);
639 n -= 6;
640 k += 6;
643 switch (n) {
644 case 5:
645 c += (uint32_t)k[4];
646 case 4:
647 b += ((uint32_t)k[3] << 16);
648 case 3:
649 b += (uint32_t)k[2];
650 case 2:
651 a += ((uint32_t)k[1] << 16);
652 case 1:
653 a += (uint32_t)k[0];
654 break;
655 case 0:
656 return c;
658 final(a,b,c);
659 return ((uint64_t)b << 32) | c;
662 uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base)
664 uint32_t b32 = base + (base >> 32);
665 uint32_t lower = hashlittle(key, n, &b32);
667 return ((uint64_t)b32 << 32) | lower;
670 uint32_t hash_any(const void *key, size_t length, uint32_t base)
672 if (HASH_BIG_ENDIAN)
673 return hashbig(key, length, &base);
674 else
675 return hashlittle(key, length, &base);
678 uint32_t hash_stable_64(const void *key, size_t n, uint32_t base)
680 return hash64_stable_64(key, n, base);
683 uint32_t hash_stable_32(const void *key, size_t n, uint32_t base)
685 return hash64_stable_32(key, n, base);
688 uint32_t hash_stable_16(const void *key, size_t n, uint32_t base)
690 return hash64_stable_16(key, n, base);
693 uint32_t hash_stable_8(const void *key, size_t n, uint32_t base)
695 return hashlittle(key, n, &base);
698 /* Jenkins' lookup8 is a 64 bit hash, but he says it's obsolete. Use
699 * the plain one and recombine into 64 bits. */
700 uint64_t hash64_any(const void *key, size_t length, uint64_t base)
702 uint32_t b32 = base + (base >> 32);
703 uint32_t lower;
705 if (HASH_BIG_ENDIAN)
706 lower = hashbig(key, length, &b32);
707 else
708 lower = hashlittle(key, length, &b32);
710 return ((uint64_t)b32 << 32) | lower;
713 #ifdef SELF_TEST
715 /* used for timings */
716 void driver1()
718 uint8_t buf[256];
719 uint32_t i;
720 uint32_t h=0;
721 time_t a,z;
723 time(&a);
724 for (i=0; i<256; ++i) buf[i] = 'x';
725 for (i=0; i<1; ++i)
727 h = hashlittle(&buf[0],1,h);
729 time(&z);
730 if (z-a > 0) printf("time %d %.8x\n", z-a, h);
733 /* check that every input bit changes every output bit half the time */
734 #define HASHSTATE 1
735 #define HASHLEN 1
736 #define MAXPAIR 60
737 #define MAXLEN 70
738 void driver2()
740 uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
741 uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
742 uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
743 uint32_t x[HASHSTATE],y[HASHSTATE];
744 uint32_t hlen;
746 printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
747 for (hlen=0; hlen < MAXLEN; ++hlen)
749 z=0;
750 for (i=0; i<hlen; ++i) /*----------------------- for each input byte, */
752 for (j=0; j<8; ++j) /*------------------------ for each input bit, */
754 for (m=1; m<8; ++m) /*------------ for several possible initvals, */
756 for (l=0; l<HASHSTATE; ++l)
757 e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
759 /*---- check that every output bit is affected by that input bit */
760 for (k=0; k<MAXPAIR; k+=2)
762 uint32_t finished=1;
763 /* keys have one bit different */
764 for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
765 /* have a and b be two keys differing in only one bit */
766 a[i] ^= (k<<j);
767 a[i] ^= (k>>(8-j));
768 c[0] = hashlittle(a, hlen, m);
769 b[i] ^= ((k+1)<<j);
770 b[i] ^= ((k+1)>>(8-j));
771 d[0] = hashlittle(b, hlen, m);
772 /* check every bit is 1, 0, set, and not set at least once */
773 for (l=0; l<HASHSTATE; ++l)
775 e[l] &= (c[l]^d[l]);
776 f[l] &= ~(c[l]^d[l]);
777 g[l] &= c[l];
778 h[l] &= ~c[l];
779 x[l] &= d[l];
780 y[l] &= ~d[l];
781 if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
783 if (finished) break;
785 if (k>z) z=k;
786 if (k==MAXPAIR)
788 printf("Some bit didn't change: ");
789 printf("%.8x %.8x %.8x %.8x %.8x %.8x ",
790 e[0],f[0],g[0],h[0],x[0],y[0]);
791 printf("i %d j %d m %d len %d\n", i, j, m, hlen);
793 if (z==MAXPAIR) goto done;
797 done:
798 if (z < MAXPAIR)
800 printf("Mix success %2d bytes %2d initvals ",i,m);
801 printf("required %d trials\n", z/2);
804 printf("\n");
807 /* Check for reading beyond the end of the buffer and alignment problems */
808 void driver3()
810 uint8_t buf[MAXLEN+20], *b;
811 uint32_t len;
812 uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
813 uint32_t h;
814 uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
815 uint32_t i;
816 uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
817 uint32_t j;
818 uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
819 uint32_t ref,x,y;
820 uint8_t *p;
822 printf("Endianness. These lines should all be the same (for values filled in):\n");
823 printf("%.8x %.8x %.8x\n",
824 hash_word((const uint32_t *)q, (sizeof(q)-1)/4, 13),
825 hash_word((const uint32_t *)q, (sizeof(q)-5)/4, 13),
826 hash_word((const uint32_t *)q, (sizeof(q)-9)/4, 13));
827 p = q;
828 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
829 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
830 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
831 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
832 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
833 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
834 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
835 p = &qq[1];
836 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
837 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
838 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
839 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
840 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
841 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
842 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
843 p = &qqq[2];
844 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
845 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
846 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
847 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
848 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
849 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
850 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
851 p = &qqqq[3];
852 printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
853 hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13),
854 hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13),
855 hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13),
856 hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13),
857 hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13),
858 hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13));
859 printf("\n");
861 /* check that hashlittle2 and hashlittle produce the same results */
862 i=47; j=0;
863 hashlittle2(q, sizeof(q), &i, &j);
864 if (hashlittle(q, sizeof(q), 47) != i)
865 printf("hashlittle2 and hashlittle mismatch\n");
867 /* check that hash_word2 and hash_word produce the same results */
868 len = 0xdeadbeef;
869 i=47, j=0;
870 hash_word2(&len, 1, &i, &j);
871 if (hash_word(&len, 1, 47) != i)
872 printf("hash_word2 and hash_word mismatch %x %x\n",
873 i, hash_word(&len, 1, 47));
875 /* check hashlittle doesn't read before or after the ends of the string */
876 for (h=0, b=buf+1; h<8; ++h, ++b)
878 for (i=0; i<MAXLEN; ++i)
880 len = i;
881 for (j=0; j<i; ++j) *(b+j)=0;
883 /* these should all be equal */
884 ref = hashlittle(b, len, (uint32_t)1);
885 *(b+i)=(uint8_t)~0;
886 *(b-1)=(uint8_t)~0;
887 x = hashlittle(b, len, (uint32_t)1);
888 y = hashlittle(b, len, (uint32_t)1);
889 if ((ref != x) || (ref != y))
891 printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y,
892 h, i);
898 /* check for problems with nulls */
899 void driver4()
901 uint8_t buf[1];
902 uint32_t h,i,state[HASHSTATE];
905 buf[0] = ~0;
906 for (i=0; i<HASHSTATE; ++i) state[i] = 1;
907 printf("These should all be different\n");
908 for (i=0, h=0; i<8; ++i)
910 h = hashlittle(buf, 0, h);
911 printf("%2ld 0-byte strings, hash is %.8x\n", i, h);
916 int main()
918 driver1(); /* test that the key is hashed: used for timings */
919 driver2(); /* test that whole key is hashed thoroughly */
920 driver3(); /* test that nothing but the key is hashed */
921 driver4(); /* test hashing multiple buffers (all buffers are null) */
922 return 1;
925 #endif /* SELF_TEST */