r23798: updated old Temple Place FSF addresses to new URL
[Samba.git] / source / lib / ldb / common / qsort.c
blob79dd64128f24ce6c3a0ad99e686535645731e32a
1 /* Copyright (C) 1991,1992,1996,1997,1999,2004 Free Software Foundation, Inc.
2 This file is part of the GNU C Library.
3 Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */
18 /* If you consider tuning this algorithm, you should consult first:
19 Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
20 Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
22 /* Modified to be used in samba4 by
23 * Simo Sorce <idra@samba.org> 2005
26 #include "includes.h"
27 #include "ldb/include/includes.h"
29 /* Byte-wise swap two items of size SIZE. */
30 #define SWAP(a, b, size) \
31 do \
32 { \
33 register size_t __size = (size); \
34 register char *__a = (a), *__b = (b); \
35 do \
36 { \
37 char __tmp = *__a; \
38 *__a++ = *__b; \
39 *__b++ = __tmp; \
40 } while (--__size > 0); \
41 } while (0)
43 /* Discontinue quicksort algorithm when partition gets below this size.
44 This particular magic number was chosen to work best on a Sun 4/260. */
45 #define MAX_THRESH 4
47 /* Stack node declarations used to store unfulfilled partition obligations. */
48 typedef struct
50 char *lo;
51 char *hi;
52 } stack_node;
54 /* The next 4 #defines implement a very fast in-line stack abstraction. */
55 /* The stack needs log (total_elements) entries (we could even subtract
56 log(MAX_THRESH)). Since total_elements has type size_t, we get as
57 upper bound for log (total_elements):
58 bits per byte (CHAR_BIT) * sizeof(size_t). */
59 #ifndef CHAR_BIT
60 #define CHAR_BIT 8
61 #endif
62 #define STACK_SIZE (CHAR_BIT * sizeof(size_t))
63 #define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
64 #define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
65 #define STACK_NOT_EMPTY (stack < top)
68 /* Order size using quicksort. This implementation incorporates
69 four optimizations discussed in Sedgewick:
71 1. Non-recursive, using an explicit stack of pointer that store the
72 next array partition to sort. To save time, this maximum amount
73 of space required to store an array of SIZE_MAX is allocated on the
74 stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
75 only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
76 Pretty cheap, actually.
78 2. Chose the pivot element using a median-of-three decision tree.
79 This reduces the probability of selecting a bad pivot value and
80 eliminates certain extraneous comparisons.
82 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
83 insertion sort to order the MAX_THRESH items within each partition.
84 This is a big win, since insertion sort is faster for small, mostly
85 sorted array segments.
87 4. The larger of the two sub-partitions is always pushed onto the
88 stack first, with the algorithm then concentrating on the
89 smaller partition. This *guarantees* no more than log (total_elems)
90 stack size is needed (actually O(1) in this case)! */
92 void ldb_qsort (void *const pbase, size_t total_elems, size_t size,
93 void *opaque, ldb_qsort_cmp_fn_t cmp)
95 register char *base_ptr = (char *) pbase;
97 const size_t max_thresh = MAX_THRESH * size;
99 if (total_elems == 0)
100 /* Avoid lossage with unsigned arithmetic below. */
101 return;
103 if (total_elems > MAX_THRESH)
105 char *lo = base_ptr;
106 char *hi = &lo[size * (total_elems - 1)];
107 stack_node stack[STACK_SIZE];
108 stack_node *top = stack;
110 PUSH (NULL, NULL);
112 while (STACK_NOT_EMPTY)
114 char *left_ptr;
115 char *right_ptr;
117 /* Select median value from among LO, MID, and HI. Rearrange
118 LO and HI so the three values are sorted. This lowers the
119 probability of picking a pathological pivot value and
120 skips a comparison for both the LEFT_PTR and RIGHT_PTR in
121 the while loops. */
123 char *mid = lo + size * ((hi - lo) / size >> 1);
125 if ((*cmp) ((void *) mid, (void *) lo, opaque) < 0)
126 SWAP (mid, lo, size);
127 if ((*cmp) ((void *) hi, (void *) mid, opaque) < 0)
128 SWAP (mid, hi, size);
129 else
130 goto jump_over;
131 if ((*cmp) ((void *) mid, (void *) lo, opaque) < 0)
132 SWAP (mid, lo, size);
133 jump_over:;
135 left_ptr = lo + size;
136 right_ptr = hi - size;
138 /* Here's the famous ``collapse the walls'' section of quicksort.
139 Gotta like those tight inner loops! They are the main reason
140 that this algorithm runs much faster than others. */
143 while ((*cmp) ((void *) left_ptr, (void *) mid, opaque) < 0)
144 left_ptr += size;
146 while ((*cmp) ((void *) mid, (void *) right_ptr, opaque) < 0)
147 right_ptr -= size;
149 if (left_ptr < right_ptr)
151 SWAP (left_ptr, right_ptr, size);
152 if (mid == left_ptr)
153 mid = right_ptr;
154 else if (mid == right_ptr)
155 mid = left_ptr;
156 left_ptr += size;
157 right_ptr -= size;
159 else if (left_ptr == right_ptr)
161 left_ptr += size;
162 right_ptr -= size;
163 break;
166 while (left_ptr <= right_ptr);
168 /* Set up pointers for next iteration. First determine whether
169 left and right partitions are below the threshold size. If so,
170 ignore one or both. Otherwise, push the larger partition's
171 bounds on the stack and continue sorting the smaller one. */
173 if ((size_t) (right_ptr - lo) <= max_thresh)
175 if ((size_t) (hi - left_ptr) <= max_thresh)
176 /* Ignore both small partitions. */
177 POP (lo, hi);
178 else
179 /* Ignore small left partition. */
180 lo = left_ptr;
182 else if ((size_t) (hi - left_ptr) <= max_thresh)
183 /* Ignore small right partition. */
184 hi = right_ptr;
185 else if ((right_ptr - lo) > (hi - left_ptr))
187 /* Push larger left partition indices. */
188 PUSH (lo, right_ptr);
189 lo = left_ptr;
191 else
193 /* Push larger right partition indices. */
194 PUSH (left_ptr, hi);
195 hi = right_ptr;
200 /* Once the BASE_PTR array is partially sorted by quicksort the rest
201 is completely sorted using insertion sort, since this is efficient
202 for partitions below MAX_THRESH size. BASE_PTR points to the beginning
203 of the array to sort, and END_PTR points at the very last element in
204 the array (*not* one beyond it!). */
206 #define min(x, y) ((x) < (y) ? (x) : (y))
209 char *const end_ptr = &base_ptr[size * (total_elems - 1)];
210 char *tmp_ptr = base_ptr;
211 char *thresh = min(end_ptr, base_ptr + max_thresh);
212 register char *run_ptr;
214 /* Find smallest element in first threshold and place it at the
215 array's beginning. This is the smallest array element,
216 and the operation speeds up insertion sort's inner loop. */
218 for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
219 if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, opaque) < 0)
220 tmp_ptr = run_ptr;
222 if (tmp_ptr != base_ptr)
223 SWAP (tmp_ptr, base_ptr, size);
225 /* Insertion sort, running from left-hand-side up to right-hand-side. */
227 run_ptr = base_ptr + size;
228 while ((run_ptr += size) <= end_ptr)
230 tmp_ptr = run_ptr - size;
231 while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, opaque) < 0)
232 tmp_ptr -= size;
234 tmp_ptr += size;
235 if (tmp_ptr != run_ptr)
237 char *trav;
239 trav = run_ptr + size;
240 while (--trav >= run_ptr)
242 char c = *trav;
243 char *hi, *lo;
245 for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
246 *hi = *lo;
247 *hi = c;