ldb_tdb: Call talloc_free(options_dn) as soon as we are done with options_dn
[Samba.git] / ctdb / server / ipalloc_lcp2.c
blob48e0d0218e84bc0d7663c557a27faf4037b741b9
1 /*
2 ctdb ip takeover code
4 Copyright (C) Ronnie Sahlberg 2007
5 Copyright (C) Andrew Tridgell 2007
6 Copyright (C) Martin Schwenke 2011
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "replace.h"
23 #include "system/network.h"
25 #include "lib/util/debug.h"
26 #include "common/logging.h"
28 #include "protocol/protocol_api.h"
30 #include "server/ipalloc_private.h"
33 * This is the length of the longtest common prefix between the IPs.
34 * It is calculated by XOR-ing the 2 IPs together and counting the
35 * number of leading zeroes. The implementation means that all
36 * addresses end up being 128 bits long.
38 * FIXME? Should we consider IPv4 and IPv6 separately given that the
39 * 12 bytes of 0 prefix padding will hurt the algorithm if there are
40 * lots of nodes and IP addresses?
42 static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
44 uint32_t ip1_k[IP_KEYLEN];
45 uint32_t *t;
46 int i;
47 uint32_t x;
49 uint32_t distance = 0;
51 memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
52 t = ip_key(ip2);
53 for (i=0; i<IP_KEYLEN; i++) {
54 x = ip1_k[i] ^ t[i];
55 if (x == 0) {
56 distance += 32;
57 } else {
58 /* Count number of leading zeroes.
59 * FIXME? This could be optimised...
61 while ((x & (1 << 31)) == 0) {
62 x <<= 1;
63 distance += 1;
68 return distance;
71 /* Calculate the IP distance for the given IP relative to IPs on the
72 given node. The ips argument is generally the all_ips variable
73 used in the main part of the algorithm.
75 static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
76 struct public_ip_list *ips,
77 int pnn)
79 struct public_ip_list *t;
80 uint32_t d;
82 uint32_t sum = 0;
84 for (t = ips; t != NULL; t = t->next) {
85 if (t->pnn != pnn) {
86 continue;
89 /* Optimisation: We never calculate the distance
90 * between an address and itself. This allows us to
91 * calculate the effect of removing an address from a
92 * node by simply calculating the distance between
93 * that address and all of the exitsing addresses.
94 * Moreover, we assume that we're only ever dealing
95 * with addresses from all_ips so we can identify an
96 * address via a pointer rather than doing a more
97 * expensive address comparison. */
98 if (&(t->addr) == ip) {
99 continue;
102 d = ip_distance(ip, &(t->addr));
103 sum += d * d; /* Cheaper than pulling in math.h :-) */
106 return sum;
109 /* Return the LCP2 imbalance metric for addresses currently assigned
110 to the given node.
112 static uint32_t lcp2_imbalance(struct public_ip_list * all_ips, int pnn)
114 struct public_ip_list *t;
116 uint32_t imbalance = 0;
118 for (t = all_ips; t != NULL; t = t->next) {
119 if (t->pnn != pnn) {
120 continue;
122 /* Pass the rest of the IPs rather than the whole
123 all_ips input list.
125 imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
128 return imbalance;
131 static bool lcp2_init(struct ipalloc_state *ipalloc_state,
132 uint32_t **lcp2_imbalances,
133 bool **rebalance_candidates)
135 int i, numnodes;
136 struct public_ip_list *t;
138 numnodes = ipalloc_state->num;
140 *rebalance_candidates = talloc_array(ipalloc_state, bool, numnodes);
141 if (*rebalance_candidates == NULL) {
142 DEBUG(DEBUG_ERR, (__location__ " out of memory\n"));
143 return false;
145 *lcp2_imbalances = talloc_array(ipalloc_state, uint32_t, numnodes);
146 if (*lcp2_imbalances == NULL) {
147 DEBUG(DEBUG_ERR, (__location__ " out of memory\n"));
148 return false;
151 for (i=0; i<numnodes; i++) {
152 (*lcp2_imbalances)[i] =
153 lcp2_imbalance(ipalloc_state->all_ips, i);
154 /* First step: assume all nodes are candidates */
155 (*rebalance_candidates)[i] = true;
158 /* 2nd step: if a node has IPs assigned then it must have been
159 * healthy before, so we remove it from consideration. This
160 * is overkill but is all we have because we don't maintain
161 * state between takeover runs. An alternative would be to
162 * keep state and invalidate it every time the recovery master
163 * changes.
165 for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
166 if (t->pnn != -1) {
167 (*rebalance_candidates)[t->pnn] = false;
171 /* 3rd step: if a node is forced to re-balance then
172 we allow failback onto the node */
173 if (ipalloc_state->force_rebalance_nodes == NULL) {
174 return true;
176 for (i = 0;
177 i < talloc_array_length(ipalloc_state->force_rebalance_nodes);
178 i++) {
179 uint32_t pnn = ipalloc_state->force_rebalance_nodes[i];
180 if (pnn >= numnodes) {
181 DEBUG(DEBUG_ERR,
182 (__location__ "unknown node %u\n", pnn));
183 continue;
186 DEBUG(DEBUG_NOTICE,
187 ("Forcing rebalancing of IPs to node %u\n", pnn));
188 (*rebalance_candidates)[pnn] = true;
191 return true;
194 /* Allocate any unassigned addresses using the LCP2 algorithm to find
195 * the IP/node combination that will cost the least.
197 static void lcp2_allocate_unassigned(struct ipalloc_state *ipalloc_state,
198 uint32_t *lcp2_imbalances)
200 struct public_ip_list *t;
201 int dstnode, numnodes;
203 int minnode;
204 uint32_t mindsum, dstdsum, dstimbl;
205 uint32_t minimbl = 0;
206 struct public_ip_list *minip;
208 bool should_loop = true;
209 bool have_unassigned = true;
211 numnodes = ipalloc_state->num;
213 while (have_unassigned && should_loop) {
214 should_loop = false;
216 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
217 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
219 minnode = -1;
220 mindsum = 0;
221 minip = NULL;
223 /* loop over each unassigned ip. */
224 for (t = ipalloc_state->all_ips; t != NULL ; t = t->next) {
225 if (t->pnn != -1) {
226 continue;
229 for (dstnode = 0; dstnode < numnodes; dstnode++) {
230 /* only check nodes that can actually takeover this ip */
231 if (!can_node_takeover_ip(ipalloc_state,
232 dstnode,
233 t)) {
234 /* no it couldnt so skip to the next node */
235 continue;
238 dstdsum = ip_distance_2_sum(&(t->addr),
239 ipalloc_state->all_ips,
240 dstnode);
241 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
242 DEBUG(DEBUG_DEBUG,
243 (" %s -> %d [+%d]\n",
244 ctdb_sock_addr_to_string(ipalloc_state,
245 &(t->addr)),
246 dstnode,
247 dstimbl - lcp2_imbalances[dstnode]));
250 if ((minnode == -1) || (dstdsum < mindsum)) {
251 minnode = dstnode;
252 minimbl = dstimbl;
253 mindsum = dstdsum;
254 minip = t;
255 should_loop = true;
260 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
262 /* If we found one then assign it to the given node. */
263 if (minnode != -1) {
264 minip->pnn = minnode;
265 lcp2_imbalances[minnode] = minimbl;
266 DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
267 ctdb_sock_addr_to_string(
268 ipalloc_state,
269 &(minip->addr)),
270 minnode,
271 mindsum));
274 /* There might be a better way but at least this is clear. */
275 have_unassigned = false;
276 for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
277 if (t->pnn == -1) {
278 have_unassigned = true;
283 /* We know if we have an unassigned addresses so we might as
284 * well optimise.
286 if (have_unassigned) {
287 for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
288 if (t->pnn == -1) {
289 DEBUG(DEBUG_WARNING,
290 ("Failed to find node to cover ip %s\n",
291 ctdb_sock_addr_to_string(ipalloc_state,
292 &t->addr)));
298 /* LCP2 algorithm for rebalancing the cluster. Given a candidate node
299 * to move IPs from, determines the best IP/destination node
300 * combination to move from the source node.
302 static bool lcp2_failback_candidate(struct ipalloc_state *ipalloc_state,
303 int srcnode,
304 uint32_t *lcp2_imbalances,
305 bool *rebalance_candidates)
307 int dstnode, mindstnode, numnodes;
308 uint32_t srcimbl, srcdsum, dstimbl, dstdsum;
309 uint32_t minsrcimbl, mindstimbl;
310 struct public_ip_list *minip;
311 struct public_ip_list *t;
313 /* Find an IP and destination node that best reduces imbalance. */
314 srcimbl = 0;
315 minip = NULL;
316 minsrcimbl = 0;
317 mindstnode = -1;
318 mindstimbl = 0;
320 numnodes = ipalloc_state->num;
322 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
323 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n",
324 srcnode, lcp2_imbalances[srcnode]));
326 for (t = ipalloc_state->all_ips; t != NULL; t = t->next) {
327 /* Only consider addresses on srcnode. */
328 if (t->pnn != srcnode) {
329 continue;
332 /* What is this IP address costing the source node? */
333 srcdsum = ip_distance_2_sum(&(t->addr),
334 ipalloc_state->all_ips,
335 srcnode);
336 srcimbl = lcp2_imbalances[srcnode] - srcdsum;
338 /* Consider this IP address would cost each potential
339 * destination node. Destination nodes are limited to
340 * those that are newly healthy, since we don't want
341 * to do gratuitous failover of IPs just to make minor
342 * balance improvements.
344 for (dstnode = 0; dstnode < numnodes; dstnode++) {
345 if (!rebalance_candidates[dstnode]) {
346 continue;
349 /* only check nodes that can actually takeover this ip */
350 if (!can_node_takeover_ip(ipalloc_state, dstnode,
351 t)) {
352 /* no it couldnt so skip to the next node */
353 continue;
356 dstdsum = ip_distance_2_sum(&(t->addr),
357 ipalloc_state->all_ips,
358 dstnode);
359 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
360 DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
361 srcnode, -srcdsum,
362 ctdb_sock_addr_to_string(
363 ipalloc_state, &(t->addr)),
364 dstnode, dstdsum));
366 if ((dstimbl < lcp2_imbalances[srcnode]) &&
367 (dstdsum < srcdsum) && \
368 ((mindstnode == -1) || \
369 ((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
371 minip = t;
372 minsrcimbl = srcimbl;
373 mindstnode = dstnode;
374 mindstimbl = dstimbl;
378 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
380 if (mindstnode != -1) {
381 /* We found a move that makes things better... */
382 DEBUG(DEBUG_INFO,
383 ("%d [%d] -> %s -> %d [+%d]\n",
384 srcnode, minsrcimbl - lcp2_imbalances[srcnode],
385 ctdb_sock_addr_to_string(ipalloc_state, &(minip->addr)),
386 mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
389 lcp2_imbalances[srcnode] = minsrcimbl;
390 lcp2_imbalances[mindstnode] = mindstimbl;
391 minip->pnn = mindstnode;
393 return true;
396 return false;
399 struct lcp2_imbalance_pnn {
400 uint32_t imbalance;
401 int pnn;
404 static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
406 const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
407 const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
409 if (lipa->imbalance > lipb->imbalance) {
410 return -1;
411 } else if (lipa->imbalance == lipb->imbalance) {
412 return 0;
413 } else {
414 return 1;
418 /* LCP2 algorithm for rebalancing the cluster. This finds the source
419 * node with the highest LCP2 imbalance, and then determines the best
420 * IP/destination node combination to move from the source node.
422 static void lcp2_failback(struct ipalloc_state *ipalloc_state,
423 uint32_t *lcp2_imbalances,
424 bool *rebalance_candidates)
426 int i, numnodes;
427 struct lcp2_imbalance_pnn * lips;
428 bool again;
430 numnodes = ipalloc_state->num;
432 try_again:
433 /* Put the imbalances and nodes into an array, sort them and
434 * iterate through candidates. Usually the 1st one will be
435 * used, so this doesn't cost much...
437 DEBUG(DEBUG_DEBUG,("+++++++++++++++++++++++++++++++++++++++++\n"));
438 DEBUG(DEBUG_DEBUG,("Selecting most imbalanced node from:\n"));
439 lips = talloc_array(ipalloc_state, struct lcp2_imbalance_pnn, numnodes);
440 for (i = 0; i < numnodes; i++) {
441 lips[i].imbalance = lcp2_imbalances[i];
442 lips[i].pnn = i;
443 DEBUG(DEBUG_DEBUG,(" %d [%d]\n", i, lcp2_imbalances[i]));
445 qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
446 lcp2_cmp_imbalance_pnn);
448 again = false;
449 for (i = 0; i < numnodes; i++) {
450 /* This means that all nodes had 0 or 1 addresses, so
451 * can't be imbalanced.
453 if (lips[i].imbalance == 0) {
454 break;
457 if (lcp2_failback_candidate(ipalloc_state,
458 lips[i].pnn,
459 lcp2_imbalances,
460 rebalance_candidates)) {
461 again = true;
462 break;
466 talloc_free(lips);
467 if (again) {
468 goto try_again;
472 bool ipalloc_lcp2(struct ipalloc_state *ipalloc_state)
474 uint32_t *lcp2_imbalances;
475 bool *rebalance_candidates;
476 int numnodes, num_rebalance_candidates, i;
477 bool ret = true;
479 unassign_unsuitable_ips(ipalloc_state);
481 if (!lcp2_init(ipalloc_state,
482 &lcp2_imbalances, &rebalance_candidates)) {
483 ret = false;
484 goto finished;
487 lcp2_allocate_unassigned(ipalloc_state, lcp2_imbalances);
489 /* If we don't want IPs to fail back then don't rebalance IPs. */
490 if (ipalloc_state->no_ip_failback) {
491 goto finished;
494 /* It is only worth continuing if we have suitable target
495 * nodes to transfer IPs to. This check is much cheaper than
496 * continuing on...
498 numnodes = ipalloc_state->num;
499 num_rebalance_candidates = 0;
500 for (i=0; i<numnodes; i++) {
501 if (rebalance_candidates[i]) {
502 num_rebalance_candidates++;
505 if (num_rebalance_candidates == 0) {
506 goto finished;
509 /* Now, try to make sure the ip adresses are evenly distributed
510 across the nodes.
512 lcp2_failback(ipalloc_state, lcp2_imbalances, rebalance_candidates);
514 finished:
515 return ret;