Revert "libwbclient4: Remove unused composite-based functions"
[Samba.git] / ctdb / server / ctdb_takeover.c
blobd3a6e25aa3a6d90eb44fc2c64f6af3406291f255
1 /*
2 ctdb ip takeover code
4 Copyright (C) Ronnie Sahlberg 2007
5 Copyright (C) Andrew Tridgell 2007
6 Copyright (C) Martin Schwenke 2011
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "includes.h"
22 #include "tdb.h"
23 #include "lib/util/dlinklist.h"
24 #include "system/network.h"
25 #include "system/filesys.h"
26 #include "system/wait.h"
27 #include "../include/ctdb_private.h"
28 #include "../common/rb_tree.h"
31 #define TAKEOVER_TIMEOUT() timeval_current_ofs(ctdb->tunable.takeover_timeout,0)
33 #define CTDB_ARP_INTERVAL 1
34 #define CTDB_ARP_REPEAT 3
36 /* Flags used in IP allocation algorithms. */
37 struct ctdb_ipflags {
38 bool noiptakeover;
39 bool noiphost;
42 struct ctdb_iface {
43 struct ctdb_iface *prev, *next;
44 const char *name;
45 bool link_up;
46 uint32_t references;
49 static const char *ctdb_vnn_iface_string(const struct ctdb_vnn *vnn)
51 if (vnn->iface) {
52 return vnn->iface->name;
55 return "__none__";
58 static int ctdb_add_local_iface(struct ctdb_context *ctdb, const char *iface)
60 struct ctdb_iface *i;
62 /* Verify that we dont have an entry for this ip yet */
63 for (i=ctdb->ifaces;i;i=i->next) {
64 if (strcmp(i->name, iface) == 0) {
65 return 0;
69 /* create a new structure for this interface */
70 i = talloc_zero(ctdb, struct ctdb_iface);
71 CTDB_NO_MEMORY_FATAL(ctdb, i);
72 i->name = talloc_strdup(i, iface);
73 CTDB_NO_MEMORY(ctdb, i->name);
75 * If link_up defaults to true then IPs can be allocated to a
76 * node during the first recovery. However, then an interface
77 * could have its link marked down during the startup event,
78 * causing the IP to move almost immediately. If link_up
79 * defaults to false then, during normal operation, IPs added
80 * to a new interface can't be assigned until a monitor cycle
81 * has occurred and marked the new interfaces up. This makes
82 * IP allocation unpredictable. The following is a neat
83 * compromise: early in startup link_up defaults to false, so
84 * IPs can't be assigned, and after startup IPs can be
85 * assigned immediately.
87 i->link_up = (ctdb->runstate == CTDB_RUNSTATE_RUNNING);
89 DLIST_ADD(ctdb->ifaces, i);
91 return 0;
94 static bool vnn_has_interface_with_name(struct ctdb_vnn *vnn,
95 const char *name)
97 int n;
99 for (n = 0; vnn->ifaces[n] != NULL; n++) {
100 if (strcmp(name, vnn->ifaces[n]) == 0) {
101 return true;
105 return false;
108 /* If any interfaces now have no possible IPs then delete them. This
109 * implementation is naive (i.e. simple) rather than clever
110 * (i.e. complex). Given that this is run on delip and that operation
111 * is rare, this doesn't need to be efficient - it needs to be
112 * foolproof. One alternative is reference counting, where the logic
113 * is distributed and can, therefore, be broken in multiple places.
114 * Another alternative is to build a red-black tree of interfaces that
115 * can have addresses (by walking ctdb->vnn and ctdb->single_ip_vnn
116 * once) and then walking ctdb->ifaces once and deleting those not in
117 * the tree. Let's go to one of those if the naive implementation
118 * causes problems... :-)
120 static void ctdb_remove_orphaned_ifaces(struct ctdb_context *ctdb,
121 struct ctdb_vnn *vnn,
122 TALLOC_CTX *mem_ctx)
124 struct ctdb_iface *i;
126 /* For each interface, check if there's an IP using it. */
127 for(i=ctdb->ifaces; i; i=i->next) {
128 struct ctdb_vnn *tv;
129 bool found;
131 /* Only consider interfaces named in the given VNN. */
132 if (!vnn_has_interface_with_name(vnn, i->name)) {
133 continue;
136 /* Is the "single IP" on this interface? */
137 if ((ctdb->single_ip_vnn != NULL) &&
138 (ctdb->single_ip_vnn->ifaces[0] != NULL) &&
139 (strcmp(i->name, ctdb->single_ip_vnn->ifaces[0]) == 0)) {
140 /* Found, next interface please... */
141 continue;
143 /* Search for a vnn with this interface. */
144 found = false;
145 for (tv=ctdb->vnn; tv; tv=tv->next) {
146 if (vnn_has_interface_with_name(tv, i->name)) {
147 found = true;
148 break;
152 if (!found) {
153 /* None of the VNNs are using this interface. */
154 DLIST_REMOVE(ctdb->ifaces, i);
155 /* Caller will free mem_ctx when convenient. */
156 talloc_steal(mem_ctx, i);
162 static struct ctdb_iface *ctdb_find_iface(struct ctdb_context *ctdb,
163 const char *iface)
165 struct ctdb_iface *i;
167 for (i=ctdb->ifaces;i;i=i->next) {
168 if (strcmp(i->name, iface) == 0) {
169 return i;
173 return NULL;
176 static struct ctdb_iface *ctdb_vnn_best_iface(struct ctdb_context *ctdb,
177 struct ctdb_vnn *vnn)
179 int i;
180 struct ctdb_iface *cur = NULL;
181 struct ctdb_iface *best = NULL;
183 for (i=0; vnn->ifaces[i]; i++) {
185 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
186 if (cur == NULL) {
187 continue;
190 if (!cur->link_up) {
191 continue;
194 if (best == NULL) {
195 best = cur;
196 continue;
199 if (cur->references < best->references) {
200 best = cur;
201 continue;
205 return best;
208 static int32_t ctdb_vnn_assign_iface(struct ctdb_context *ctdb,
209 struct ctdb_vnn *vnn)
211 struct ctdb_iface *best = NULL;
213 if (vnn->iface) {
214 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
215 "still assigned to iface '%s'\n",
216 ctdb_addr_to_str(&vnn->public_address),
217 ctdb_vnn_iface_string(vnn)));
218 return 0;
221 best = ctdb_vnn_best_iface(ctdb, vnn);
222 if (best == NULL) {
223 DEBUG(DEBUG_ERR, (__location__ " public address '%s' "
224 "cannot assign to iface any iface\n",
225 ctdb_addr_to_str(&vnn->public_address)));
226 return -1;
229 vnn->iface = best;
230 best->references++;
231 vnn->pnn = ctdb->pnn;
233 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
234 "now assigned to iface '%s' refs[%d]\n",
235 ctdb_addr_to_str(&vnn->public_address),
236 ctdb_vnn_iface_string(vnn),
237 best->references));
238 return 0;
241 static void ctdb_vnn_unassign_iface(struct ctdb_context *ctdb,
242 struct ctdb_vnn *vnn)
244 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
245 "now unassigned (old iface '%s' refs[%d])\n",
246 ctdb_addr_to_str(&vnn->public_address),
247 ctdb_vnn_iface_string(vnn),
248 vnn->iface?vnn->iface->references:0));
249 if (vnn->iface) {
250 vnn->iface->references--;
252 vnn->iface = NULL;
253 if (vnn->pnn == ctdb->pnn) {
254 vnn->pnn = -1;
258 static bool ctdb_vnn_available(struct ctdb_context *ctdb,
259 struct ctdb_vnn *vnn)
261 int i;
263 if (vnn->iface && vnn->iface->link_up) {
264 return true;
267 for (i=0; vnn->ifaces[i]; i++) {
268 struct ctdb_iface *cur;
270 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
271 if (cur == NULL) {
272 continue;
275 if (cur->link_up) {
276 return true;
280 return false;
283 struct ctdb_takeover_arp {
284 struct ctdb_context *ctdb;
285 uint32_t count;
286 ctdb_sock_addr addr;
287 struct ctdb_tcp_array *tcparray;
288 struct ctdb_vnn *vnn;
293 lists of tcp endpoints
295 struct ctdb_tcp_list {
296 struct ctdb_tcp_list *prev, *next;
297 struct ctdb_tcp_connection connection;
301 list of clients to kill on IP release
303 struct ctdb_client_ip {
304 struct ctdb_client_ip *prev, *next;
305 struct ctdb_context *ctdb;
306 ctdb_sock_addr addr;
307 uint32_t client_id;
312 send a gratuitous arp
314 static void ctdb_control_send_arp(struct event_context *ev, struct timed_event *te,
315 struct timeval t, void *private_data)
317 struct ctdb_takeover_arp *arp = talloc_get_type(private_data,
318 struct ctdb_takeover_arp);
319 int i, ret;
320 struct ctdb_tcp_array *tcparray;
321 const char *iface = ctdb_vnn_iface_string(arp->vnn);
323 ret = ctdb_sys_send_arp(&arp->addr, iface);
324 if (ret != 0) {
325 DEBUG(DEBUG_CRIT,(__location__ " sending of arp failed on iface '%s' (%s)\n",
326 iface, strerror(errno)));
329 tcparray = arp->tcparray;
330 if (tcparray) {
331 for (i=0;i<tcparray->num;i++) {
332 struct ctdb_tcp_connection *tcon;
334 tcon = &tcparray->connections[i];
335 DEBUG(DEBUG_INFO,("sending tcp tickle ack for %u->%s:%u\n",
336 (unsigned)ntohs(tcon->dst_addr.ip.sin_port),
337 ctdb_addr_to_str(&tcon->src_addr),
338 (unsigned)ntohs(tcon->src_addr.ip.sin_port)));
339 ret = ctdb_sys_send_tcp(
340 &tcon->src_addr,
341 &tcon->dst_addr,
342 0, 0, 0);
343 if (ret != 0) {
344 DEBUG(DEBUG_CRIT,(__location__ " Failed to send tcp tickle ack for %s\n",
345 ctdb_addr_to_str(&tcon->src_addr)));
350 arp->count++;
352 if (arp->count == CTDB_ARP_REPEAT) {
353 talloc_free(arp);
354 return;
357 event_add_timed(arp->ctdb->ev, arp->vnn->takeover_ctx,
358 timeval_current_ofs(CTDB_ARP_INTERVAL, 100000),
359 ctdb_control_send_arp, arp);
362 static int32_t ctdb_announce_vnn_iface(struct ctdb_context *ctdb,
363 struct ctdb_vnn *vnn)
365 struct ctdb_takeover_arp *arp;
366 struct ctdb_tcp_array *tcparray;
368 if (!vnn->takeover_ctx) {
369 vnn->takeover_ctx = talloc_new(vnn);
370 if (!vnn->takeover_ctx) {
371 return -1;
375 arp = talloc_zero(vnn->takeover_ctx, struct ctdb_takeover_arp);
376 if (!arp) {
377 return -1;
380 arp->ctdb = ctdb;
381 arp->addr = vnn->public_address;
382 arp->vnn = vnn;
384 tcparray = vnn->tcp_array;
385 if (tcparray) {
386 /* add all of the known tcp connections for this IP to the
387 list of tcp connections to send tickle acks for */
388 arp->tcparray = talloc_steal(arp, tcparray);
390 vnn->tcp_array = NULL;
391 vnn->tcp_update_needed = true;
394 event_add_timed(arp->ctdb->ev, vnn->takeover_ctx,
395 timeval_zero(), ctdb_control_send_arp, arp);
397 return 0;
400 struct takeover_callback_state {
401 struct ctdb_req_control *c;
402 ctdb_sock_addr *addr;
403 struct ctdb_vnn *vnn;
406 struct ctdb_do_takeip_state {
407 struct ctdb_req_control *c;
408 struct ctdb_vnn *vnn;
412 called when takeip event finishes
414 static void ctdb_do_takeip_callback(struct ctdb_context *ctdb, int status,
415 void *private_data)
417 struct ctdb_do_takeip_state *state =
418 talloc_get_type(private_data, struct ctdb_do_takeip_state);
419 int32_t ret;
420 TDB_DATA data;
422 if (status != 0) {
423 struct ctdb_node *node = ctdb->nodes[ctdb->pnn];
425 if (status == -ETIME) {
426 ctdb_ban_self(ctdb);
428 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
429 ctdb_addr_to_str(&state->vnn->public_address),
430 ctdb_vnn_iface_string(state->vnn)));
431 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
433 node->flags |= NODE_FLAGS_UNHEALTHY;
434 talloc_free(state);
435 return;
438 if (ctdb->do_checkpublicip) {
440 ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
441 if (ret != 0) {
442 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
443 talloc_free(state);
444 return;
449 data.dptr = (uint8_t *)ctdb_addr_to_str(&state->vnn->public_address);
450 data.dsize = strlen((char *)data.dptr) + 1;
451 DEBUG(DEBUG_INFO,(__location__ " sending TAKE_IP for '%s'\n", data.dptr));
453 ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_TAKE_IP, data);
456 /* the control succeeded */
457 ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
458 talloc_free(state);
459 return;
462 static int ctdb_takeip_destructor(struct ctdb_do_takeip_state *state)
464 state->vnn->update_in_flight = false;
465 return 0;
469 take over an ip address
471 static int32_t ctdb_do_takeip(struct ctdb_context *ctdb,
472 struct ctdb_req_control *c,
473 struct ctdb_vnn *vnn)
475 int ret;
476 struct ctdb_do_takeip_state *state;
478 if (vnn->update_in_flight) {
479 DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u rejected "
480 "update for this IP already in flight\n",
481 ctdb_addr_to_str(&vnn->public_address),
482 vnn->public_netmask_bits));
483 return -1;
486 ret = ctdb_vnn_assign_iface(ctdb, vnn);
487 if (ret != 0) {
488 DEBUG(DEBUG_ERR,("Takeover of IP %s/%u failed to "
489 "assign a usable interface\n",
490 ctdb_addr_to_str(&vnn->public_address),
491 vnn->public_netmask_bits));
492 return -1;
495 state = talloc(vnn, struct ctdb_do_takeip_state);
496 CTDB_NO_MEMORY(ctdb, state);
498 state->c = talloc_steal(ctdb, c);
499 state->vnn = vnn;
501 vnn->update_in_flight = true;
502 talloc_set_destructor(state, ctdb_takeip_destructor);
504 DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u on interface %s\n",
505 ctdb_addr_to_str(&vnn->public_address),
506 vnn->public_netmask_bits,
507 ctdb_vnn_iface_string(vnn)));
509 ret = ctdb_event_script_callback(ctdb,
510 state,
511 ctdb_do_takeip_callback,
512 state,
513 CTDB_EVENT_TAKE_IP,
514 "%s %s %u",
515 ctdb_vnn_iface_string(vnn),
516 ctdb_addr_to_str(&vnn->public_address),
517 vnn->public_netmask_bits);
519 if (ret != 0) {
520 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
521 ctdb_addr_to_str(&vnn->public_address),
522 ctdb_vnn_iface_string(vnn)));
523 talloc_free(state);
524 return -1;
527 return 0;
530 struct ctdb_do_updateip_state {
531 struct ctdb_req_control *c;
532 struct ctdb_iface *old;
533 struct ctdb_vnn *vnn;
537 called when updateip event finishes
539 static void ctdb_do_updateip_callback(struct ctdb_context *ctdb, int status,
540 void *private_data)
542 struct ctdb_do_updateip_state *state =
543 talloc_get_type(private_data, struct ctdb_do_updateip_state);
544 int32_t ret;
546 if (status != 0) {
547 if (status == -ETIME) {
548 ctdb_ban_self(ctdb);
550 DEBUG(DEBUG_ERR,(__location__ " Failed to move IP %s from interface %s to %s\n",
551 ctdb_addr_to_str(&state->vnn->public_address),
552 state->old->name,
553 ctdb_vnn_iface_string(state->vnn)));
556 * All we can do is reset the old interface
557 * and let the next run fix it
559 ctdb_vnn_unassign_iface(ctdb, state->vnn);
560 state->vnn->iface = state->old;
561 state->vnn->iface->references++;
563 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
564 talloc_free(state);
565 return;
568 if (ctdb->do_checkpublicip) {
570 ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
571 if (ret != 0) {
572 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
573 talloc_free(state);
574 return;
579 /* the control succeeded */
580 ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
581 talloc_free(state);
582 return;
585 static int ctdb_updateip_destructor(struct ctdb_do_updateip_state *state)
587 state->vnn->update_in_flight = false;
588 return 0;
592 update (move) an ip address
594 static int32_t ctdb_do_updateip(struct ctdb_context *ctdb,
595 struct ctdb_req_control *c,
596 struct ctdb_vnn *vnn)
598 int ret;
599 struct ctdb_do_updateip_state *state;
600 struct ctdb_iface *old = vnn->iface;
601 const char *new_name;
603 if (vnn->update_in_flight) {
604 DEBUG(DEBUG_NOTICE,("Update of IP %s/%u rejected "
605 "update for this IP already in flight\n",
606 ctdb_addr_to_str(&vnn->public_address),
607 vnn->public_netmask_bits));
608 return -1;
611 ctdb_vnn_unassign_iface(ctdb, vnn);
612 ret = ctdb_vnn_assign_iface(ctdb, vnn);
613 if (ret != 0) {
614 DEBUG(DEBUG_ERR,("update of IP %s/%u failed to "
615 "assin a usable interface (old iface '%s')\n",
616 ctdb_addr_to_str(&vnn->public_address),
617 vnn->public_netmask_bits,
618 old->name));
619 return -1;
622 new_name = ctdb_vnn_iface_string(vnn);
623 if (old->name != NULL && new_name != NULL && !strcmp(old->name, new_name)) {
624 /* A benign update from one interface onto itself.
625 * no need to run the eventscripts in this case, just return
626 * success.
628 ctdb_request_control_reply(ctdb, c, NULL, 0, NULL);
629 return 0;
632 state = talloc(vnn, struct ctdb_do_updateip_state);
633 CTDB_NO_MEMORY(ctdb, state);
635 state->c = talloc_steal(ctdb, c);
636 state->old = old;
637 state->vnn = vnn;
639 vnn->update_in_flight = true;
640 talloc_set_destructor(state, ctdb_updateip_destructor);
642 DEBUG(DEBUG_NOTICE,("Update of IP %s/%u from "
643 "interface %s to %s\n",
644 ctdb_addr_to_str(&vnn->public_address),
645 vnn->public_netmask_bits,
646 old->name,
647 new_name));
649 ret = ctdb_event_script_callback(ctdb,
650 state,
651 ctdb_do_updateip_callback,
652 state,
653 CTDB_EVENT_UPDATE_IP,
654 "%s %s %s %u",
655 state->old->name,
656 new_name,
657 ctdb_addr_to_str(&vnn->public_address),
658 vnn->public_netmask_bits);
659 if (ret != 0) {
660 DEBUG(DEBUG_ERR,(__location__ " Failed update IP %s from interface %s to %s\n",
661 ctdb_addr_to_str(&vnn->public_address),
662 old->name, new_name));
663 talloc_free(state);
664 return -1;
667 return 0;
671 Find the vnn of the node that has a public ip address
672 returns -1 if the address is not known as a public address
674 static struct ctdb_vnn *find_public_ip_vnn(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
676 struct ctdb_vnn *vnn;
678 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
679 if (ctdb_same_ip(&vnn->public_address, addr)) {
680 return vnn;
684 return NULL;
688 take over an ip address
690 int32_t ctdb_control_takeover_ip(struct ctdb_context *ctdb,
691 struct ctdb_req_control *c,
692 TDB_DATA indata,
693 bool *async_reply)
695 int ret;
696 struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
697 struct ctdb_vnn *vnn;
698 bool have_ip = false;
699 bool do_updateip = false;
700 bool do_takeip = false;
701 struct ctdb_iface *best_iface = NULL;
703 if (pip->pnn != ctdb->pnn) {
704 DEBUG(DEBUG_ERR,(__location__" takeoverip called for an ip '%s' "
705 "with pnn %d, but we're node %d\n",
706 ctdb_addr_to_str(&pip->addr),
707 pip->pnn, ctdb->pnn));
708 return -1;
711 /* update out vnn list */
712 vnn = find_public_ip_vnn(ctdb, &pip->addr);
713 if (vnn == NULL) {
714 DEBUG(DEBUG_INFO,("takeoverip called for an ip '%s' that is not a public address\n",
715 ctdb_addr_to_str(&pip->addr)));
716 return 0;
719 if (ctdb->do_checkpublicip) {
720 have_ip = ctdb_sys_have_ip(&pip->addr);
722 best_iface = ctdb_vnn_best_iface(ctdb, vnn);
723 if (best_iface == NULL) {
724 DEBUG(DEBUG_ERR,("takeoverip of IP %s/%u failed to find"
725 "a usable interface (old %s, have_ip %d)\n",
726 ctdb_addr_to_str(&vnn->public_address),
727 vnn->public_netmask_bits,
728 ctdb_vnn_iface_string(vnn),
729 have_ip));
730 return -1;
733 if (vnn->iface == NULL && vnn->pnn == -1 && have_ip && best_iface != NULL) {
734 DEBUG(DEBUG_ERR,("Taking over newly created ip\n"));
735 have_ip = false;
739 if (vnn->iface == NULL && have_ip) {
740 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
741 "but we have no interface assigned, has someone manually configured it? Ignore for now.\n",
742 ctdb_addr_to_str(&vnn->public_address)));
743 return 0;
746 if (vnn->pnn != ctdb->pnn && have_ip && vnn->pnn != -1) {
747 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
748 "and we have it on iface[%s], but it was assigned to node %d"
749 "and we are node %d, banning ourself\n",
750 ctdb_addr_to_str(&vnn->public_address),
751 ctdb_vnn_iface_string(vnn), vnn->pnn, ctdb->pnn));
752 ctdb_ban_self(ctdb);
753 return -1;
756 if (vnn->pnn == -1 && have_ip) {
757 vnn->pnn = ctdb->pnn;
758 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
759 "and we already have it on iface[%s], update local daemon\n",
760 ctdb_addr_to_str(&vnn->public_address),
761 ctdb_vnn_iface_string(vnn)));
762 return 0;
765 if (vnn->iface) {
766 if (vnn->iface != best_iface) {
767 if (!vnn->iface->link_up) {
768 do_updateip = true;
769 } else if (vnn->iface->references > (best_iface->references + 1)) {
770 /* only move when the rebalance gains something */
771 do_updateip = true;
776 if (!have_ip) {
777 if (do_updateip) {
778 ctdb_vnn_unassign_iface(ctdb, vnn);
779 do_updateip = false;
781 do_takeip = true;
784 if (do_takeip) {
785 ret = ctdb_do_takeip(ctdb, c, vnn);
786 if (ret != 0) {
787 return -1;
789 } else if (do_updateip) {
790 ret = ctdb_do_updateip(ctdb, c, vnn);
791 if (ret != 0) {
792 return -1;
794 } else {
796 * The interface is up and the kernel known the ip
797 * => do nothing
799 DEBUG(DEBUG_INFO,("Redundant takeover of IP %s/%u on interface %s (ip already held)\n",
800 ctdb_addr_to_str(&pip->addr),
801 vnn->public_netmask_bits,
802 ctdb_vnn_iface_string(vnn)));
803 return 0;
806 /* tell ctdb_control.c that we will be replying asynchronously */
807 *async_reply = true;
809 return 0;
813 takeover an ip address old v4 style
815 int32_t ctdb_control_takeover_ipv4(struct ctdb_context *ctdb,
816 struct ctdb_req_control *c,
817 TDB_DATA indata,
818 bool *async_reply)
820 TDB_DATA data;
822 data.dsize = sizeof(struct ctdb_public_ip);
823 data.dptr = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
824 CTDB_NO_MEMORY(ctdb, data.dptr);
826 memcpy(data.dptr, indata.dptr, indata.dsize);
827 return ctdb_control_takeover_ip(ctdb, c, data, async_reply);
831 kill any clients that are registered with a IP that is being released
833 static void release_kill_clients(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
835 struct ctdb_client_ip *ip;
837 DEBUG(DEBUG_INFO,("release_kill_clients for ip %s\n",
838 ctdb_addr_to_str(addr)));
840 for (ip=ctdb->client_ip_list; ip; ip=ip->next) {
841 ctdb_sock_addr tmp_addr;
843 tmp_addr = ip->addr;
844 DEBUG(DEBUG_INFO,("checking for client %u with IP %s\n",
845 ip->client_id,
846 ctdb_addr_to_str(&ip->addr)));
848 if (ctdb_same_ip(&tmp_addr, addr)) {
849 struct ctdb_client *client = ctdb_reqid_find(ctdb,
850 ip->client_id,
851 struct ctdb_client);
852 DEBUG(DEBUG_INFO,("matched client %u with IP %s and pid %u\n",
853 ip->client_id,
854 ctdb_addr_to_str(&ip->addr),
855 client->pid));
857 if (client->pid != 0) {
858 DEBUG(DEBUG_INFO,(__location__ " Killing client pid %u for IP %s on client_id %u\n",
859 (unsigned)client->pid,
860 ctdb_addr_to_str(addr),
861 ip->client_id));
862 kill(client->pid, SIGKILL);
869 called when releaseip event finishes
871 static void release_ip_callback(struct ctdb_context *ctdb, int status,
872 void *private_data)
874 struct takeover_callback_state *state =
875 talloc_get_type(private_data, struct takeover_callback_state);
876 TDB_DATA data;
878 if (status == -ETIME) {
879 ctdb_ban_self(ctdb);
882 if (ctdb->do_checkpublicip && ctdb_sys_have_ip(state->addr)) {
883 DEBUG(DEBUG_ERR, ("IP %s still hosted during release IP callback, failing\n",
884 ctdb_addr_to_str(state->addr)));
885 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
886 talloc_free(state);
887 return;
890 /* send a message to all clients of this node telling them
891 that the cluster has been reconfigured and they should
892 release any sockets on this IP */
893 data.dptr = (uint8_t *)talloc_strdup(state, ctdb_addr_to_str(state->addr));
894 CTDB_NO_MEMORY_VOID(ctdb, data.dptr);
895 data.dsize = strlen((char *)data.dptr)+1;
897 DEBUG(DEBUG_INFO,(__location__ " sending RELEASE_IP for '%s'\n", data.dptr));
899 ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_RELEASE_IP, data);
901 /* kill clients that have registered with this IP */
902 release_kill_clients(ctdb, state->addr);
904 ctdb_vnn_unassign_iface(ctdb, state->vnn);
906 /* the control succeeded */
907 ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
908 talloc_free(state);
911 static int ctdb_releaseip_destructor(struct takeover_callback_state *state)
913 state->vnn->update_in_flight = false;
914 return 0;
918 release an ip address
920 int32_t ctdb_control_release_ip(struct ctdb_context *ctdb,
921 struct ctdb_req_control *c,
922 TDB_DATA indata,
923 bool *async_reply)
925 int ret;
926 struct takeover_callback_state *state;
927 struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
928 struct ctdb_vnn *vnn;
929 char *iface;
931 /* update our vnn list */
932 vnn = find_public_ip_vnn(ctdb, &pip->addr);
933 if (vnn == NULL) {
934 DEBUG(DEBUG_INFO,("releaseip called for an ip '%s' that is not a public address\n",
935 ctdb_addr_to_str(&pip->addr)));
936 return 0;
938 vnn->pnn = pip->pnn;
940 /* stop any previous arps */
941 talloc_free(vnn->takeover_ctx);
942 vnn->takeover_ctx = NULL;
944 /* Some ctdb tool commands (e.g. moveip, rebalanceip) send
945 * lazy multicast to drop an IP from any node that isn't the
946 * intended new node. The following causes makes ctdbd ignore
947 * a release for any address it doesn't host.
949 if (ctdb->do_checkpublicip) {
950 if (!ctdb_sys_have_ip(&pip->addr)) {
951 DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u on interface %s (ip not held)\n",
952 ctdb_addr_to_str(&pip->addr),
953 vnn->public_netmask_bits,
954 ctdb_vnn_iface_string(vnn)));
955 ctdb_vnn_unassign_iface(ctdb, vnn);
956 return 0;
958 } else {
959 if (vnn->iface == NULL) {
960 DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u (ip not held)\n",
961 ctdb_addr_to_str(&pip->addr),
962 vnn->public_netmask_bits));
963 return 0;
967 /* There is a potential race between take_ip and us because we
968 * update the VNN via a callback that run when the
969 * eventscripts have been run. Avoid the race by allowing one
970 * update to be in flight at a time.
972 if (vnn->update_in_flight) {
973 DEBUG(DEBUG_NOTICE,("Release of IP %s/%u rejected "
974 "update for this IP already in flight\n",
975 ctdb_addr_to_str(&vnn->public_address),
976 vnn->public_netmask_bits));
977 return -1;
980 if (ctdb->do_checkpublicip) {
981 iface = ctdb_sys_find_ifname(&pip->addr);
982 if (iface == NULL) {
983 DEBUG(DEBUG_ERR, ("Could not find which interface the ip address is hosted on. can not release it\n"));
984 return 0;
986 if (vnn->iface == NULL) {
987 DEBUG(DEBUG_WARNING,
988 ("Public IP %s is hosted on interface %s but we have no VNN\n",
989 ctdb_addr_to_str(&pip->addr),
990 iface));
991 } else if (strcmp(iface, ctdb_vnn_iface_string(vnn)) != 0) {
992 DEBUG(DEBUG_WARNING,
993 ("Public IP %s is hosted on inteterface %s but VNN says %s\n",
994 ctdb_addr_to_str(&pip->addr),
995 iface,
996 ctdb_vnn_iface_string(vnn)));
997 /* Should we fix vnn->iface? If we do, what
998 * happens to reference counts?
1001 } else {
1002 iface = strdup(ctdb_vnn_iface_string(vnn));
1005 DEBUG(DEBUG_NOTICE,("Release of IP %s/%u on interface %s node:%d\n",
1006 ctdb_addr_to_str(&pip->addr),
1007 vnn->public_netmask_bits,
1008 iface,
1009 pip->pnn));
1011 state = talloc(ctdb, struct takeover_callback_state);
1012 CTDB_NO_MEMORY(ctdb, state);
1014 state->c = talloc_steal(state, c);
1015 state->addr = talloc(state, ctdb_sock_addr);
1016 CTDB_NO_MEMORY(ctdb, state->addr);
1017 *state->addr = pip->addr;
1018 state->vnn = vnn;
1020 vnn->update_in_flight = true;
1021 talloc_set_destructor(state, ctdb_releaseip_destructor);
1023 ret = ctdb_event_script_callback(ctdb,
1024 state, release_ip_callback, state,
1025 CTDB_EVENT_RELEASE_IP,
1026 "%s %s %u",
1027 iface,
1028 ctdb_addr_to_str(&pip->addr),
1029 vnn->public_netmask_bits);
1030 free(iface);
1031 if (ret != 0) {
1032 DEBUG(DEBUG_ERR,(__location__ " Failed to release IP %s on interface %s\n",
1033 ctdb_addr_to_str(&pip->addr),
1034 ctdb_vnn_iface_string(vnn)));
1035 talloc_free(state);
1036 return -1;
1039 /* tell the control that we will be reply asynchronously */
1040 *async_reply = true;
1041 return 0;
1045 release an ip address old v4 style
1047 int32_t ctdb_control_release_ipv4(struct ctdb_context *ctdb,
1048 struct ctdb_req_control *c,
1049 TDB_DATA indata,
1050 bool *async_reply)
1052 TDB_DATA data;
1054 data.dsize = sizeof(struct ctdb_public_ip);
1055 data.dptr = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
1056 CTDB_NO_MEMORY(ctdb, data.dptr);
1058 memcpy(data.dptr, indata.dptr, indata.dsize);
1059 return ctdb_control_release_ip(ctdb, c, data, async_reply);
1063 static int ctdb_add_public_address(struct ctdb_context *ctdb,
1064 ctdb_sock_addr *addr,
1065 unsigned mask, const char *ifaces,
1066 bool check_address)
1068 struct ctdb_vnn *vnn;
1069 uint32_t num = 0;
1070 char *tmp;
1071 const char *iface;
1072 int i;
1073 int ret;
1075 tmp = strdup(ifaces);
1076 for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1077 if (!ctdb_sys_check_iface_exists(iface)) {
1078 DEBUG(DEBUG_CRIT,("Interface %s does not exist. Can not add public-address : %s\n", iface, ctdb_addr_to_str(addr)));
1079 free(tmp);
1080 return -1;
1083 free(tmp);
1085 /* Verify that we dont have an entry for this ip yet */
1086 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1087 if (ctdb_same_sockaddr(addr, &vnn->public_address)) {
1088 DEBUG(DEBUG_CRIT,("Same ip '%s' specified multiple times in the public address list \n",
1089 ctdb_addr_to_str(addr)));
1090 return -1;
1094 /* create a new vnn structure for this ip address */
1095 vnn = talloc_zero(ctdb, struct ctdb_vnn);
1096 CTDB_NO_MEMORY_FATAL(ctdb, vnn);
1097 vnn->ifaces = talloc_array(vnn, const char *, num + 2);
1098 tmp = talloc_strdup(vnn, ifaces);
1099 CTDB_NO_MEMORY_FATAL(ctdb, tmp);
1100 for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1101 vnn->ifaces = talloc_realloc(vnn, vnn->ifaces, const char *, num + 2);
1102 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces);
1103 vnn->ifaces[num] = talloc_strdup(vnn, iface);
1104 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces[num]);
1105 num++;
1107 talloc_free(tmp);
1108 vnn->ifaces[num] = NULL;
1109 vnn->public_address = *addr;
1110 vnn->public_netmask_bits = mask;
1111 vnn->pnn = -1;
1112 if (check_address) {
1113 if (ctdb_sys_have_ip(addr)) {
1114 DEBUG(DEBUG_ERR,("We are already hosting public address '%s'. setting PNN to ourself:%d\n", ctdb_addr_to_str(addr), ctdb->pnn));
1115 vnn->pnn = ctdb->pnn;
1119 for (i=0; vnn->ifaces[i]; i++) {
1120 ret = ctdb_add_local_iface(ctdb, vnn->ifaces[i]);
1121 if (ret != 0) {
1122 DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1123 "for public_address[%s]\n",
1124 vnn->ifaces[i], ctdb_addr_to_str(addr)));
1125 talloc_free(vnn);
1126 return -1;
1130 DLIST_ADD(ctdb->vnn, vnn);
1132 return 0;
1135 static void ctdb_check_interfaces_event(struct event_context *ev, struct timed_event *te,
1136 struct timeval t, void *private_data)
1138 struct ctdb_context *ctdb = talloc_get_type(private_data,
1139 struct ctdb_context);
1140 struct ctdb_vnn *vnn;
1142 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1143 int i;
1145 for (i=0; vnn->ifaces[i] != NULL; i++) {
1146 if (!ctdb_sys_check_iface_exists(vnn->ifaces[i])) {
1147 DEBUG(DEBUG_CRIT,("Interface %s does not exist but is used by public ip %s\n",
1148 vnn->ifaces[i],
1149 ctdb_addr_to_str(&vnn->public_address)));
1154 event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx,
1155 timeval_current_ofs(30, 0),
1156 ctdb_check_interfaces_event, ctdb);
1160 int ctdb_start_monitoring_interfaces(struct ctdb_context *ctdb)
1162 if (ctdb->check_public_ifaces_ctx != NULL) {
1163 talloc_free(ctdb->check_public_ifaces_ctx);
1164 ctdb->check_public_ifaces_ctx = NULL;
1167 ctdb->check_public_ifaces_ctx = talloc_new(ctdb);
1168 if (ctdb->check_public_ifaces_ctx == NULL) {
1169 ctdb_fatal(ctdb, "failed to allocate context for checking interfaces");
1172 event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx,
1173 timeval_current_ofs(30, 0),
1174 ctdb_check_interfaces_event, ctdb);
1176 return 0;
1181 setup the public address lists from a file
1183 int ctdb_set_public_addresses(struct ctdb_context *ctdb, bool check_addresses)
1185 char **lines;
1186 int nlines;
1187 int i;
1189 lines = file_lines_load(ctdb->public_addresses_file, &nlines, ctdb);
1190 if (lines == NULL) {
1191 ctdb_set_error(ctdb, "Failed to load public address list '%s'\n", ctdb->public_addresses_file);
1192 return -1;
1194 while (nlines > 0 && strcmp(lines[nlines-1], "") == 0) {
1195 nlines--;
1198 for (i=0;i<nlines;i++) {
1199 unsigned mask;
1200 ctdb_sock_addr addr;
1201 const char *addrstr;
1202 const char *ifaces;
1203 char *tok, *line;
1205 line = lines[i];
1206 while ((*line == ' ') || (*line == '\t')) {
1207 line++;
1209 if (*line == '#') {
1210 continue;
1212 if (strcmp(line, "") == 0) {
1213 continue;
1215 tok = strtok(line, " \t");
1216 addrstr = tok;
1217 tok = strtok(NULL, " \t");
1218 if (tok == NULL) {
1219 if (NULL == ctdb->default_public_interface) {
1220 DEBUG(DEBUG_CRIT,("No default public interface and no interface specified at line %u of public address list\n",
1221 i+1));
1222 talloc_free(lines);
1223 return -1;
1225 ifaces = ctdb->default_public_interface;
1226 } else {
1227 ifaces = tok;
1230 if (!addrstr || !parse_ip_mask(addrstr, ifaces, &addr, &mask)) {
1231 DEBUG(DEBUG_CRIT,("Badly formed line %u in public address list\n", i+1));
1232 talloc_free(lines);
1233 return -1;
1235 if (ctdb_add_public_address(ctdb, &addr, mask, ifaces, check_addresses)) {
1236 DEBUG(DEBUG_CRIT,("Failed to add line %u to the public address list\n", i+1));
1237 talloc_free(lines);
1238 return -1;
1243 talloc_free(lines);
1244 return 0;
1247 int ctdb_set_single_public_ip(struct ctdb_context *ctdb,
1248 const char *iface,
1249 const char *ip)
1251 struct ctdb_vnn *svnn;
1252 struct ctdb_iface *cur = NULL;
1253 bool ok;
1254 int ret;
1256 svnn = talloc_zero(ctdb, struct ctdb_vnn);
1257 CTDB_NO_MEMORY(ctdb, svnn);
1259 svnn->ifaces = talloc_array(svnn, const char *, 2);
1260 CTDB_NO_MEMORY(ctdb, svnn->ifaces);
1261 svnn->ifaces[0] = talloc_strdup(svnn->ifaces, iface);
1262 CTDB_NO_MEMORY(ctdb, svnn->ifaces[0]);
1263 svnn->ifaces[1] = NULL;
1265 ok = parse_ip(ip, iface, 0, &svnn->public_address);
1266 if (!ok) {
1267 talloc_free(svnn);
1268 return -1;
1271 ret = ctdb_add_local_iface(ctdb, svnn->ifaces[0]);
1272 if (ret != 0) {
1273 DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1274 "for single_ip[%s]\n",
1275 svnn->ifaces[0],
1276 ctdb_addr_to_str(&svnn->public_address)));
1277 talloc_free(svnn);
1278 return -1;
1281 /* assume the single public ip interface is initially "good" */
1282 cur = ctdb_find_iface(ctdb, iface);
1283 if (cur == NULL) {
1284 DEBUG(DEBUG_CRIT,("Can not find public interface %s used by --single-public-ip", iface));
1285 return -1;
1287 cur->link_up = true;
1289 ret = ctdb_vnn_assign_iface(ctdb, svnn);
1290 if (ret != 0) {
1291 talloc_free(svnn);
1292 return -1;
1295 ctdb->single_ip_vnn = svnn;
1296 return 0;
1299 struct ctdb_public_ip_list {
1300 struct ctdb_public_ip_list *next;
1301 uint32_t pnn;
1302 ctdb_sock_addr addr;
1305 /* Given a physical node, return the number of
1306 public addresses that is currently assigned to this node.
1308 static int node_ip_coverage(struct ctdb_context *ctdb,
1309 int32_t pnn,
1310 struct ctdb_public_ip_list *ips)
1312 int num=0;
1314 for (;ips;ips=ips->next) {
1315 if (ips->pnn == pnn) {
1316 num++;
1319 return num;
1323 /* Can the given node host the given IP: is the public IP known to the
1324 * node and is NOIPHOST unset?
1326 static bool can_node_host_ip(struct ctdb_context *ctdb, int32_t pnn,
1327 struct ctdb_ipflags ipflags,
1328 struct ctdb_public_ip_list *ip)
1330 struct ctdb_all_public_ips *public_ips;
1331 int i;
1333 if (ipflags.noiphost) {
1334 return false;
1337 public_ips = ctdb->nodes[pnn]->available_public_ips;
1339 if (public_ips == NULL) {
1340 return false;
1343 for (i=0; i<public_ips->num; i++) {
1344 if (ctdb_same_ip(&ip->addr, &public_ips->ips[i].addr)) {
1345 /* yes, this node can serve this public ip */
1346 return true;
1350 return false;
1353 static bool can_node_takeover_ip(struct ctdb_context *ctdb, int32_t pnn,
1354 struct ctdb_ipflags ipflags,
1355 struct ctdb_public_ip_list *ip)
1357 if (ipflags.noiptakeover) {
1358 return false;
1361 return can_node_host_ip(ctdb, pnn, ipflags, ip);
1364 /* search the node lists list for a node to takeover this ip.
1365 pick the node that currently are serving the least number of ips
1366 so that the ips get spread out evenly.
1368 static int find_takeover_node(struct ctdb_context *ctdb,
1369 struct ctdb_ipflags *ipflags,
1370 struct ctdb_public_ip_list *ip,
1371 struct ctdb_public_ip_list *all_ips)
1373 int pnn, min=0, num;
1374 int i, numnodes;
1376 numnodes = talloc_array_length(ipflags);
1377 pnn = -1;
1378 for (i=0; i<numnodes; i++) {
1379 /* verify that this node can serve this ip */
1380 if (!can_node_takeover_ip(ctdb, i, ipflags[i], ip)) {
1381 /* no it couldnt so skip to the next node */
1382 continue;
1385 num = node_ip_coverage(ctdb, i, all_ips);
1386 /* was this the first node we checked ? */
1387 if (pnn == -1) {
1388 pnn = i;
1389 min = num;
1390 } else {
1391 if (num < min) {
1392 pnn = i;
1393 min = num;
1397 if (pnn == -1) {
1398 DEBUG(DEBUG_WARNING,(__location__ " Could not find node to take over public address '%s'\n",
1399 ctdb_addr_to_str(&ip->addr)));
1401 return -1;
1404 ip->pnn = pnn;
1405 return 0;
1408 #define IP_KEYLEN 4
1409 static uint32_t *ip_key(ctdb_sock_addr *ip)
1411 static uint32_t key[IP_KEYLEN];
1413 bzero(key, sizeof(key));
1415 switch (ip->sa.sa_family) {
1416 case AF_INET:
1417 key[3] = htonl(ip->ip.sin_addr.s_addr);
1418 break;
1419 case AF_INET6: {
1420 uint32_t *s6_a32 = (uint32_t *)&(ip->ip6.sin6_addr.s6_addr);
1421 key[0] = htonl(s6_a32[0]);
1422 key[1] = htonl(s6_a32[1]);
1423 key[2] = htonl(s6_a32[2]);
1424 key[3] = htonl(s6_a32[3]);
1425 break;
1427 default:
1428 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", ip->sa.sa_family));
1429 return key;
1432 return key;
1435 static void *add_ip_callback(void *parm, void *data)
1437 struct ctdb_public_ip_list *this_ip = parm;
1438 struct ctdb_public_ip_list *prev_ip = data;
1440 if (prev_ip == NULL) {
1441 return parm;
1443 if (this_ip->pnn == -1) {
1444 this_ip->pnn = prev_ip->pnn;
1447 return parm;
1450 static int getips_count_callback(void *param, void *data)
1452 struct ctdb_public_ip_list **ip_list = (struct ctdb_public_ip_list **)param;
1453 struct ctdb_public_ip_list *new_ip = (struct ctdb_public_ip_list *)data;
1455 new_ip->next = *ip_list;
1456 *ip_list = new_ip;
1457 return 0;
1460 static struct ctdb_public_ip_list *
1461 create_merged_ip_list(struct ctdb_context *ctdb)
1463 int i, j;
1464 struct ctdb_public_ip_list *ip_list;
1465 struct ctdb_all_public_ips *public_ips;
1467 if (ctdb->ip_tree != NULL) {
1468 talloc_free(ctdb->ip_tree);
1469 ctdb->ip_tree = NULL;
1471 ctdb->ip_tree = trbt_create(ctdb, 0);
1473 for (i=0;i<ctdb->num_nodes;i++) {
1474 public_ips = ctdb->nodes[i]->known_public_ips;
1476 if (ctdb->nodes[i]->flags & NODE_FLAGS_DELETED) {
1477 continue;
1480 /* there were no public ips for this node */
1481 if (public_ips == NULL) {
1482 continue;
1485 for (j=0;j<public_ips->num;j++) {
1486 struct ctdb_public_ip_list *tmp_ip;
1488 tmp_ip = talloc_zero(ctdb->ip_tree, struct ctdb_public_ip_list);
1489 CTDB_NO_MEMORY_NULL(ctdb, tmp_ip);
1490 /* Do not use information about IP addresses hosted
1491 * on other nodes, it may not be accurate */
1492 if (public_ips->ips[j].pnn == ctdb->nodes[i]->pnn) {
1493 tmp_ip->pnn = public_ips->ips[j].pnn;
1494 } else {
1495 tmp_ip->pnn = -1;
1497 tmp_ip->addr = public_ips->ips[j].addr;
1498 tmp_ip->next = NULL;
1500 trbt_insertarray32_callback(ctdb->ip_tree,
1501 IP_KEYLEN, ip_key(&public_ips->ips[j].addr),
1502 add_ip_callback,
1503 tmp_ip);
1507 ip_list = NULL;
1508 trbt_traversearray32(ctdb->ip_tree, IP_KEYLEN, getips_count_callback, &ip_list);
1510 return ip_list;
1514 * This is the length of the longtest common prefix between the IPs.
1515 * It is calculated by XOR-ing the 2 IPs together and counting the
1516 * number of leading zeroes. The implementation means that all
1517 * addresses end up being 128 bits long.
1519 * FIXME? Should we consider IPv4 and IPv6 separately given that the
1520 * 12 bytes of 0 prefix padding will hurt the algorithm if there are
1521 * lots of nodes and IP addresses?
1523 static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
1525 uint32_t ip1_k[IP_KEYLEN];
1526 uint32_t *t;
1527 int i;
1528 uint32_t x;
1530 uint32_t distance = 0;
1532 memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
1533 t = ip_key(ip2);
1534 for (i=0; i<IP_KEYLEN; i++) {
1535 x = ip1_k[i] ^ t[i];
1536 if (x == 0) {
1537 distance += 32;
1538 } else {
1539 /* Count number of leading zeroes.
1540 * FIXME? This could be optimised...
1542 while ((x & (1 << 31)) == 0) {
1543 x <<= 1;
1544 distance += 1;
1549 return distance;
1552 /* Calculate the IP distance for the given IP relative to IPs on the
1553 given node. The ips argument is generally the all_ips variable
1554 used in the main part of the algorithm.
1556 static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
1557 struct ctdb_public_ip_list *ips,
1558 int pnn)
1560 struct ctdb_public_ip_list *t;
1561 uint32_t d;
1563 uint32_t sum = 0;
1565 for (t=ips; t != NULL; t=t->next) {
1566 if (t->pnn != pnn) {
1567 continue;
1570 /* Optimisation: We never calculate the distance
1571 * between an address and itself. This allows us to
1572 * calculate the effect of removing an address from a
1573 * node by simply calculating the distance between
1574 * that address and all of the exitsing addresses.
1575 * Moreover, we assume that we're only ever dealing
1576 * with addresses from all_ips so we can identify an
1577 * address via a pointer rather than doing a more
1578 * expensive address comparison. */
1579 if (&(t->addr) == ip) {
1580 continue;
1583 d = ip_distance(ip, &(t->addr));
1584 sum += d * d; /* Cheaper than pulling in math.h :-) */
1587 return sum;
1590 /* Return the LCP2 imbalance metric for addresses currently assigned
1591 to the given node.
1593 static uint32_t lcp2_imbalance(struct ctdb_public_ip_list * all_ips, int pnn)
1595 struct ctdb_public_ip_list *t;
1597 uint32_t imbalance = 0;
1599 for (t=all_ips; t!=NULL; t=t->next) {
1600 if (t->pnn != pnn) {
1601 continue;
1603 /* Pass the rest of the IPs rather than the whole
1604 all_ips input list.
1606 imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
1609 return imbalance;
1612 /* Allocate any unassigned IPs just by looping through the IPs and
1613 * finding the best node for each.
1615 static void basic_allocate_unassigned(struct ctdb_context *ctdb,
1616 struct ctdb_ipflags *ipflags,
1617 struct ctdb_public_ip_list *all_ips)
1619 struct ctdb_public_ip_list *tmp_ip;
1621 /* loop over all ip's and find a physical node to cover for
1622 each unassigned ip.
1624 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1625 if (tmp_ip->pnn == -1) {
1626 if (find_takeover_node(ctdb, ipflags, tmp_ip, all_ips)) {
1627 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1628 ctdb_addr_to_str(&tmp_ip->addr)));
1634 /* Basic non-deterministic rebalancing algorithm.
1636 static void basic_failback(struct ctdb_context *ctdb,
1637 struct ctdb_ipflags *ipflags,
1638 struct ctdb_public_ip_list *all_ips,
1639 int num_ips)
1641 int i, numnodes;
1642 int maxnode, maxnum, minnode, minnum, num, retries;
1643 struct ctdb_public_ip_list *tmp_ip;
1645 numnodes = talloc_array_length(ipflags);
1646 retries = 0;
1648 try_again:
1649 maxnum=0;
1650 minnum=0;
1652 /* for each ip address, loop over all nodes that can serve
1653 this ip and make sure that the difference between the node
1654 serving the most and the node serving the least ip's are
1655 not greater than 1.
1657 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1658 if (tmp_ip->pnn == -1) {
1659 continue;
1662 /* Get the highest and lowest number of ips's served by any
1663 valid node which can serve this ip.
1665 maxnode = -1;
1666 minnode = -1;
1667 for (i=0; i<numnodes; i++) {
1668 /* only check nodes that can actually serve this ip */
1669 if (!can_node_takeover_ip(ctdb, i, ipflags[i], tmp_ip)) {
1670 /* no it couldnt so skip to the next node */
1671 continue;
1674 num = node_ip_coverage(ctdb, i, all_ips);
1675 if (maxnode == -1) {
1676 maxnode = i;
1677 maxnum = num;
1678 } else {
1679 if (num > maxnum) {
1680 maxnode = i;
1681 maxnum = num;
1684 if (minnode == -1) {
1685 minnode = i;
1686 minnum = num;
1687 } else {
1688 if (num < minnum) {
1689 minnode = i;
1690 minnum = num;
1694 if (maxnode == -1) {
1695 DEBUG(DEBUG_WARNING,(__location__ " Could not find maxnode. May not be able to serve ip '%s'\n",
1696 ctdb_addr_to_str(&tmp_ip->addr)));
1698 continue;
1701 /* if the spread between the smallest and largest coverage by
1702 a node is >=2 we steal one of the ips from the node with
1703 most coverage to even things out a bit.
1704 try to do this a limited number of times since we dont
1705 want to spend too much time balancing the ip coverage.
1707 if ( (maxnum > minnum+1)
1708 && (retries < (num_ips + 5)) ){
1709 struct ctdb_public_ip_list *tmp;
1711 /* Reassign one of maxnode's VNNs */
1712 for (tmp=all_ips;tmp;tmp=tmp->next) {
1713 if (tmp->pnn == maxnode) {
1714 (void)find_takeover_node(ctdb, ipflags, tmp, all_ips);
1715 retries++;
1716 goto try_again;;
1723 static void lcp2_init(struct ctdb_context *tmp_ctx,
1724 struct ctdb_ipflags *ipflags,
1725 struct ctdb_public_ip_list *all_ips,
1726 uint32_t *force_rebalance_nodes,
1727 uint32_t **lcp2_imbalances,
1728 bool **rebalance_candidates)
1730 int i, numnodes;
1731 struct ctdb_public_ip_list *tmp_ip;
1733 numnodes = talloc_array_length(ipflags);
1735 *rebalance_candidates = talloc_array(tmp_ctx, bool, numnodes);
1736 CTDB_NO_MEMORY_FATAL(tmp_ctx, *rebalance_candidates);
1737 *lcp2_imbalances = talloc_array(tmp_ctx, uint32_t, numnodes);
1738 CTDB_NO_MEMORY_FATAL(tmp_ctx, *lcp2_imbalances);
1740 for (i=0; i<numnodes; i++) {
1741 (*lcp2_imbalances)[i] = lcp2_imbalance(all_ips, i);
1742 /* First step: assume all nodes are candidates */
1743 (*rebalance_candidates)[i] = true;
1746 /* 2nd step: if a node has IPs assigned then it must have been
1747 * healthy before, so we remove it from consideration. This
1748 * is overkill but is all we have because we don't maintain
1749 * state between takeover runs. An alternative would be to
1750 * keep state and invalidate it every time the recovery master
1751 * changes.
1753 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1754 if (tmp_ip->pnn != -1) {
1755 (*rebalance_candidates)[tmp_ip->pnn] = false;
1759 /* 3rd step: if a node is forced to re-balance then
1760 we allow failback onto the node */
1761 if (force_rebalance_nodes == NULL) {
1762 return;
1764 for (i = 0; i < talloc_array_length(force_rebalance_nodes); i++) {
1765 uint32_t pnn = force_rebalance_nodes[i];
1766 if (pnn >= numnodes) {
1767 DEBUG(DEBUG_ERR,
1768 (__location__ "unknown node %u\n", pnn));
1769 continue;
1772 DEBUG(DEBUG_NOTICE,
1773 ("Forcing rebalancing of IPs to node %u\n", pnn));
1774 (*rebalance_candidates)[pnn] = true;
1778 /* Allocate any unassigned addresses using the LCP2 algorithm to find
1779 * the IP/node combination that will cost the least.
1781 static void lcp2_allocate_unassigned(struct ctdb_context *ctdb,
1782 struct ctdb_ipflags *ipflags,
1783 struct ctdb_public_ip_list *all_ips,
1784 uint32_t *lcp2_imbalances)
1786 struct ctdb_public_ip_list *tmp_ip;
1787 int dstnode, numnodes;
1789 int minnode;
1790 uint32_t mindsum, dstdsum, dstimbl, minimbl;
1791 struct ctdb_public_ip_list *minip;
1793 bool should_loop = true;
1794 bool have_unassigned = true;
1796 numnodes = talloc_array_length(ipflags);
1798 while (have_unassigned && should_loop) {
1799 should_loop = false;
1801 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1802 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
1804 minnode = -1;
1805 mindsum = 0;
1806 minip = NULL;
1808 /* loop over each unassigned ip. */
1809 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1810 if (tmp_ip->pnn != -1) {
1811 continue;
1814 for (dstnode=0; dstnode<numnodes; dstnode++) {
1815 /* only check nodes that can actually takeover this ip */
1816 if (!can_node_takeover_ip(ctdb, dstnode,
1817 ipflags[dstnode],
1818 tmp_ip)) {
1819 /* no it couldnt so skip to the next node */
1820 continue;
1823 dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1824 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1825 DEBUG(DEBUG_DEBUG,(" %s -> %d [+%d]\n",
1826 ctdb_addr_to_str(&(tmp_ip->addr)),
1827 dstnode,
1828 dstimbl - lcp2_imbalances[dstnode]));
1831 if ((minnode == -1) || (dstdsum < mindsum)) {
1832 minnode = dstnode;
1833 minimbl = dstimbl;
1834 mindsum = dstdsum;
1835 minip = tmp_ip;
1836 should_loop = true;
1841 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1843 /* If we found one then assign it to the given node. */
1844 if (minnode != -1) {
1845 minip->pnn = minnode;
1846 lcp2_imbalances[minnode] = minimbl;
1847 DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
1848 ctdb_addr_to_str(&(minip->addr)),
1849 minnode,
1850 mindsum));
1853 /* There might be a better way but at least this is clear. */
1854 have_unassigned = false;
1855 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1856 if (tmp_ip->pnn == -1) {
1857 have_unassigned = true;
1862 /* We know if we have an unassigned addresses so we might as
1863 * well optimise.
1865 if (have_unassigned) {
1866 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1867 if (tmp_ip->pnn == -1) {
1868 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1869 ctdb_addr_to_str(&tmp_ip->addr)));
1875 /* LCP2 algorithm for rebalancing the cluster. Given a candidate node
1876 * to move IPs from, determines the best IP/destination node
1877 * combination to move from the source node.
1879 static bool lcp2_failback_candidate(struct ctdb_context *ctdb,
1880 struct ctdb_ipflags *ipflags,
1881 struct ctdb_public_ip_list *all_ips,
1882 int srcnode,
1883 uint32_t candimbl,
1884 uint32_t *lcp2_imbalances,
1885 bool *rebalance_candidates)
1887 int dstnode, mindstnode, numnodes;
1888 uint32_t srcimbl, srcdsum, dstimbl, dstdsum;
1889 uint32_t minsrcimbl, mindstimbl;
1890 struct ctdb_public_ip_list *minip;
1891 struct ctdb_public_ip_list *tmp_ip;
1893 /* Find an IP and destination node that best reduces imbalance. */
1894 srcimbl = 0;
1895 minip = NULL;
1896 minsrcimbl = 0;
1897 mindstnode = -1;
1898 mindstimbl = 0;
1900 numnodes = talloc_array_length(ipflags);
1902 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1903 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n", srcnode, candimbl));
1905 for (tmp_ip=all_ips; tmp_ip; tmp_ip=tmp_ip->next) {
1906 /* Only consider addresses on srcnode. */
1907 if (tmp_ip->pnn != srcnode) {
1908 continue;
1911 /* What is this IP address costing the source node? */
1912 srcdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, srcnode);
1913 srcimbl = candimbl - srcdsum;
1915 /* Consider this IP address would cost each potential
1916 * destination node. Destination nodes are limited to
1917 * those that are newly healthy, since we don't want
1918 * to do gratuitous failover of IPs just to make minor
1919 * balance improvements.
1921 for (dstnode=0; dstnode<numnodes; dstnode++) {
1922 if (!rebalance_candidates[dstnode]) {
1923 continue;
1926 /* only check nodes that can actually takeover this ip */
1927 if (!can_node_takeover_ip(ctdb, dstnode,
1928 ipflags[dstnode], tmp_ip)) {
1929 /* no it couldnt so skip to the next node */
1930 continue;
1933 dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1934 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1935 DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
1936 srcnode, srcimbl - lcp2_imbalances[srcnode],
1937 ctdb_addr_to_str(&(tmp_ip->addr)),
1938 dstnode, dstimbl - lcp2_imbalances[dstnode]));
1940 if ((dstimbl < candimbl) && (dstdsum < srcdsum) && \
1941 ((mindstnode == -1) || \
1942 ((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
1944 minip = tmp_ip;
1945 minsrcimbl = srcimbl;
1946 mindstnode = dstnode;
1947 mindstimbl = dstimbl;
1951 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1953 if (mindstnode != -1) {
1954 /* We found a move that makes things better... */
1955 DEBUG(DEBUG_INFO,("%d [%d] -> %s -> %d [+%d]\n",
1956 srcnode, minsrcimbl - lcp2_imbalances[srcnode],
1957 ctdb_addr_to_str(&(minip->addr)),
1958 mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
1961 lcp2_imbalances[srcnode] = minsrcimbl;
1962 lcp2_imbalances[mindstnode] = mindstimbl;
1963 minip->pnn = mindstnode;
1965 return true;
1968 return false;
1972 struct lcp2_imbalance_pnn {
1973 uint32_t imbalance;
1974 int pnn;
1977 static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
1979 const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
1980 const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
1982 if (lipa->imbalance > lipb->imbalance) {
1983 return -1;
1984 } else if (lipa->imbalance == lipb->imbalance) {
1985 return 0;
1986 } else {
1987 return 1;
1991 /* LCP2 algorithm for rebalancing the cluster. This finds the source
1992 * node with the highest LCP2 imbalance, and then determines the best
1993 * IP/destination node combination to move from the source node.
1995 static void lcp2_failback(struct ctdb_context *ctdb,
1996 struct ctdb_ipflags *ipflags,
1997 struct ctdb_public_ip_list *all_ips,
1998 uint32_t *lcp2_imbalances,
1999 bool *rebalance_candidates)
2001 int i, num_rebalance_candidates, numnodes;
2002 struct lcp2_imbalance_pnn * lips;
2003 bool again;
2005 numnodes = talloc_array_length(ipflags);
2007 try_again:
2009 /* It is only worth continuing if we have suitable target
2010 * nodes to transfer IPs to. This check is much cheaper than
2011 * continuing on...
2013 num_rebalance_candidates = 0;
2014 for (i=0; i<numnodes; i++) {
2015 if (rebalance_candidates[i]) {
2016 num_rebalance_candidates++;
2019 if (num_rebalance_candidates == 0) {
2020 return;
2023 /* Put the imbalances and nodes into an array, sort them and
2024 * iterate through candidates. Usually the 1st one will be
2025 * used, so this doesn't cost much...
2027 DEBUG(DEBUG_DEBUG,("+++++++++++++++++++++++++++++++++++++++++\n"));
2028 DEBUG(DEBUG_DEBUG,("Selecting most imbalanced node from:\n"));
2029 lips = talloc_array(ctdb, struct lcp2_imbalance_pnn, numnodes);
2030 for (i=0; i<numnodes; i++) {
2031 lips[i].imbalance = lcp2_imbalances[i];
2032 lips[i].pnn = i;
2033 DEBUG(DEBUG_DEBUG,(" %d [%d]\n", i, lcp2_imbalances[i]));
2035 qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
2036 lcp2_cmp_imbalance_pnn);
2038 again = false;
2039 for (i=0; i<numnodes; i++) {
2040 /* This means that all nodes had 0 or 1 addresses, so
2041 * can't be imbalanced.
2043 if (lips[i].imbalance == 0) {
2044 break;
2047 if (lcp2_failback_candidate(ctdb,
2048 ipflags,
2049 all_ips,
2050 lips[i].pnn,
2051 lips[i].imbalance,
2052 lcp2_imbalances,
2053 rebalance_candidates)) {
2054 again = true;
2055 break;
2059 talloc_free(lips);
2060 if (again) {
2061 goto try_again;
2065 static void unassign_unsuitable_ips(struct ctdb_context *ctdb,
2066 struct ctdb_ipflags *ipflags,
2067 struct ctdb_public_ip_list *all_ips)
2069 struct ctdb_public_ip_list *tmp_ip;
2071 /* verify that the assigned nodes can serve that public ip
2072 and set it to -1 if not
2074 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2075 if (tmp_ip->pnn == -1) {
2076 continue;
2078 if (!can_node_host_ip(ctdb, tmp_ip->pnn,
2079 ipflags[tmp_ip->pnn], tmp_ip) != 0) {
2080 /* this node can not serve this ip. */
2081 DEBUG(DEBUG_DEBUG,("Unassign IP: %s from %d\n",
2082 ctdb_addr_to_str(&(tmp_ip->addr)),
2083 tmp_ip->pnn));
2084 tmp_ip->pnn = -1;
2089 static void ip_alloc_deterministic_ips(struct ctdb_context *ctdb,
2090 struct ctdb_ipflags *ipflags,
2091 struct ctdb_public_ip_list *all_ips)
2093 struct ctdb_public_ip_list *tmp_ip;
2094 int i, numnodes;
2096 numnodes = talloc_array_length(ipflags);
2098 DEBUG(DEBUG_NOTICE,("Deterministic IPs enabled. Resetting all ip allocations\n"));
2099 /* Allocate IPs to nodes in a modulo fashion so that IPs will
2100 * always be allocated the same way for a specific set of
2101 * available/unavailable nodes.
2104 for (i=0,tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next,i++) {
2105 tmp_ip->pnn = i % numnodes;
2108 /* IP failback doesn't make sense with deterministic
2109 * IPs, since the modulo step above implicitly fails
2110 * back IPs to their "home" node.
2112 if (1 == ctdb->tunable.no_ip_failback) {
2113 DEBUG(DEBUG_WARNING, ("WARNING: 'NoIPFailback' set but ignored - incompatible with 'DeterministicIPs\n"));
2116 unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2118 basic_allocate_unassigned(ctdb, ipflags, all_ips);
2120 /* No failback here! */
2123 static void ip_alloc_nondeterministic_ips(struct ctdb_context *ctdb,
2124 struct ctdb_ipflags *ipflags,
2125 struct ctdb_public_ip_list *all_ips)
2127 /* This should be pushed down into basic_failback. */
2128 struct ctdb_public_ip_list *tmp_ip;
2129 int num_ips = 0;
2130 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2131 num_ips++;
2134 unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2136 basic_allocate_unassigned(ctdb, ipflags, all_ips);
2138 /* If we don't want IPs to fail back then don't rebalance IPs. */
2139 if (1 == ctdb->tunable.no_ip_failback) {
2140 return;
2143 /* Now, try to make sure the ip adresses are evenly distributed
2144 across the nodes.
2146 basic_failback(ctdb, ipflags, all_ips, num_ips);
2149 static void ip_alloc_lcp2(struct ctdb_context *ctdb,
2150 struct ctdb_ipflags *ipflags,
2151 struct ctdb_public_ip_list *all_ips,
2152 uint32_t *force_rebalance_nodes)
2154 uint32_t *lcp2_imbalances;
2155 bool *rebalance_candidates;
2157 TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2159 unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2161 lcp2_init(tmp_ctx, ipflags, all_ips,force_rebalance_nodes,
2162 &lcp2_imbalances, &rebalance_candidates);
2164 lcp2_allocate_unassigned(ctdb, ipflags, all_ips, lcp2_imbalances);
2166 /* If we don't want IPs to fail back then don't rebalance IPs. */
2167 if (1 == ctdb->tunable.no_ip_failback) {
2168 goto finished;
2171 /* Now, try to make sure the ip adresses are evenly distributed
2172 across the nodes.
2174 lcp2_failback(ctdb, ipflags, all_ips,
2175 lcp2_imbalances, rebalance_candidates);
2177 finished:
2178 talloc_free(tmp_ctx);
2181 static bool all_nodes_are_disabled(struct ctdb_node_map *nodemap)
2183 int i, num_healthy;
2185 /* Count how many completely healthy nodes we have */
2186 num_healthy = 0;
2187 for (i=0;i<nodemap->num;i++) {
2188 if (!(nodemap->nodes[i].flags & (NODE_FLAGS_INACTIVE|NODE_FLAGS_DISABLED))) {
2189 num_healthy++;
2193 return num_healthy == 0;
2196 /* The calculation part of the IP allocation algorithm. */
2197 static void ctdb_takeover_run_core(struct ctdb_context *ctdb,
2198 struct ctdb_ipflags *ipflags,
2199 struct ctdb_public_ip_list **all_ips_p,
2200 uint32_t *force_rebalance_nodes)
2202 /* since nodes only know about those public addresses that
2203 can be served by that particular node, no single node has
2204 a full list of all public addresses that exist in the cluster.
2205 Walk over all node structures and create a merged list of
2206 all public addresses that exist in the cluster.
2208 keep the tree of ips around as ctdb->ip_tree
2210 *all_ips_p = create_merged_ip_list(ctdb);
2212 if (1 == ctdb->tunable.lcp2_public_ip_assignment) {
2213 ip_alloc_lcp2(ctdb, ipflags, *all_ips_p, force_rebalance_nodes);
2214 } else if (1 == ctdb->tunable.deterministic_public_ips) {
2215 ip_alloc_deterministic_ips(ctdb, ipflags, *all_ips_p);
2216 } else {
2217 ip_alloc_nondeterministic_ips(ctdb, ipflags, *all_ips_p);
2220 /* at this point ->pnn is the node which will own each IP
2221 or -1 if there is no node that can cover this ip
2224 return;
2227 struct get_tunable_callback_data {
2228 const char *tunable;
2229 uint32_t *out;
2230 bool fatal;
2233 static void get_tunable_callback(struct ctdb_context *ctdb, uint32_t pnn,
2234 int32_t res, TDB_DATA outdata,
2235 void *callback)
2237 struct get_tunable_callback_data *cd =
2238 (struct get_tunable_callback_data *)callback;
2239 int size;
2241 if (res != 0) {
2242 /* Already handled in fail callback */
2243 return;
2246 if (outdata.dsize != sizeof(uint32_t)) {
2247 DEBUG(DEBUG_ERR,("Wrong size of returned data when reading \"%s\" tunable from node %d. Expected %d bytes but received %d bytes\n",
2248 cd->tunable, pnn, (int)sizeof(uint32_t),
2249 (int)outdata.dsize));
2250 cd->fatal = true;
2251 return;
2254 size = talloc_array_length(cd->out);
2255 if (pnn >= size) {
2256 DEBUG(DEBUG_ERR,("Got %s reply from node %d but nodemap only has %d entries\n",
2257 cd->tunable, pnn, size));
2258 return;
2262 cd->out[pnn] = *(uint32_t *)outdata.dptr;
2265 static void get_tunable_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2266 int32_t res, TDB_DATA outdata,
2267 void *callback)
2269 struct get_tunable_callback_data *cd =
2270 (struct get_tunable_callback_data *)callback;
2272 switch (res) {
2273 case -ETIME:
2274 DEBUG(DEBUG_ERR,
2275 ("Timed out getting tunable \"%s\" from node %d\n",
2276 cd->tunable, pnn));
2277 cd->fatal = true;
2278 break;
2279 case -EINVAL:
2280 case -1:
2281 DEBUG(DEBUG_WARNING,
2282 ("Tunable \"%s\" not implemented on node %d\n",
2283 cd->tunable, pnn));
2284 break;
2285 default:
2286 DEBUG(DEBUG_ERR,
2287 ("Unexpected error getting tunable \"%s\" from node %d\n",
2288 cd->tunable, pnn));
2289 cd->fatal = true;
2293 static uint32_t *get_tunable_from_nodes(struct ctdb_context *ctdb,
2294 TALLOC_CTX *tmp_ctx,
2295 struct ctdb_node_map *nodemap,
2296 const char *tunable,
2297 uint32_t default_value)
2299 TDB_DATA data;
2300 struct ctdb_control_get_tunable *t;
2301 uint32_t *nodes;
2302 uint32_t *tvals;
2303 struct get_tunable_callback_data callback_data;
2304 int i;
2306 tvals = talloc_array(tmp_ctx, uint32_t, nodemap->num);
2307 CTDB_NO_MEMORY_NULL(ctdb, tvals);
2308 for (i=0; i<nodemap->num; i++) {
2309 tvals[i] = default_value;
2312 callback_data.out = tvals;
2313 callback_data.tunable = tunable;
2314 callback_data.fatal = false;
2316 data.dsize = offsetof(struct ctdb_control_get_tunable, name) + strlen(tunable) + 1;
2317 data.dptr = talloc_size(tmp_ctx, data.dsize);
2318 t = (struct ctdb_control_get_tunable *)data.dptr;
2319 t->length = strlen(tunable)+1;
2320 memcpy(t->name, tunable, t->length);
2321 nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2322 if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_TUNABLE,
2323 nodes, 0, TAKEOVER_TIMEOUT(),
2324 false, data,
2325 get_tunable_callback,
2326 get_tunable_fail_callback,
2327 &callback_data) != 0) {
2328 if (callback_data.fatal) {
2329 talloc_free(tvals);
2330 tvals = NULL;
2333 talloc_free(nodes);
2334 talloc_free(data.dptr);
2336 return tvals;
2339 struct get_runstate_callback_data {
2340 enum ctdb_runstate *out;
2341 bool fatal;
2344 static void get_runstate_callback(struct ctdb_context *ctdb, uint32_t pnn,
2345 int32_t res, TDB_DATA outdata,
2346 void *callback_data)
2348 struct get_runstate_callback_data *cd =
2349 (struct get_runstate_callback_data *)callback_data;
2350 int size;
2352 if (res != 0) {
2353 /* Already handled in fail callback */
2354 return;
2357 if (outdata.dsize != sizeof(uint32_t)) {
2358 DEBUG(DEBUG_ERR,("Wrong size of returned data when getting runstate from node %d. Expected %d bytes but received %d bytes\n",
2359 pnn, (int)sizeof(uint32_t),
2360 (int)outdata.dsize));
2361 cd->fatal = true;
2362 return;
2365 size = talloc_array_length(cd->out);
2366 if (pnn >= size) {
2367 DEBUG(DEBUG_ERR,("Got reply from node %d but nodemap only has %d entries\n",
2368 pnn, size));
2369 return;
2372 cd->out[pnn] = (enum ctdb_runstate)*(uint32_t *)outdata.dptr;
2375 static void get_runstate_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2376 int32_t res, TDB_DATA outdata,
2377 void *callback)
2379 struct get_runstate_callback_data *cd =
2380 (struct get_runstate_callback_data *)callback;
2382 switch (res) {
2383 case -ETIME:
2384 DEBUG(DEBUG_ERR,
2385 ("Timed out getting runstate from node %d\n", pnn));
2386 cd->fatal = true;
2387 break;
2388 default:
2389 DEBUG(DEBUG_WARNING,
2390 ("Error getting runstate from node %d - assuming runstates not supported\n",
2391 pnn));
2395 static enum ctdb_runstate * get_runstate_from_nodes(struct ctdb_context *ctdb,
2396 TALLOC_CTX *tmp_ctx,
2397 struct ctdb_node_map *nodemap,
2398 enum ctdb_runstate default_value)
2400 uint32_t *nodes;
2401 enum ctdb_runstate *rs;
2402 struct get_runstate_callback_data callback_data;
2403 int i;
2405 rs = talloc_array(tmp_ctx, enum ctdb_runstate, nodemap->num);
2406 CTDB_NO_MEMORY_NULL(ctdb, rs);
2407 for (i=0; i<nodemap->num; i++) {
2408 rs[i] = default_value;
2411 callback_data.out = rs;
2412 callback_data.fatal = false;
2414 nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2415 if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_RUNSTATE,
2416 nodes, 0, TAKEOVER_TIMEOUT(),
2417 true, tdb_null,
2418 get_runstate_callback,
2419 get_runstate_fail_callback,
2420 &callback_data) != 0) {
2421 if (callback_data.fatal) {
2422 free(rs);
2423 rs = NULL;
2426 talloc_free(nodes);
2428 return rs;
2431 /* Set internal flags for IP allocation:
2432 * Clear ip flags
2433 * Set NOIPTAKOVER ip flags from per-node NoIPTakeover tunable
2434 * Set NOIPHOST ip flag for each INACTIVE node
2435 * if all nodes are disabled:
2436 * Set NOIPHOST ip flags from per-node NoIPHostOnAllDisabled tunable
2437 * else
2438 * Set NOIPHOST ip flags for disabled nodes
2440 static struct ctdb_ipflags *
2441 set_ipflags_internal(struct ctdb_context *ctdb,
2442 TALLOC_CTX *tmp_ctx,
2443 struct ctdb_node_map *nodemap,
2444 uint32_t *tval_noiptakeover,
2445 uint32_t *tval_noiphostonalldisabled,
2446 enum ctdb_runstate *runstate)
2448 int i;
2449 struct ctdb_ipflags *ipflags;
2451 /* Clear IP flags - implicit due to talloc_zero */
2452 ipflags = talloc_zero_array(tmp_ctx, struct ctdb_ipflags, nodemap->num);
2453 CTDB_NO_MEMORY_NULL(ctdb, ipflags);
2455 for (i=0;i<nodemap->num;i++) {
2456 /* Can not take IPs on node with NoIPTakeover set */
2457 if (tval_noiptakeover[i] != 0) {
2458 ipflags[i].noiptakeover = true;
2461 /* Can not host IPs on node not in RUNNING state */
2462 if (runstate[i] != CTDB_RUNSTATE_RUNNING) {
2463 ipflags[i].noiphost = true;
2464 continue;
2466 /* Can not host IPs on INACTIVE node */
2467 if (nodemap->nodes[i].flags & NODE_FLAGS_INACTIVE) {
2468 ipflags[i].noiphost = true;
2472 if (all_nodes_are_disabled(nodemap)) {
2473 /* If all nodes are disabled, can not host IPs on node
2474 * with NoIPHostOnAllDisabled set
2476 for (i=0;i<nodemap->num;i++) {
2477 if (tval_noiphostonalldisabled[i] != 0) {
2478 ipflags[i].noiphost = true;
2481 } else {
2482 /* If some nodes are not disabled, then can not host
2483 * IPs on DISABLED node
2485 for (i=0;i<nodemap->num;i++) {
2486 if (nodemap->nodes[i].flags & NODE_FLAGS_DISABLED) {
2487 ipflags[i].noiphost = true;
2492 return ipflags;
2495 static struct ctdb_ipflags *set_ipflags(struct ctdb_context *ctdb,
2496 TALLOC_CTX *tmp_ctx,
2497 struct ctdb_node_map *nodemap)
2499 uint32_t *tval_noiptakeover;
2500 uint32_t *tval_noiphostonalldisabled;
2501 struct ctdb_ipflags *ipflags;
2502 enum ctdb_runstate *runstate;
2505 tval_noiptakeover = get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2506 "NoIPTakeover", 0);
2507 if (tval_noiptakeover == NULL) {
2508 return NULL;
2511 tval_noiphostonalldisabled =
2512 get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2513 "NoIPHostOnAllDisabled", 0);
2514 if (tval_noiphostonalldisabled == NULL) {
2515 /* Caller frees tmp_ctx */
2516 return NULL;
2519 /* Any nodes where CTDB_CONTROL_GET_RUNSTATE is not supported
2520 * will default to CTDB_RUNSTATE_RUNNING. This ensures
2521 * reasonable behaviour on a mixed cluster during upgrade.
2523 runstate = get_runstate_from_nodes(ctdb, tmp_ctx, nodemap,
2524 CTDB_RUNSTATE_RUNNING);
2525 if (runstate == NULL) {
2526 /* Caller frees tmp_ctx */
2527 return NULL;
2530 ipflags = set_ipflags_internal(ctdb, tmp_ctx, nodemap,
2531 tval_noiptakeover,
2532 tval_noiphostonalldisabled,
2533 runstate);
2535 talloc_free(tval_noiptakeover);
2536 talloc_free(tval_noiphostonalldisabled);
2537 talloc_free(runstate);
2539 return ipflags;
2542 struct iprealloc_callback_data {
2543 bool *retry_nodes;
2544 int retry_count;
2545 client_async_callback fail_callback;
2546 void *fail_callback_data;
2547 struct ctdb_node_map *nodemap;
2550 static void iprealloc_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2551 int32_t res, TDB_DATA outdata,
2552 void *callback)
2554 int numnodes;
2555 struct iprealloc_callback_data *cd =
2556 (struct iprealloc_callback_data *)callback;
2558 numnodes = talloc_array_length(cd->retry_nodes);
2559 if (pnn > numnodes) {
2560 DEBUG(DEBUG_ERR,
2561 ("ipreallocated failure from node %d, "
2562 "but only %d nodes in nodemap\n",
2563 pnn, numnodes));
2564 return;
2567 /* Can't run the "ipreallocated" event on a INACTIVE node */
2568 if (cd->nodemap->nodes[pnn].flags & NODE_FLAGS_INACTIVE) {
2569 DEBUG(DEBUG_WARNING,
2570 ("ipreallocated failed on inactive node %d, ignoring\n",
2571 pnn));
2572 return;
2575 switch (res) {
2576 case -ETIME:
2577 /* If the control timed out then that's a real error,
2578 * so call the real fail callback
2580 cd->fail_callback(ctdb, pnn, res, outdata,
2581 cd->fail_callback_data);
2582 break;
2583 default:
2584 /* If not a timeout then either the ipreallocated
2585 * eventscript (or some setup) failed. This might
2586 * have failed because the IPREALLOCATED control isn't
2587 * implemented - right now there is no way of knowing
2588 * because the error codes are all folded down to -1.
2589 * Consider retrying using EVENTSCRIPT control...
2591 DEBUG(DEBUG_WARNING,
2592 ("ipreallocated failure from node %d, flagging retry\n",
2593 pnn));
2594 cd->retry_nodes[pnn] = true;
2595 cd->retry_count++;
2599 struct takeover_callback_data {
2600 bool *node_failed;
2601 client_async_callback fail_callback;
2602 void *fail_callback_data;
2603 struct ctdb_node_map *nodemap;
2606 static void takeover_run_fail_callback(struct ctdb_context *ctdb,
2607 uint32_t node_pnn, int32_t res,
2608 TDB_DATA outdata, void *callback_data)
2610 struct takeover_callback_data *cd =
2611 talloc_get_type_abort(callback_data,
2612 struct takeover_callback_data);
2613 int i;
2615 for (i = 0; i < cd->nodemap->num; i++) {
2616 if (node_pnn == cd->nodemap->nodes[i].pnn) {
2617 break;
2621 if (i == cd->nodemap->num) {
2622 DEBUG(DEBUG_ERR, (__location__ " invalid PNN %u\n", node_pnn));
2623 return;
2626 if (!cd->node_failed[i]) {
2627 cd->node_failed[i] = true;
2628 cd->fail_callback(ctdb, node_pnn, res, outdata,
2629 cd->fail_callback_data);
2634 make any IP alias changes for public addresses that are necessary
2636 int ctdb_takeover_run(struct ctdb_context *ctdb, struct ctdb_node_map *nodemap,
2637 uint32_t *force_rebalance_nodes,
2638 client_async_callback fail_callback, void *callback_data)
2640 int i, j, ret;
2641 struct ctdb_public_ip ip;
2642 struct ctdb_public_ipv4 ipv4;
2643 uint32_t *nodes;
2644 struct ctdb_public_ip_list *all_ips, *tmp_ip;
2645 TDB_DATA data;
2646 struct timeval timeout;
2647 struct client_async_data *async_data;
2648 struct ctdb_client_control_state *state;
2649 TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2650 struct ctdb_ipflags *ipflags;
2651 struct takeover_callback_data *takeover_data;
2652 struct iprealloc_callback_data iprealloc_data;
2653 bool *retry_data;
2656 * ip failover is completely disabled, just send out the
2657 * ipreallocated event.
2659 if (ctdb->tunable.disable_ip_failover != 0) {
2660 goto ipreallocated;
2663 ipflags = set_ipflags(ctdb, tmp_ctx, nodemap);
2664 if (ipflags == NULL) {
2665 DEBUG(DEBUG_ERR,("Failed to set IP flags - aborting takeover run\n"));
2666 talloc_free(tmp_ctx);
2667 return -1;
2670 ZERO_STRUCT(ip);
2672 /* Do the IP reassignment calculations */
2673 ctdb_takeover_run_core(ctdb, ipflags, &all_ips, force_rebalance_nodes);
2675 /* Now tell all nodes to release any public IPs should not
2676 * host. This will be a NOOP on nodes that don't currently
2677 * hold the given IP.
2679 takeover_data = talloc_zero(tmp_ctx, struct takeover_callback_data);
2680 CTDB_NO_MEMORY_FATAL(ctdb, takeover_data);
2682 takeover_data->node_failed = talloc_zero_array(tmp_ctx,
2683 bool, nodemap->num);
2684 CTDB_NO_MEMORY_FATAL(ctdb, takeover_data->node_failed);
2685 takeover_data->fail_callback = fail_callback;
2686 takeover_data->fail_callback_data = callback_data;
2687 takeover_data->nodemap = nodemap;
2689 async_data = talloc_zero(tmp_ctx, struct client_async_data);
2690 CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2692 async_data->fail_callback = takeover_run_fail_callback;
2693 async_data->callback_data = takeover_data;
2695 for (i=0;i<nodemap->num;i++) {
2696 /* don't talk to unconnected nodes, but do talk to banned nodes */
2697 if (nodemap->nodes[i].flags & NODE_FLAGS_DISCONNECTED) {
2698 continue;
2701 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2702 if (tmp_ip->pnn == nodemap->nodes[i].pnn) {
2703 /* This node should be serving this
2704 vnn so dont tell it to release the ip
2706 continue;
2708 if (tmp_ip->addr.sa.sa_family == AF_INET) {
2709 ipv4.pnn = tmp_ip->pnn;
2710 ipv4.sin = tmp_ip->addr.ip;
2712 timeout = TAKEOVER_TIMEOUT();
2713 data.dsize = sizeof(ipv4);
2714 data.dptr = (uint8_t *)&ipv4;
2715 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2716 0, CTDB_CONTROL_RELEASE_IPv4, 0,
2717 data, async_data,
2718 &timeout, NULL);
2719 } else {
2720 ip.pnn = tmp_ip->pnn;
2721 ip.addr = tmp_ip->addr;
2723 timeout = TAKEOVER_TIMEOUT();
2724 data.dsize = sizeof(ip);
2725 data.dptr = (uint8_t *)&ip;
2726 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2727 0, CTDB_CONTROL_RELEASE_IP, 0,
2728 data, async_data,
2729 &timeout, NULL);
2732 if (state == NULL) {
2733 DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_RELEASE_IP to node %u\n", nodemap->nodes[i].pnn));
2734 talloc_free(tmp_ctx);
2735 return -1;
2738 ctdb_client_async_add(async_data, state);
2741 if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2742 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_RELEASE_IP failed\n"));
2743 talloc_free(tmp_ctx);
2744 return -1;
2746 talloc_free(async_data);
2749 /* tell all nodes to get their own IPs */
2750 async_data = talloc_zero(tmp_ctx, struct client_async_data);
2751 CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2753 async_data->fail_callback = fail_callback;
2754 async_data->callback_data = callback_data;
2756 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2757 if (tmp_ip->pnn == -1) {
2758 /* this IP won't be taken over */
2759 continue;
2762 if (tmp_ip->addr.sa.sa_family == AF_INET) {
2763 ipv4.pnn = tmp_ip->pnn;
2764 ipv4.sin = tmp_ip->addr.ip;
2766 timeout = TAKEOVER_TIMEOUT();
2767 data.dsize = sizeof(ipv4);
2768 data.dptr = (uint8_t *)&ipv4;
2769 state = ctdb_control_send(ctdb, tmp_ip->pnn,
2770 0, CTDB_CONTROL_TAKEOVER_IPv4, 0,
2771 data, async_data,
2772 &timeout, NULL);
2773 } else {
2774 ip.pnn = tmp_ip->pnn;
2775 ip.addr = tmp_ip->addr;
2777 timeout = TAKEOVER_TIMEOUT();
2778 data.dsize = sizeof(ip);
2779 data.dptr = (uint8_t *)&ip;
2780 state = ctdb_control_send(ctdb, tmp_ip->pnn,
2781 0, CTDB_CONTROL_TAKEOVER_IP, 0,
2782 data, async_data,
2783 &timeout, NULL);
2785 if (state == NULL) {
2786 DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_TAKEOVER_IP to node %u\n", tmp_ip->pnn));
2787 talloc_free(tmp_ctx);
2788 return -1;
2791 ctdb_client_async_add(async_data, state);
2793 if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2794 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_TAKEOVER_IP failed\n"));
2795 talloc_free(tmp_ctx);
2796 return -1;
2799 ipreallocated:
2801 * Tell all nodes to run eventscripts to process the
2802 * "ipreallocated" event. This can do a lot of things,
2803 * including restarting services to reconfigure them if public
2804 * IPs have moved. Once upon a time this event only used to
2805 * update natwg.
2807 retry_data = talloc_zero_array(tmp_ctx, bool, nodemap->num);
2808 CTDB_NO_MEMORY_FATAL(ctdb, retry_data);
2809 iprealloc_data.retry_nodes = retry_data;
2810 iprealloc_data.retry_count = 0;
2811 iprealloc_data.fail_callback = fail_callback;
2812 iprealloc_data.fail_callback_data = callback_data;
2813 iprealloc_data.nodemap = nodemap;
2815 nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2816 ret = ctdb_client_async_control(ctdb, CTDB_CONTROL_IPREALLOCATED,
2817 nodes, 0, TAKEOVER_TIMEOUT(),
2818 false, tdb_null,
2819 NULL, iprealloc_fail_callback,
2820 &iprealloc_data);
2821 if (ret != 0) {
2822 /* If the control failed then we should retry to any
2823 * nodes flagged by iprealloc_fail_callback using the
2824 * EVENTSCRIPT control. This is a best-effort at
2825 * backward compatiblity when running a mixed cluster
2826 * where some nodes have not yet been upgraded to
2827 * support the IPREALLOCATED control.
2829 DEBUG(DEBUG_WARNING,
2830 ("Retry ipreallocated to some nodes using eventscript control\n"));
2832 nodes = talloc_array(tmp_ctx, uint32_t,
2833 iprealloc_data.retry_count);
2834 CTDB_NO_MEMORY_FATAL(ctdb, nodes);
2836 j = 0;
2837 for (i=0; i<nodemap->num; i++) {
2838 if (iprealloc_data.retry_nodes[i]) {
2839 nodes[j] = i;
2840 j++;
2844 data.dptr = discard_const("ipreallocated");
2845 data.dsize = strlen((char *)data.dptr) + 1;
2846 ret = ctdb_client_async_control(ctdb,
2847 CTDB_CONTROL_RUN_EVENTSCRIPTS,
2848 nodes, 0, TAKEOVER_TIMEOUT(),
2849 false, data,
2850 NULL, fail_callback,
2851 callback_data);
2852 if (ret != 0) {
2853 DEBUG(DEBUG_ERR, (__location__ " failed to send control to run eventscripts with \"ipreallocated\"\n"));
2857 talloc_free(tmp_ctx);
2858 return ret;
2863 destroy a ctdb_client_ip structure
2865 static int ctdb_client_ip_destructor(struct ctdb_client_ip *ip)
2867 DEBUG(DEBUG_DEBUG,("destroying client tcp for %s:%u (client_id %u)\n",
2868 ctdb_addr_to_str(&ip->addr),
2869 ntohs(ip->addr.ip.sin_port),
2870 ip->client_id));
2872 DLIST_REMOVE(ip->ctdb->client_ip_list, ip);
2873 return 0;
2877 called by a client to inform us of a TCP connection that it is managing
2878 that should tickled with an ACK when IP takeover is done
2879 we handle both the old ipv4 style of packets as well as the new ipv4/6
2880 pdus.
2882 int32_t ctdb_control_tcp_client(struct ctdb_context *ctdb, uint32_t client_id,
2883 TDB_DATA indata)
2885 struct ctdb_client *client = ctdb_reqid_find(ctdb, client_id, struct ctdb_client);
2886 struct ctdb_control_tcp *old_addr = NULL;
2887 struct ctdb_control_tcp_addr new_addr;
2888 struct ctdb_control_tcp_addr *tcp_sock = NULL;
2889 struct ctdb_tcp_list *tcp;
2890 struct ctdb_tcp_connection t;
2891 int ret;
2892 TDB_DATA data;
2893 struct ctdb_client_ip *ip;
2894 struct ctdb_vnn *vnn;
2895 ctdb_sock_addr addr;
2897 switch (indata.dsize) {
2898 case sizeof(struct ctdb_control_tcp):
2899 old_addr = (struct ctdb_control_tcp *)indata.dptr;
2900 ZERO_STRUCT(new_addr);
2901 tcp_sock = &new_addr;
2902 tcp_sock->src.ip = old_addr->src;
2903 tcp_sock->dest.ip = old_addr->dest;
2904 break;
2905 case sizeof(struct ctdb_control_tcp_addr):
2906 tcp_sock = (struct ctdb_control_tcp_addr *)indata.dptr;
2907 break;
2908 default:
2909 DEBUG(DEBUG_ERR,(__location__ " Invalid data structure passed "
2910 "to ctdb_control_tcp_client. size was %d but "
2911 "only allowed sizes are %lu and %lu\n",
2912 (int)indata.dsize,
2913 (long unsigned)sizeof(struct ctdb_control_tcp),
2914 (long unsigned)sizeof(struct ctdb_control_tcp_addr)));
2915 return -1;
2918 addr = tcp_sock->src;
2919 ctdb_canonicalize_ip(&addr, &tcp_sock->src);
2920 addr = tcp_sock->dest;
2921 ctdb_canonicalize_ip(&addr, &tcp_sock->dest);
2923 ZERO_STRUCT(addr);
2924 memcpy(&addr, &tcp_sock->dest, sizeof(addr));
2925 vnn = find_public_ip_vnn(ctdb, &addr);
2926 if (vnn == NULL) {
2927 switch (addr.sa.sa_family) {
2928 case AF_INET:
2929 if (ntohl(addr.ip.sin_addr.s_addr) != INADDR_LOOPBACK) {
2930 DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public address.\n",
2931 ctdb_addr_to_str(&addr)));
2933 break;
2934 case AF_INET6:
2935 DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public ipv6 address.\n",
2936 ctdb_addr_to_str(&addr)));
2937 break;
2938 default:
2939 DEBUG(DEBUG_ERR,(__location__ " Unknown family type %d\n", addr.sa.sa_family));
2942 return 0;
2945 if (vnn->pnn != ctdb->pnn) {
2946 DEBUG(DEBUG_ERR,("Attempt to register tcp client for IP %s we don't hold - failing (client_id %u pid %u)\n",
2947 ctdb_addr_to_str(&addr),
2948 client_id, client->pid));
2949 /* failing this call will tell smbd to die */
2950 return -1;
2953 ip = talloc(client, struct ctdb_client_ip);
2954 CTDB_NO_MEMORY(ctdb, ip);
2956 ip->ctdb = ctdb;
2957 ip->addr = addr;
2958 ip->client_id = client_id;
2959 talloc_set_destructor(ip, ctdb_client_ip_destructor);
2960 DLIST_ADD(ctdb->client_ip_list, ip);
2962 tcp = talloc(client, struct ctdb_tcp_list);
2963 CTDB_NO_MEMORY(ctdb, tcp);
2965 tcp->connection.src_addr = tcp_sock->src;
2966 tcp->connection.dst_addr = tcp_sock->dest;
2968 DLIST_ADD(client->tcp_list, tcp);
2970 t.src_addr = tcp_sock->src;
2971 t.dst_addr = tcp_sock->dest;
2973 data.dptr = (uint8_t *)&t;
2974 data.dsize = sizeof(t);
2976 switch (addr.sa.sa_family) {
2977 case AF_INET:
2978 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2979 (unsigned)ntohs(tcp_sock->dest.ip.sin_port),
2980 ctdb_addr_to_str(&tcp_sock->src),
2981 (unsigned)ntohs(tcp_sock->src.ip.sin_port), client_id, client->pid));
2982 break;
2983 case AF_INET6:
2984 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2985 (unsigned)ntohs(tcp_sock->dest.ip6.sin6_port),
2986 ctdb_addr_to_str(&tcp_sock->src),
2987 (unsigned)ntohs(tcp_sock->src.ip6.sin6_port), client_id, client->pid));
2988 break;
2989 default:
2990 DEBUG(DEBUG_ERR,(__location__ " Unknown family %d\n", addr.sa.sa_family));
2994 /* tell all nodes about this tcp connection */
2995 ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0,
2996 CTDB_CONTROL_TCP_ADD,
2997 0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
2998 if (ret != 0) {
2999 DEBUG(DEBUG_ERR,(__location__ " Failed to send CTDB_CONTROL_TCP_ADD\n"));
3000 return -1;
3003 return 0;
3007 find a tcp address on a list
3009 static struct ctdb_tcp_connection *ctdb_tcp_find(struct ctdb_tcp_array *array,
3010 struct ctdb_tcp_connection *tcp)
3012 int i;
3014 if (array == NULL) {
3015 return NULL;
3018 for (i=0;i<array->num;i++) {
3019 if (ctdb_same_sockaddr(&array->connections[i].src_addr, &tcp->src_addr) &&
3020 ctdb_same_sockaddr(&array->connections[i].dst_addr, &tcp->dst_addr)) {
3021 return &array->connections[i];
3024 return NULL;
3030 called by a daemon to inform us of a TCP connection that one of its
3031 clients managing that should tickled with an ACK when IP takeover is
3032 done
3034 int32_t ctdb_control_tcp_add(struct ctdb_context *ctdb, TDB_DATA indata, bool tcp_update_needed)
3036 struct ctdb_tcp_connection *p = (struct ctdb_tcp_connection *)indata.dptr;
3037 struct ctdb_tcp_array *tcparray;
3038 struct ctdb_tcp_connection tcp;
3039 struct ctdb_vnn *vnn;
3041 vnn = find_public_ip_vnn(ctdb, &p->dst_addr);
3042 if (vnn == NULL) {
3043 DEBUG(DEBUG_INFO,(__location__ " got TCP_ADD control for an address which is not a public address '%s'\n",
3044 ctdb_addr_to_str(&p->dst_addr)));
3046 return -1;
3050 tcparray = vnn->tcp_array;
3052 /* If this is the first tickle */
3053 if (tcparray == NULL) {
3054 tcparray = talloc_size(ctdb->nodes,
3055 offsetof(struct ctdb_tcp_array, connections) +
3056 sizeof(struct ctdb_tcp_connection) * 1);
3057 CTDB_NO_MEMORY(ctdb, tcparray);
3058 vnn->tcp_array = tcparray;
3060 tcparray->num = 0;
3061 tcparray->connections = talloc_size(tcparray, sizeof(struct ctdb_tcp_connection));
3062 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3064 tcparray->connections[tcparray->num].src_addr = p->src_addr;
3065 tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3066 tcparray->num++;
3068 if (tcp_update_needed) {
3069 vnn->tcp_update_needed = true;
3071 return 0;
3075 /* Do we already have this tickle ?*/
3076 tcp.src_addr = p->src_addr;
3077 tcp.dst_addr = p->dst_addr;
3078 if (ctdb_tcp_find(vnn->tcp_array, &tcp) != NULL) {
3079 DEBUG(DEBUG_DEBUG,("Already had tickle info for %s:%u for vnn:%u\n",
3080 ctdb_addr_to_str(&tcp.dst_addr),
3081 ntohs(tcp.dst_addr.ip.sin_port),
3082 vnn->pnn));
3083 return 0;
3086 /* A new tickle, we must add it to the array */
3087 tcparray->connections = talloc_realloc(tcparray, tcparray->connections,
3088 struct ctdb_tcp_connection,
3089 tcparray->num+1);
3090 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3092 vnn->tcp_array = tcparray;
3093 tcparray->connections[tcparray->num].src_addr = p->src_addr;
3094 tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3095 tcparray->num++;
3097 DEBUG(DEBUG_INFO,("Added tickle info for %s:%u from vnn %u\n",
3098 ctdb_addr_to_str(&tcp.dst_addr),
3099 ntohs(tcp.dst_addr.ip.sin_port),
3100 vnn->pnn));
3102 if (tcp_update_needed) {
3103 vnn->tcp_update_needed = true;
3106 return 0;
3111 called by a daemon to inform us of a TCP connection that one of its
3112 clients managing that should tickled with an ACK when IP takeover is
3113 done
3115 static void ctdb_remove_tcp_connection(struct ctdb_context *ctdb, struct ctdb_tcp_connection *conn)
3117 struct ctdb_tcp_connection *tcpp;
3118 struct ctdb_vnn *vnn = find_public_ip_vnn(ctdb, &conn->dst_addr);
3120 if (vnn == NULL) {
3121 DEBUG(DEBUG_ERR,(__location__ " unable to find public address %s\n",
3122 ctdb_addr_to_str(&conn->dst_addr)));
3123 return;
3126 /* if the array is empty we cant remove it
3127 and we dont need to do anything
3129 if (vnn->tcp_array == NULL) {
3130 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist (array is empty) %s:%u\n",
3131 ctdb_addr_to_str(&conn->dst_addr),
3132 ntohs(conn->dst_addr.ip.sin_port)));
3133 return;
3137 /* See if we know this connection
3138 if we dont know this connection then we dont need to do anything
3140 tcpp = ctdb_tcp_find(vnn->tcp_array, conn);
3141 if (tcpp == NULL) {
3142 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist %s:%u\n",
3143 ctdb_addr_to_str(&conn->dst_addr),
3144 ntohs(conn->dst_addr.ip.sin_port)));
3145 return;
3149 /* We need to remove this entry from the array.
3150 Instead of allocating a new array and copying data to it
3151 we cheat and just copy the last entry in the existing array
3152 to the entry that is to be removed and just shring the
3153 ->num field
3155 *tcpp = vnn->tcp_array->connections[vnn->tcp_array->num - 1];
3156 vnn->tcp_array->num--;
3158 /* If we deleted the last entry we also need to remove the entire array
3160 if (vnn->tcp_array->num == 0) {
3161 talloc_free(vnn->tcp_array);
3162 vnn->tcp_array = NULL;
3165 vnn->tcp_update_needed = true;
3167 DEBUG(DEBUG_INFO,("Removed tickle info for %s:%u\n",
3168 ctdb_addr_to_str(&conn->src_addr),
3169 ntohs(conn->src_addr.ip.sin_port)));
3174 called by a daemon to inform us of a TCP connection that one of its
3175 clients used are no longer needed in the tickle database
3177 int32_t ctdb_control_tcp_remove(struct ctdb_context *ctdb, TDB_DATA indata)
3179 struct ctdb_tcp_connection *conn = (struct ctdb_tcp_connection *)indata.dptr;
3181 ctdb_remove_tcp_connection(ctdb, conn);
3183 return 0;
3188 called when a daemon restarts - send all tickes for all public addresses
3189 we are serving immediately to the new node.
3191 int32_t ctdb_control_startup(struct ctdb_context *ctdb, uint32_t vnn)
3193 /*XXX here we should send all tickes we are serving to the new node */
3194 return 0;
3199 called when a client structure goes away - hook to remove
3200 elements from the tcp_list in all daemons
3202 void ctdb_takeover_client_destructor_hook(struct ctdb_client *client)
3204 while (client->tcp_list) {
3205 struct ctdb_tcp_list *tcp = client->tcp_list;
3206 DLIST_REMOVE(client->tcp_list, tcp);
3207 ctdb_remove_tcp_connection(client->ctdb, &tcp->connection);
3213 release all IPs on shutdown
3215 void ctdb_release_all_ips(struct ctdb_context *ctdb)
3217 struct ctdb_vnn *vnn;
3218 int count = 0;
3220 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3221 if (!ctdb_sys_have_ip(&vnn->public_address)) {
3222 ctdb_vnn_unassign_iface(ctdb, vnn);
3223 continue;
3225 if (!vnn->iface) {
3226 continue;
3229 DEBUG(DEBUG_INFO,("Release of IP %s/%u on interface %s node:-1\n",
3230 ctdb_addr_to_str(&vnn->public_address),
3231 vnn->public_netmask_bits,
3232 ctdb_vnn_iface_string(vnn)));
3234 ctdb_event_script_args(ctdb, CTDB_EVENT_RELEASE_IP, "%s %s %u",
3235 ctdb_vnn_iface_string(vnn),
3236 ctdb_addr_to_str(&vnn->public_address),
3237 vnn->public_netmask_bits);
3238 release_kill_clients(ctdb, &vnn->public_address);
3239 ctdb_vnn_unassign_iface(ctdb, vnn);
3240 count++;
3243 DEBUG(DEBUG_NOTICE,(__location__ " Released %d public IPs\n", count));
3248 get list of public IPs
3250 int32_t ctdb_control_get_public_ips(struct ctdb_context *ctdb,
3251 struct ctdb_req_control *c, TDB_DATA *outdata)
3253 int i, num, len;
3254 struct ctdb_all_public_ips *ips;
3255 struct ctdb_vnn *vnn;
3256 bool only_available = false;
3258 if (c->flags & CTDB_PUBLIC_IP_FLAGS_ONLY_AVAILABLE) {
3259 only_available = true;
3262 /* count how many public ip structures we have */
3263 num = 0;
3264 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3265 num++;
3268 len = offsetof(struct ctdb_all_public_ips, ips) +
3269 num*sizeof(struct ctdb_public_ip);
3270 ips = talloc_zero_size(outdata, len);
3271 CTDB_NO_MEMORY(ctdb, ips);
3273 i = 0;
3274 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3275 if (only_available && !ctdb_vnn_available(ctdb, vnn)) {
3276 continue;
3278 ips->ips[i].pnn = vnn->pnn;
3279 ips->ips[i].addr = vnn->public_address;
3280 i++;
3282 ips->num = i;
3283 len = offsetof(struct ctdb_all_public_ips, ips) +
3284 i*sizeof(struct ctdb_public_ip);
3286 outdata->dsize = len;
3287 outdata->dptr = (uint8_t *)ips;
3289 return 0;
3294 get list of public IPs, old ipv4 style. only returns ipv4 addresses
3296 int32_t ctdb_control_get_public_ipsv4(struct ctdb_context *ctdb,
3297 struct ctdb_req_control *c, TDB_DATA *outdata)
3299 int i, num, len;
3300 struct ctdb_all_public_ipsv4 *ips;
3301 struct ctdb_vnn *vnn;
3303 /* count how many public ip structures we have */
3304 num = 0;
3305 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3306 if (vnn->public_address.sa.sa_family != AF_INET) {
3307 continue;
3309 num++;
3312 len = offsetof(struct ctdb_all_public_ipsv4, ips) +
3313 num*sizeof(struct ctdb_public_ipv4);
3314 ips = talloc_zero_size(outdata, len);
3315 CTDB_NO_MEMORY(ctdb, ips);
3317 outdata->dsize = len;
3318 outdata->dptr = (uint8_t *)ips;
3320 ips->num = num;
3321 i = 0;
3322 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3323 if (vnn->public_address.sa.sa_family != AF_INET) {
3324 continue;
3326 ips->ips[i].pnn = vnn->pnn;
3327 ips->ips[i].sin = vnn->public_address.ip;
3328 i++;
3331 return 0;
3334 int32_t ctdb_control_get_public_ip_info(struct ctdb_context *ctdb,
3335 struct ctdb_req_control *c,
3336 TDB_DATA indata,
3337 TDB_DATA *outdata)
3339 int i, num, len;
3340 ctdb_sock_addr *addr;
3341 struct ctdb_control_public_ip_info *info;
3342 struct ctdb_vnn *vnn;
3344 addr = (ctdb_sock_addr *)indata.dptr;
3346 vnn = find_public_ip_vnn(ctdb, addr);
3347 if (vnn == NULL) {
3348 /* if it is not a public ip it could be our 'single ip' */
3349 if (ctdb->single_ip_vnn) {
3350 if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, addr)) {
3351 vnn = ctdb->single_ip_vnn;
3355 if (vnn == NULL) {
3356 DEBUG(DEBUG_ERR,(__location__ " Could not get public ip info, "
3357 "'%s'not a public address\n",
3358 ctdb_addr_to_str(addr)));
3359 return -1;
3362 /* count how many public ip structures we have */
3363 num = 0;
3364 for (;vnn->ifaces[num];) {
3365 num++;
3368 len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3369 num*sizeof(struct ctdb_control_iface_info);
3370 info = talloc_zero_size(outdata, len);
3371 CTDB_NO_MEMORY(ctdb, info);
3373 info->ip.addr = vnn->public_address;
3374 info->ip.pnn = vnn->pnn;
3375 info->active_idx = 0xFFFFFFFF;
3377 for (i=0; vnn->ifaces[i]; i++) {
3378 struct ctdb_iface *cur;
3380 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
3381 if (cur == NULL) {
3382 DEBUG(DEBUG_CRIT, (__location__ " internal error iface[%s] unknown\n",
3383 vnn->ifaces[i]));
3384 return -1;
3386 if (vnn->iface == cur) {
3387 info->active_idx = i;
3389 strncpy(info->ifaces[i].name, cur->name, sizeof(info->ifaces[i].name)-1);
3390 info->ifaces[i].link_state = cur->link_up;
3391 info->ifaces[i].references = cur->references;
3393 info->num = i;
3394 len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3395 i*sizeof(struct ctdb_control_iface_info);
3397 outdata->dsize = len;
3398 outdata->dptr = (uint8_t *)info;
3400 return 0;
3403 int32_t ctdb_control_get_ifaces(struct ctdb_context *ctdb,
3404 struct ctdb_req_control *c,
3405 TDB_DATA *outdata)
3407 int i, num, len;
3408 struct ctdb_control_get_ifaces *ifaces;
3409 struct ctdb_iface *cur;
3411 /* count how many public ip structures we have */
3412 num = 0;
3413 for (cur=ctdb->ifaces;cur;cur=cur->next) {
3414 num++;
3417 len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3418 num*sizeof(struct ctdb_control_iface_info);
3419 ifaces = talloc_zero_size(outdata, len);
3420 CTDB_NO_MEMORY(ctdb, ifaces);
3422 i = 0;
3423 for (cur=ctdb->ifaces;cur;cur=cur->next) {
3424 strcpy(ifaces->ifaces[i].name, cur->name);
3425 ifaces->ifaces[i].link_state = cur->link_up;
3426 ifaces->ifaces[i].references = cur->references;
3427 i++;
3429 ifaces->num = i;
3430 len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3431 i*sizeof(struct ctdb_control_iface_info);
3433 outdata->dsize = len;
3434 outdata->dptr = (uint8_t *)ifaces;
3436 return 0;
3439 int32_t ctdb_control_set_iface_link(struct ctdb_context *ctdb,
3440 struct ctdb_req_control *c,
3441 TDB_DATA indata)
3443 struct ctdb_control_iface_info *info;
3444 struct ctdb_iface *iface;
3445 bool link_up = false;
3447 info = (struct ctdb_control_iface_info *)indata.dptr;
3449 if (info->name[CTDB_IFACE_SIZE] != '\0') {
3450 int len = strnlen(info->name, CTDB_IFACE_SIZE);
3451 DEBUG(DEBUG_ERR, (__location__ " name[%*.*s] not terminated\n",
3452 len, len, info->name));
3453 return -1;
3456 switch (info->link_state) {
3457 case 0:
3458 link_up = false;
3459 break;
3460 case 1:
3461 link_up = true;
3462 break;
3463 default:
3464 DEBUG(DEBUG_ERR, (__location__ " link_state[%u] invalid\n",
3465 (unsigned int)info->link_state));
3466 return -1;
3469 if (info->references != 0) {
3470 DEBUG(DEBUG_ERR, (__location__ " references[%u] should be 0\n",
3471 (unsigned int)info->references));
3472 return -1;
3475 iface = ctdb_find_iface(ctdb, info->name);
3476 if (iface == NULL) {
3477 return -1;
3480 if (link_up == iface->link_up) {
3481 return 0;
3484 DEBUG(iface->link_up?DEBUG_ERR:DEBUG_NOTICE,
3485 ("iface[%s] has changed it's link status %s => %s\n",
3486 iface->name,
3487 iface->link_up?"up":"down",
3488 link_up?"up":"down"));
3490 iface->link_up = link_up;
3491 return 0;
3496 structure containing the listening socket and the list of tcp connections
3497 that the ctdb daemon is to kill
3499 struct ctdb_kill_tcp {
3500 struct ctdb_vnn *vnn;
3501 struct ctdb_context *ctdb;
3502 int capture_fd;
3503 struct fd_event *fde;
3504 trbt_tree_t *connections;
3505 void *private_data;
3509 a tcp connection that is to be killed
3511 struct ctdb_killtcp_con {
3512 ctdb_sock_addr src_addr;
3513 ctdb_sock_addr dst_addr;
3514 int count;
3515 struct ctdb_kill_tcp *killtcp;
3518 /* this function is used to create a key to represent this socketpair
3519 in the killtcp tree.
3520 this key is used to insert and lookup matching socketpairs that are
3521 to be tickled and RST
3523 #define KILLTCP_KEYLEN 10
3524 static uint32_t *killtcp_key(ctdb_sock_addr *src, ctdb_sock_addr *dst)
3526 static uint32_t key[KILLTCP_KEYLEN];
3528 bzero(key, sizeof(key));
3530 if (src->sa.sa_family != dst->sa.sa_family) {
3531 DEBUG(DEBUG_ERR, (__location__ " ERROR, different families passed :%u vs %u\n", src->sa.sa_family, dst->sa.sa_family));
3532 return key;
3535 switch (src->sa.sa_family) {
3536 case AF_INET:
3537 key[0] = dst->ip.sin_addr.s_addr;
3538 key[1] = src->ip.sin_addr.s_addr;
3539 key[2] = dst->ip.sin_port;
3540 key[3] = src->ip.sin_port;
3541 break;
3542 case AF_INET6: {
3543 uint32_t *dst6_addr32 =
3544 (uint32_t *)&(dst->ip6.sin6_addr.s6_addr);
3545 uint32_t *src6_addr32 =
3546 (uint32_t *)&(src->ip6.sin6_addr.s6_addr);
3547 key[0] = dst6_addr32[3];
3548 key[1] = src6_addr32[3];
3549 key[2] = dst6_addr32[2];
3550 key[3] = src6_addr32[2];
3551 key[4] = dst6_addr32[1];
3552 key[5] = src6_addr32[1];
3553 key[6] = dst6_addr32[0];
3554 key[7] = src6_addr32[0];
3555 key[8] = dst->ip6.sin6_port;
3556 key[9] = src->ip6.sin6_port;
3557 break;
3559 default:
3560 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", src->sa.sa_family));
3561 return key;
3564 return key;
3568 called when we get a read event on the raw socket
3570 static void capture_tcp_handler(struct event_context *ev, struct fd_event *fde,
3571 uint16_t flags, void *private_data)
3573 struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3574 struct ctdb_killtcp_con *con;
3575 ctdb_sock_addr src, dst;
3576 uint32_t ack_seq, seq;
3578 if (!(flags & EVENT_FD_READ)) {
3579 return;
3582 if (ctdb_sys_read_tcp_packet(killtcp->capture_fd,
3583 killtcp->private_data,
3584 &src, &dst,
3585 &ack_seq, &seq) != 0) {
3586 /* probably a non-tcp ACK packet */
3587 return;
3590 /* check if we have this guy in our list of connections
3591 to kill
3593 con = trbt_lookuparray32(killtcp->connections,
3594 KILLTCP_KEYLEN, killtcp_key(&src, &dst));
3595 if (con == NULL) {
3596 /* no this was some other packet we can just ignore */
3597 return;
3600 /* This one has been tickled !
3601 now reset him and remove him from the list.
3603 DEBUG(DEBUG_INFO, ("sending a tcp reset to kill connection :%d -> %s:%d\n",
3604 ntohs(con->dst_addr.ip.sin_port),
3605 ctdb_addr_to_str(&con->src_addr),
3606 ntohs(con->src_addr.ip.sin_port)));
3608 ctdb_sys_send_tcp(&con->dst_addr, &con->src_addr, ack_seq, seq, 1);
3609 talloc_free(con);
3613 /* when traversing the list of all tcp connections to send tickle acks to
3614 (so that we can capture the ack coming back and kill the connection
3615 by a RST)
3616 this callback is called for each connection we are currently trying to kill
3618 static int tickle_connection_traverse(void *param, void *data)
3620 struct ctdb_killtcp_con *con = talloc_get_type(data, struct ctdb_killtcp_con);
3622 /* have tried too many times, just give up */
3623 if (con->count >= 5) {
3624 /* can't delete in traverse: reparent to delete_cons */
3625 talloc_steal(param, con);
3626 return 0;
3629 /* othervise, try tickling it again */
3630 con->count++;
3631 ctdb_sys_send_tcp(
3632 (ctdb_sock_addr *)&con->dst_addr,
3633 (ctdb_sock_addr *)&con->src_addr,
3634 0, 0, 0);
3635 return 0;
3640 called every second until all sentenced connections have been reset
3642 static void ctdb_tickle_sentenced_connections(struct event_context *ev, struct timed_event *te,
3643 struct timeval t, void *private_data)
3645 struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3646 void *delete_cons = talloc_new(NULL);
3648 /* loop over all connections sending tickle ACKs */
3649 trbt_traversearray32(killtcp->connections, KILLTCP_KEYLEN, tickle_connection_traverse, delete_cons);
3651 /* now we've finished traverse, it's safe to do deletion. */
3652 talloc_free(delete_cons);
3654 /* If there are no more connections to kill we can remove the
3655 entire killtcp structure
3657 if ( (killtcp->connections == NULL) ||
3658 (killtcp->connections->root == NULL) ) {
3659 talloc_free(killtcp);
3660 return;
3663 /* try tickling them again in a seconds time
3665 event_add_timed(killtcp->ctdb->ev, killtcp, timeval_current_ofs(1, 0),
3666 ctdb_tickle_sentenced_connections, killtcp);
3670 destroy the killtcp structure
3672 static int ctdb_killtcp_destructor(struct ctdb_kill_tcp *killtcp)
3674 struct ctdb_vnn *tmpvnn;
3676 /* verify that this vnn is still active */
3677 for (tmpvnn = killtcp->ctdb->vnn; tmpvnn; tmpvnn = tmpvnn->next) {
3678 if (tmpvnn == killtcp->vnn) {
3679 break;
3683 if (tmpvnn == NULL) {
3684 return 0;
3687 if (killtcp->vnn->killtcp != killtcp) {
3688 return 0;
3691 killtcp->vnn->killtcp = NULL;
3693 return 0;
3697 /* nothing fancy here, just unconditionally replace any existing
3698 connection structure with the new one.
3700 dont even free the old one if it did exist, that one is talloc_stolen
3701 by the same node in the tree anyway and will be deleted when the new data
3702 is deleted
3704 static void *add_killtcp_callback(void *parm, void *data)
3706 return parm;
3710 add a tcp socket to the list of connections we want to RST
3712 static int ctdb_killtcp_add_connection(struct ctdb_context *ctdb,
3713 ctdb_sock_addr *s,
3714 ctdb_sock_addr *d)
3716 ctdb_sock_addr src, dst;
3717 struct ctdb_kill_tcp *killtcp;
3718 struct ctdb_killtcp_con *con;
3719 struct ctdb_vnn *vnn;
3721 ctdb_canonicalize_ip(s, &src);
3722 ctdb_canonicalize_ip(d, &dst);
3724 vnn = find_public_ip_vnn(ctdb, &dst);
3725 if (vnn == NULL) {
3726 vnn = find_public_ip_vnn(ctdb, &src);
3728 if (vnn == NULL) {
3729 /* if it is not a public ip it could be our 'single ip' */
3730 if (ctdb->single_ip_vnn) {
3731 if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, &dst)) {
3732 vnn = ctdb->single_ip_vnn;
3736 if (vnn == NULL) {
3737 DEBUG(DEBUG_ERR,(__location__ " Could not killtcp, not a public address\n"));
3738 return -1;
3741 killtcp = vnn->killtcp;
3743 /* If this is the first connection to kill we must allocate
3744 a new structure
3746 if (killtcp == NULL) {
3747 killtcp = talloc_zero(vnn, struct ctdb_kill_tcp);
3748 CTDB_NO_MEMORY(ctdb, killtcp);
3750 killtcp->vnn = vnn;
3751 killtcp->ctdb = ctdb;
3752 killtcp->capture_fd = -1;
3753 killtcp->connections = trbt_create(killtcp, 0);
3755 vnn->killtcp = killtcp;
3756 talloc_set_destructor(killtcp, ctdb_killtcp_destructor);
3761 /* create a structure that describes this connection we want to
3762 RST and store it in killtcp->connections
3764 con = talloc(killtcp, struct ctdb_killtcp_con);
3765 CTDB_NO_MEMORY(ctdb, con);
3766 con->src_addr = src;
3767 con->dst_addr = dst;
3768 con->count = 0;
3769 con->killtcp = killtcp;
3772 trbt_insertarray32_callback(killtcp->connections,
3773 KILLTCP_KEYLEN, killtcp_key(&con->dst_addr, &con->src_addr),
3774 add_killtcp_callback, con);
3777 If we dont have a socket to listen on yet we must create it
3779 if (killtcp->capture_fd == -1) {
3780 const char *iface = ctdb_vnn_iface_string(vnn);
3781 killtcp->capture_fd = ctdb_sys_open_capture_socket(iface, &killtcp->private_data);
3782 if (killtcp->capture_fd == -1) {
3783 DEBUG(DEBUG_CRIT,(__location__ " Failed to open capturing "
3784 "socket on iface '%s' for killtcp (%s)\n",
3785 iface, strerror(errno)));
3786 goto failed;
3791 if (killtcp->fde == NULL) {
3792 killtcp->fde = event_add_fd(ctdb->ev, killtcp, killtcp->capture_fd,
3793 EVENT_FD_READ,
3794 capture_tcp_handler, killtcp);
3795 tevent_fd_set_auto_close(killtcp->fde);
3797 /* We also need to set up some events to tickle all these connections
3798 until they are all reset
3800 event_add_timed(ctdb->ev, killtcp, timeval_current_ofs(1, 0),
3801 ctdb_tickle_sentenced_connections, killtcp);
3804 /* tickle him once now */
3805 ctdb_sys_send_tcp(
3806 &con->dst_addr,
3807 &con->src_addr,
3808 0, 0, 0);
3810 return 0;
3812 failed:
3813 talloc_free(vnn->killtcp);
3814 vnn->killtcp = NULL;
3815 return -1;
3819 kill a TCP connection.
3821 int32_t ctdb_control_kill_tcp(struct ctdb_context *ctdb, TDB_DATA indata)
3823 struct ctdb_control_killtcp *killtcp = (struct ctdb_control_killtcp *)indata.dptr;
3825 return ctdb_killtcp_add_connection(ctdb, &killtcp->src_addr, &killtcp->dst_addr);
3829 called by a daemon to inform us of the entire list of TCP tickles for
3830 a particular public address.
3831 this control should only be sent by the node that is currently serving
3832 that public address.
3834 int32_t ctdb_control_set_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata)
3836 struct ctdb_control_tcp_tickle_list *list = (struct ctdb_control_tcp_tickle_list *)indata.dptr;
3837 struct ctdb_tcp_array *tcparray;
3838 struct ctdb_vnn *vnn;
3840 /* We must at least have tickles.num or else we cant verify the size
3841 of the received data blob
3843 if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list,
3844 tickles.connections)) {
3845 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list. Not enough data for the tickle.num field\n"));
3846 return -1;
3849 /* verify that the size of data matches what we expect */
3850 if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list,
3851 tickles.connections)
3852 + sizeof(struct ctdb_tcp_connection)
3853 * list->tickles.num) {
3854 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list\n"));
3855 return -1;
3858 vnn = find_public_ip_vnn(ctdb, &list->addr);
3859 if (vnn == NULL) {
3860 DEBUG(DEBUG_INFO,(__location__ " Could not set tcp tickle list, '%s' is not a public address\n",
3861 ctdb_addr_to_str(&list->addr)));
3863 return 1;
3866 /* remove any old ticklelist we might have */
3867 talloc_free(vnn->tcp_array);
3868 vnn->tcp_array = NULL;
3870 tcparray = talloc(ctdb->nodes, struct ctdb_tcp_array);
3871 CTDB_NO_MEMORY(ctdb, tcparray);
3873 tcparray->num = list->tickles.num;
3875 tcparray->connections = talloc_array(tcparray, struct ctdb_tcp_connection, tcparray->num);
3876 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3878 memcpy(tcparray->connections, &list->tickles.connections[0],
3879 sizeof(struct ctdb_tcp_connection)*tcparray->num);
3881 /* We now have a new fresh tickle list array for this vnn */
3882 vnn->tcp_array = talloc_steal(vnn, tcparray);
3884 return 0;
3888 called to return the full list of tickles for the puclic address associated
3889 with the provided vnn
3891 int32_t ctdb_control_get_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata, TDB_DATA *outdata)
3893 ctdb_sock_addr *addr = (ctdb_sock_addr *)indata.dptr;
3894 struct ctdb_control_tcp_tickle_list *list;
3895 struct ctdb_tcp_array *tcparray;
3896 int num;
3897 struct ctdb_vnn *vnn;
3899 vnn = find_public_ip_vnn(ctdb, addr);
3900 if (vnn == NULL) {
3901 DEBUG(DEBUG_ERR,(__location__ " Could not get tcp tickle list, '%s' is not a public address\n",
3902 ctdb_addr_to_str(addr)));
3904 return 1;
3907 tcparray = vnn->tcp_array;
3908 if (tcparray) {
3909 num = tcparray->num;
3910 } else {
3911 num = 0;
3914 outdata->dsize = offsetof(struct ctdb_control_tcp_tickle_list,
3915 tickles.connections)
3916 + sizeof(struct ctdb_tcp_connection) * num;
3918 outdata->dptr = talloc_size(outdata, outdata->dsize);
3919 CTDB_NO_MEMORY(ctdb, outdata->dptr);
3920 list = (struct ctdb_control_tcp_tickle_list *)outdata->dptr;
3922 list->addr = *addr;
3923 list->tickles.num = num;
3924 if (num) {
3925 memcpy(&list->tickles.connections[0], tcparray->connections,
3926 sizeof(struct ctdb_tcp_connection) * num);
3929 return 0;
3934 set the list of all tcp tickles for a public address
3936 static int ctdb_ctrl_set_tcp_tickles(struct ctdb_context *ctdb,
3937 struct timeval timeout, uint32_t destnode,
3938 ctdb_sock_addr *addr,
3939 struct ctdb_tcp_array *tcparray)
3941 int ret, num;
3942 TDB_DATA data;
3943 struct ctdb_control_tcp_tickle_list *list;
3945 if (tcparray) {
3946 num = tcparray->num;
3947 } else {
3948 num = 0;
3951 data.dsize = offsetof(struct ctdb_control_tcp_tickle_list,
3952 tickles.connections) +
3953 sizeof(struct ctdb_tcp_connection) * num;
3954 data.dptr = talloc_size(ctdb, data.dsize);
3955 CTDB_NO_MEMORY(ctdb, data.dptr);
3957 list = (struct ctdb_control_tcp_tickle_list *)data.dptr;
3958 list->addr = *addr;
3959 list->tickles.num = num;
3960 if (tcparray) {
3961 memcpy(&list->tickles.connections[0], tcparray->connections, sizeof(struct ctdb_tcp_connection) * num);
3964 ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0,
3965 CTDB_CONTROL_SET_TCP_TICKLE_LIST,
3966 0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
3967 if (ret != 0) {
3968 DEBUG(DEBUG_ERR,(__location__ " ctdb_control for set tcp tickles failed\n"));
3969 return -1;
3972 talloc_free(data.dptr);
3974 return ret;
3979 perform tickle updates if required
3981 static void ctdb_update_tcp_tickles(struct event_context *ev,
3982 struct timed_event *te,
3983 struct timeval t, void *private_data)
3985 struct ctdb_context *ctdb = talloc_get_type(private_data, struct ctdb_context);
3986 int ret;
3987 struct ctdb_vnn *vnn;
3989 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3990 /* we only send out updates for public addresses that
3991 we have taken over
3993 if (ctdb->pnn != vnn->pnn) {
3994 continue;
3996 /* We only send out the updates if we need to */
3997 if (!vnn->tcp_update_needed) {
3998 continue;
4000 ret = ctdb_ctrl_set_tcp_tickles(ctdb,
4001 TAKEOVER_TIMEOUT(),
4002 CTDB_BROADCAST_CONNECTED,
4003 &vnn->public_address,
4004 vnn->tcp_array);
4005 if (ret != 0) {
4006 DEBUG(DEBUG_ERR,("Failed to send the tickle update for public address %s\n",
4007 ctdb_addr_to_str(&vnn->public_address)));
4011 event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4012 timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0),
4013 ctdb_update_tcp_tickles, ctdb);
4018 start periodic update of tcp tickles
4020 void ctdb_start_tcp_tickle_update(struct ctdb_context *ctdb)
4022 ctdb->tickle_update_context = talloc_new(ctdb);
4024 event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4025 timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0),
4026 ctdb_update_tcp_tickles, ctdb);
4032 struct control_gratious_arp {
4033 struct ctdb_context *ctdb;
4034 ctdb_sock_addr addr;
4035 const char *iface;
4036 int count;
4040 send a control_gratuitous arp
4042 static void send_gratious_arp(struct event_context *ev, struct timed_event *te,
4043 struct timeval t, void *private_data)
4045 int ret;
4046 struct control_gratious_arp *arp = talloc_get_type(private_data,
4047 struct control_gratious_arp);
4049 ret = ctdb_sys_send_arp(&arp->addr, arp->iface);
4050 if (ret != 0) {
4051 DEBUG(DEBUG_ERR,(__location__ " sending of gratious arp on iface '%s' failed (%s)\n",
4052 arp->iface, strerror(errno)));
4056 arp->count++;
4057 if (arp->count == CTDB_ARP_REPEAT) {
4058 talloc_free(arp);
4059 return;
4062 event_add_timed(arp->ctdb->ev, arp,
4063 timeval_current_ofs(CTDB_ARP_INTERVAL, 0),
4064 send_gratious_arp, arp);
4069 send a gratious arp
4071 int32_t ctdb_control_send_gratious_arp(struct ctdb_context *ctdb, TDB_DATA indata)
4073 struct ctdb_control_gratious_arp *gratious_arp = (struct ctdb_control_gratious_arp *)indata.dptr;
4074 struct control_gratious_arp *arp;
4076 /* verify the size of indata */
4077 if (indata.dsize < offsetof(struct ctdb_control_gratious_arp, iface)) {
4078 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_gratious_arp structure. Got %u require %u bytes\n",
4079 (unsigned)indata.dsize,
4080 (unsigned)offsetof(struct ctdb_control_gratious_arp, iface)));
4081 return -1;
4083 if (indata.dsize !=
4084 ( offsetof(struct ctdb_control_gratious_arp, iface)
4085 + gratious_arp->len ) ){
4087 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4088 "but should be %u bytes\n",
4089 (unsigned)indata.dsize,
4090 (unsigned)(offsetof(struct ctdb_control_gratious_arp, iface)+gratious_arp->len)));
4091 return -1;
4095 arp = talloc(ctdb, struct control_gratious_arp);
4096 CTDB_NO_MEMORY(ctdb, arp);
4098 arp->ctdb = ctdb;
4099 arp->addr = gratious_arp->addr;
4100 arp->iface = talloc_strdup(arp, gratious_arp->iface);
4101 CTDB_NO_MEMORY(ctdb, arp->iface);
4102 arp->count = 0;
4104 event_add_timed(arp->ctdb->ev, arp,
4105 timeval_zero(), send_gratious_arp, arp);
4107 return 0;
4110 int32_t ctdb_control_add_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4112 struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4113 int ret;
4115 /* verify the size of indata */
4116 if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4117 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4118 return -1;
4120 if (indata.dsize !=
4121 ( offsetof(struct ctdb_control_ip_iface, iface)
4122 + pub->len ) ){
4124 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4125 "but should be %u bytes\n",
4126 (unsigned)indata.dsize,
4127 (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4128 return -1;
4131 DEBUG(DEBUG_NOTICE,("Add IP %s\n", ctdb_addr_to_str(&pub->addr)));
4133 ret = ctdb_add_public_address(ctdb, &pub->addr, pub->mask, &pub->iface[0], true);
4135 if (ret != 0) {
4136 DEBUG(DEBUG_ERR,(__location__ " Failed to add public address\n"));
4137 return -1;
4140 return 0;
4144 called when releaseip event finishes for del_public_address
4146 static void delete_ip_callback(struct ctdb_context *ctdb, int status,
4147 void *private_data)
4149 talloc_free(private_data);
4152 int32_t ctdb_control_del_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4154 struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4155 struct ctdb_vnn *vnn;
4156 int ret;
4158 /* verify the size of indata */
4159 if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4160 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4161 return -1;
4163 if (indata.dsize !=
4164 ( offsetof(struct ctdb_control_ip_iface, iface)
4165 + pub->len ) ){
4167 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4168 "but should be %u bytes\n",
4169 (unsigned)indata.dsize,
4170 (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4171 return -1;
4174 DEBUG(DEBUG_NOTICE,("Delete IP %s\n", ctdb_addr_to_str(&pub->addr)));
4176 /* walk over all public addresses until we find a match */
4177 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
4178 if (ctdb_same_ip(&vnn->public_address, &pub->addr)) {
4179 TALLOC_CTX *mem_ctx = talloc_new(ctdb);
4181 DLIST_REMOVE(ctdb->vnn, vnn);
4182 talloc_steal(mem_ctx, vnn);
4183 ctdb_remove_orphaned_ifaces(ctdb, vnn, mem_ctx);
4184 if (vnn->pnn != ctdb->pnn) {
4185 if (vnn->iface != NULL) {
4186 ctdb_vnn_unassign_iface(ctdb, vnn);
4188 talloc_free(mem_ctx);
4189 return 0;
4191 vnn->pnn = -1;
4193 ret = ctdb_event_script_callback(ctdb,
4194 mem_ctx, delete_ip_callback, mem_ctx,
4195 CTDB_EVENT_RELEASE_IP,
4196 "%s %s %u",
4197 ctdb_vnn_iface_string(vnn),
4198 ctdb_addr_to_str(&vnn->public_address),
4199 vnn->public_netmask_bits);
4200 if (vnn->iface != NULL) {
4201 ctdb_vnn_unassign_iface(ctdb, vnn);
4203 if (ret != 0) {
4204 return -1;
4206 return 0;
4210 return -1;
4214 struct ipreallocated_callback_state {
4215 struct ctdb_req_control *c;
4218 static void ctdb_ipreallocated_callback(struct ctdb_context *ctdb,
4219 int status, void *p)
4221 struct ipreallocated_callback_state *state =
4222 talloc_get_type(p, struct ipreallocated_callback_state);
4224 if (status != 0) {
4225 DEBUG(DEBUG_ERR,
4226 (" \"ipreallocated\" event script failed (status %d)\n",
4227 status));
4228 if (status == -ETIME) {
4229 ctdb_ban_self(ctdb);
4233 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
4234 talloc_free(state);
4237 /* A control to run the ipreallocated event */
4238 int32_t ctdb_control_ipreallocated(struct ctdb_context *ctdb,
4239 struct ctdb_req_control *c,
4240 bool *async_reply)
4242 int ret;
4243 struct ipreallocated_callback_state *state;
4245 state = talloc(ctdb, struct ipreallocated_callback_state);
4246 CTDB_NO_MEMORY(ctdb, state);
4248 DEBUG(DEBUG_INFO,(__location__ " Running \"ipreallocated\" event\n"));
4250 ret = ctdb_event_script_callback(ctdb, state,
4251 ctdb_ipreallocated_callback, state,
4252 CTDB_EVENT_IPREALLOCATED,
4253 "%s", "");
4255 if (ret != 0) {
4256 DEBUG(DEBUG_ERR,("Failed to run \"ipreallocated\" event \n"));
4257 talloc_free(state);
4258 return -1;
4261 /* tell the control that we will be reply asynchronously */
4262 state->c = talloc_steal(state, c);
4263 *async_reply = true;
4265 return 0;
4269 /* This function is called from the recovery daemon to verify that a remote
4270 node has the expected ip allocation.
4271 This is verified against ctdb->ip_tree
4273 int verify_remote_ip_allocation(struct ctdb_context *ctdb,
4274 struct ctdb_all_public_ips *ips,
4275 uint32_t pnn)
4277 struct ctdb_public_ip_list *tmp_ip;
4278 int i;
4280 if (ctdb->ip_tree == NULL) {
4281 /* dont know the expected allocation yet, assume remote node
4282 is correct. */
4283 return 0;
4286 if (ips == NULL) {
4287 return 0;
4290 for (i=0; i<ips->num; i++) {
4291 tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ips->ips[i].addr));
4292 if (tmp_ip == NULL) {
4293 DEBUG(DEBUG_ERR,("Node %u has new or unknown public IP %s\n", pnn, ctdb_addr_to_str(&ips->ips[i].addr)));
4294 return -1;
4297 if (tmp_ip->pnn == -1 || ips->ips[i].pnn == -1) {
4298 continue;
4301 if (tmp_ip->pnn != ips->ips[i].pnn) {
4302 DEBUG(DEBUG_ERR,
4303 ("Inconsistent IP allocation - node %u thinks %s is held by node %u while it is assigned to node %u\n",
4304 pnn,
4305 ctdb_addr_to_str(&ips->ips[i].addr),
4306 ips->ips[i].pnn, tmp_ip->pnn));
4307 return -1;
4311 return 0;
4314 int update_ip_assignment_tree(struct ctdb_context *ctdb, struct ctdb_public_ip *ip)
4316 struct ctdb_public_ip_list *tmp_ip;
4318 if (ctdb->ip_tree == NULL) {
4319 DEBUG(DEBUG_ERR,("No ctdb->ip_tree yet. Failed to update ip assignment\n"));
4320 return -1;
4323 tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ip->addr));
4324 if (tmp_ip == NULL) {
4325 DEBUG(DEBUG_ERR,(__location__ " Could not find record for address %s, update ip\n", ctdb_addr_to_str(&ip->addr)));
4326 return -1;
4329 DEBUG(DEBUG_NOTICE,("Updated ip assignment tree for ip : %s from node %u to node %u\n", ctdb_addr_to_str(&ip->addr), tmp_ip->pnn, ip->pnn));
4330 tmp_ip->pnn = ip->pnn;
4332 return 0;
4336 struct ctdb_reloadips_handle {
4337 struct ctdb_context *ctdb;
4338 struct ctdb_req_control *c;
4339 int status;
4340 int fd[2];
4341 pid_t child;
4342 struct fd_event *fde;
4345 static int ctdb_reloadips_destructor(struct ctdb_reloadips_handle *h)
4347 if (h == h->ctdb->reload_ips) {
4348 h->ctdb->reload_ips = NULL;
4350 if (h->c != NULL) {
4351 ctdb_request_control_reply(h->ctdb, h->c, NULL, h->status, NULL);
4352 h->c = NULL;
4354 ctdb_kill(h->ctdb, h->child, SIGKILL);
4355 return 0;
4358 static void ctdb_reloadips_timeout_event(struct event_context *ev,
4359 struct timed_event *te,
4360 struct timeval t, void *private_data)
4362 struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4364 talloc_free(h);
4367 static void ctdb_reloadips_child_handler(struct event_context *ev, struct fd_event *fde,
4368 uint16_t flags, void *private_data)
4370 struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4372 char res;
4373 int ret;
4375 ret = read(h->fd[0], &res, 1);
4376 if (ret < 1 || res != 0) {
4377 DEBUG(DEBUG_ERR, (__location__ " Reloadips child process returned error\n"));
4378 res = 1;
4380 h->status = res;
4382 talloc_free(h);
4385 static int ctdb_reloadips_child(struct ctdb_context *ctdb)
4387 TALLOC_CTX *mem_ctx = talloc_new(NULL);
4388 struct ctdb_all_public_ips *ips;
4389 struct ctdb_vnn *vnn;
4390 struct client_async_data *async_data;
4391 struct timeval timeout;
4392 TDB_DATA data;
4393 struct ctdb_client_control_state *state;
4394 bool first_add;
4395 int i, ret;
4397 CTDB_NO_MEMORY(ctdb, mem_ctx);
4399 /* Read IPs from local node */
4400 ret = ctdb_ctrl_get_public_ips(ctdb, TAKEOVER_TIMEOUT(),
4401 CTDB_CURRENT_NODE, mem_ctx, &ips);
4402 if (ret != 0) {
4403 DEBUG(DEBUG_ERR,
4404 ("Unable to fetch public IPs from local node\n"));
4405 talloc_free(mem_ctx);
4406 return -1;
4409 /* Read IPs file - this is safe since this is a child process */
4410 ctdb->vnn = NULL;
4411 if (ctdb_set_public_addresses(ctdb, false) != 0) {
4412 DEBUG(DEBUG_ERR,("Failed to re-read public addresses file\n"));
4413 talloc_free(mem_ctx);
4414 return -1;
4417 async_data = talloc_zero(mem_ctx, struct client_async_data);
4418 CTDB_NO_MEMORY(ctdb, async_data);
4420 /* Compare IPs between node and file for IPs to be deleted */
4421 for (i = 0; i < ips->num; i++) {
4422 /* */
4423 for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4424 if (ctdb_same_ip(&vnn->public_address,
4425 &ips->ips[i].addr)) {
4426 /* IP is still in file */
4427 break;
4431 if (vnn == NULL) {
4432 /* Delete IP ips->ips[i] */
4433 struct ctdb_control_ip_iface *pub;
4435 DEBUG(DEBUG_NOTICE,
4436 ("IP %s no longer configured, deleting it\n",
4437 ctdb_addr_to_str(&ips->ips[i].addr)));
4439 pub = talloc_zero(mem_ctx,
4440 struct ctdb_control_ip_iface);
4441 CTDB_NO_MEMORY(ctdb, pub);
4443 pub->addr = ips->ips[i].addr;
4444 pub->mask = 0;
4445 pub->len = 0;
4447 timeout = TAKEOVER_TIMEOUT();
4449 data.dsize = offsetof(struct ctdb_control_ip_iface,
4450 iface) + pub->len;
4451 data.dptr = (uint8_t *)pub;
4453 state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4454 CTDB_CONTROL_DEL_PUBLIC_IP,
4455 0, data, async_data,
4456 &timeout, NULL);
4457 if (state == NULL) {
4458 DEBUG(DEBUG_ERR,
4459 (__location__
4460 " failed sending CTDB_CONTROL_DEL_PUBLIC_IP\n"));
4461 goto failed;
4464 ctdb_client_async_add(async_data, state);
4468 /* Compare IPs between node and file for IPs to be added */
4469 first_add = true;
4470 for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4471 for (i = 0; i < ips->num; i++) {
4472 if (ctdb_same_ip(&vnn->public_address,
4473 &ips->ips[i].addr)) {
4474 /* IP already on node */
4475 break;
4478 if (i == ips->num) {
4479 /* Add IP ips->ips[i] */
4480 struct ctdb_control_ip_iface *pub;
4481 const char *ifaces = NULL;
4482 uint32_t len;
4483 int iface = 0;
4485 DEBUG(DEBUG_NOTICE,
4486 ("New IP %s configured, adding it\n",
4487 ctdb_addr_to_str(&vnn->public_address)));
4488 if (first_add) {
4489 uint32_t pnn = ctdb_get_pnn(ctdb);
4491 data.dsize = sizeof(pnn);
4492 data.dptr = (uint8_t *)&pnn;
4494 ret = ctdb_client_send_message(
4495 ctdb,
4496 CTDB_BROADCAST_CONNECTED,
4497 CTDB_SRVID_REBALANCE_NODE,
4498 data);
4499 if (ret != 0) {
4500 DEBUG(DEBUG_WARNING,
4501 ("Failed to send message to force node reallocation - IPs may be unbalanced\n"));
4504 first_add = false;
4507 ifaces = vnn->ifaces[0];
4508 iface = 1;
4509 while (vnn->ifaces[iface] != NULL) {
4510 ifaces = talloc_asprintf(vnn, "%s,%s", ifaces,
4511 vnn->ifaces[iface]);
4512 iface++;
4515 len = strlen(ifaces) + 1;
4516 pub = talloc_zero_size(mem_ctx,
4517 offsetof(struct ctdb_control_ip_iface, iface) + len);
4518 CTDB_NO_MEMORY(ctdb, pub);
4520 pub->addr = vnn->public_address;
4521 pub->mask = vnn->public_netmask_bits;
4522 pub->len = len;
4523 memcpy(&pub->iface[0], ifaces, pub->len);
4525 timeout = TAKEOVER_TIMEOUT();
4527 data.dsize = offsetof(struct ctdb_control_ip_iface,
4528 iface) + pub->len;
4529 data.dptr = (uint8_t *)pub;
4531 state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4532 CTDB_CONTROL_ADD_PUBLIC_IP,
4533 0, data, async_data,
4534 &timeout, NULL);
4535 if (state == NULL) {
4536 DEBUG(DEBUG_ERR,
4537 (__location__
4538 " failed sending CTDB_CONTROL_ADD_PUBLIC_IP\n"));
4539 goto failed;
4542 ctdb_client_async_add(async_data, state);
4546 if (ctdb_client_async_wait(ctdb, async_data) != 0) {
4547 DEBUG(DEBUG_ERR,(__location__ " Add/delete IPs failed\n"));
4548 goto failed;
4551 talloc_free(mem_ctx);
4552 return 0;
4554 failed:
4555 talloc_free(mem_ctx);
4556 return -1;
4559 /* This control is sent to force the node to re-read the public addresses file
4560 and drop any addresses we should nnot longer host, and add new addresses
4561 that we are now able to host
4563 int32_t ctdb_control_reload_public_ips(struct ctdb_context *ctdb, struct ctdb_req_control *c, bool *async_reply)
4565 struct ctdb_reloadips_handle *h;
4566 pid_t parent = getpid();
4568 if (ctdb->reload_ips != NULL) {
4569 talloc_free(ctdb->reload_ips);
4570 ctdb->reload_ips = NULL;
4573 h = talloc(ctdb, struct ctdb_reloadips_handle);
4574 CTDB_NO_MEMORY(ctdb, h);
4575 h->ctdb = ctdb;
4576 h->c = NULL;
4577 h->status = -1;
4579 if (pipe(h->fd) == -1) {
4580 DEBUG(DEBUG_ERR,("Failed to create pipe for ctdb_freeze_lock\n"));
4581 talloc_free(h);
4582 return -1;
4585 h->child = ctdb_fork(ctdb);
4586 if (h->child == (pid_t)-1) {
4587 DEBUG(DEBUG_ERR, ("Failed to fork a child for reloadips\n"));
4588 close(h->fd[0]);
4589 close(h->fd[1]);
4590 talloc_free(h);
4591 return -1;
4594 /* child process */
4595 if (h->child == 0) {
4596 signed char res = 0;
4598 close(h->fd[0]);
4599 debug_extra = talloc_asprintf(NULL, "reloadips:");
4601 ctdb_set_process_name("ctdb_reloadips");
4602 if (switch_from_server_to_client(ctdb, "reloadips-child") != 0) {
4603 DEBUG(DEBUG_CRIT,("ERROR: Failed to switch reloadips child into client mode\n"));
4604 res = -1;
4605 } else {
4606 res = ctdb_reloadips_child(ctdb);
4607 if (res != 0) {
4608 DEBUG(DEBUG_ERR,("Failed to reload ips on local node\n"));
4612 write(h->fd[1], &res, 1);
4613 /* make sure we die when our parent dies */
4614 while (ctdb_kill(ctdb, parent, 0) == 0 || errno != ESRCH) {
4615 sleep(5);
4617 _exit(0);
4620 h->c = talloc_steal(h, c);
4622 close(h->fd[1]);
4623 set_close_on_exec(h->fd[0]);
4625 talloc_set_destructor(h, ctdb_reloadips_destructor);
4628 h->fde = event_add_fd(ctdb->ev, h, h->fd[0],
4629 EVENT_FD_READ, ctdb_reloadips_child_handler,
4630 (void *)h);
4631 tevent_fd_set_auto_close(h->fde);
4633 event_add_timed(ctdb->ev, h,
4634 timeval_current_ofs(120, 0),
4635 ctdb_reloadips_timeout_event, h);
4637 /* we reply later */
4638 *async_reply = true;
4639 return 0;