4 Copyright (C) Ronnie Sahlberg 2007
5 Copyright (C) Andrew Tridgell 2007
6 Copyright (C) Martin Schwenke 2011
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, see <http://www.gnu.org/licenses/>.
23 #include "lib/util/dlinklist.h"
24 #include "system/network.h"
25 #include "system/filesys.h"
26 #include "system/wait.h"
27 #include "../include/ctdb_private.h"
28 #include "../common/rb_tree.h"
31 #define TAKEOVER_TIMEOUT() timeval_current_ofs(ctdb->tunable.takeover_timeout,0)
33 #define CTDB_ARP_INTERVAL 1
34 #define CTDB_ARP_REPEAT 3
36 /* Flags used in IP allocation algorithms. */
43 struct ctdb_iface
*prev
, *next
;
49 static const char *ctdb_vnn_iface_string(const struct ctdb_vnn
*vnn
)
52 return vnn
->iface
->name
;
58 static int ctdb_add_local_iface(struct ctdb_context
*ctdb
, const char *iface
)
62 /* Verify that we dont have an entry for this ip yet */
63 for (i
=ctdb
->ifaces
;i
;i
=i
->next
) {
64 if (strcmp(i
->name
, iface
) == 0) {
69 /* create a new structure for this interface */
70 i
= talloc_zero(ctdb
, struct ctdb_iface
);
71 CTDB_NO_MEMORY_FATAL(ctdb
, i
);
72 i
->name
= talloc_strdup(i
, iface
);
73 CTDB_NO_MEMORY(ctdb
, i
->name
);
75 * If link_up defaults to true then IPs can be allocated to a
76 * node during the first recovery. However, then an interface
77 * could have its link marked down during the startup event,
78 * causing the IP to move almost immediately. If link_up
79 * defaults to false then, during normal operation, IPs added
80 * to a new interface can't be assigned until a monitor cycle
81 * has occurred and marked the new interfaces up. This makes
82 * IP allocation unpredictable. The following is a neat
83 * compromise: early in startup link_up defaults to false, so
84 * IPs can't be assigned, and after startup IPs can be
85 * assigned immediately.
87 i
->link_up
= (ctdb
->runstate
== CTDB_RUNSTATE_RUNNING
);
89 DLIST_ADD(ctdb
->ifaces
, i
);
94 static bool vnn_has_interface_with_name(struct ctdb_vnn
*vnn
,
99 for (n
= 0; vnn
->ifaces
[n
] != NULL
; n
++) {
100 if (strcmp(name
, vnn
->ifaces
[n
]) == 0) {
108 /* If any interfaces now have no possible IPs then delete them. This
109 * implementation is naive (i.e. simple) rather than clever
110 * (i.e. complex). Given that this is run on delip and that operation
111 * is rare, this doesn't need to be efficient - it needs to be
112 * foolproof. One alternative is reference counting, where the logic
113 * is distributed and can, therefore, be broken in multiple places.
114 * Another alternative is to build a red-black tree of interfaces that
115 * can have addresses (by walking ctdb->vnn and ctdb->single_ip_vnn
116 * once) and then walking ctdb->ifaces once and deleting those not in
117 * the tree. Let's go to one of those if the naive implementation
118 * causes problems... :-)
120 static void ctdb_remove_orphaned_ifaces(struct ctdb_context
*ctdb
,
121 struct ctdb_vnn
*vnn
,
124 struct ctdb_iface
*i
;
126 /* For each interface, check if there's an IP using it. */
127 for(i
=ctdb
->ifaces
; i
; i
=i
->next
) {
131 /* Only consider interfaces named in the given VNN. */
132 if (!vnn_has_interface_with_name(vnn
, i
->name
)) {
136 /* Is the "single IP" on this interface? */
137 if ((ctdb
->single_ip_vnn
!= NULL
) &&
138 (ctdb
->single_ip_vnn
->ifaces
[0] != NULL
) &&
139 (strcmp(i
->name
, ctdb
->single_ip_vnn
->ifaces
[0]) == 0)) {
140 /* Found, next interface please... */
143 /* Search for a vnn with this interface. */
145 for (tv
=ctdb
->vnn
; tv
; tv
=tv
->next
) {
146 if (vnn_has_interface_with_name(tv
, i
->name
)) {
153 /* None of the VNNs are using this interface. */
154 DLIST_REMOVE(ctdb
->ifaces
, i
);
155 /* Caller will free mem_ctx when convenient. */
156 talloc_steal(mem_ctx
, i
);
162 static struct ctdb_iface
*ctdb_find_iface(struct ctdb_context
*ctdb
,
165 struct ctdb_iface
*i
;
167 for (i
=ctdb
->ifaces
;i
;i
=i
->next
) {
168 if (strcmp(i
->name
, iface
) == 0) {
176 static struct ctdb_iface
*ctdb_vnn_best_iface(struct ctdb_context
*ctdb
,
177 struct ctdb_vnn
*vnn
)
180 struct ctdb_iface
*cur
= NULL
;
181 struct ctdb_iface
*best
= NULL
;
183 for (i
=0; vnn
->ifaces
[i
]; i
++) {
185 cur
= ctdb_find_iface(ctdb
, vnn
->ifaces
[i
]);
199 if (cur
->references
< best
->references
) {
208 static int32_t ctdb_vnn_assign_iface(struct ctdb_context
*ctdb
,
209 struct ctdb_vnn
*vnn
)
211 struct ctdb_iface
*best
= NULL
;
214 DEBUG(DEBUG_INFO
, (__location__
" public address '%s' "
215 "still assigned to iface '%s'\n",
216 ctdb_addr_to_str(&vnn
->public_address
),
217 ctdb_vnn_iface_string(vnn
)));
221 best
= ctdb_vnn_best_iface(ctdb
, vnn
);
223 DEBUG(DEBUG_ERR
, (__location__
" public address '%s' "
224 "cannot assign to iface any iface\n",
225 ctdb_addr_to_str(&vnn
->public_address
)));
231 vnn
->pnn
= ctdb
->pnn
;
233 DEBUG(DEBUG_INFO
, (__location__
" public address '%s' "
234 "now assigned to iface '%s' refs[%d]\n",
235 ctdb_addr_to_str(&vnn
->public_address
),
236 ctdb_vnn_iface_string(vnn
),
241 static void ctdb_vnn_unassign_iface(struct ctdb_context
*ctdb
,
242 struct ctdb_vnn
*vnn
)
244 DEBUG(DEBUG_INFO
, (__location__
" public address '%s' "
245 "now unassigned (old iface '%s' refs[%d])\n",
246 ctdb_addr_to_str(&vnn
->public_address
),
247 ctdb_vnn_iface_string(vnn
),
248 vnn
->iface
?vnn
->iface
->references
:0));
250 vnn
->iface
->references
--;
253 if (vnn
->pnn
== ctdb
->pnn
) {
258 static bool ctdb_vnn_available(struct ctdb_context
*ctdb
,
259 struct ctdb_vnn
*vnn
)
263 if (vnn
->iface
&& vnn
->iface
->link_up
) {
267 for (i
=0; vnn
->ifaces
[i
]; i
++) {
268 struct ctdb_iface
*cur
;
270 cur
= ctdb_find_iface(ctdb
, vnn
->ifaces
[i
]);
283 struct ctdb_takeover_arp
{
284 struct ctdb_context
*ctdb
;
287 struct ctdb_tcp_array
*tcparray
;
288 struct ctdb_vnn
*vnn
;
293 lists of tcp endpoints
295 struct ctdb_tcp_list
{
296 struct ctdb_tcp_list
*prev
, *next
;
297 struct ctdb_tcp_connection connection
;
301 list of clients to kill on IP release
303 struct ctdb_client_ip
{
304 struct ctdb_client_ip
*prev
, *next
;
305 struct ctdb_context
*ctdb
;
312 send a gratuitous arp
314 static void ctdb_control_send_arp(struct event_context
*ev
, struct timed_event
*te
,
315 struct timeval t
, void *private_data
)
317 struct ctdb_takeover_arp
*arp
= talloc_get_type(private_data
,
318 struct ctdb_takeover_arp
);
320 struct ctdb_tcp_array
*tcparray
;
321 const char *iface
= ctdb_vnn_iface_string(arp
->vnn
);
323 ret
= ctdb_sys_send_arp(&arp
->addr
, iface
);
325 DEBUG(DEBUG_CRIT
,(__location__
" sending of arp failed on iface '%s' (%s)\n",
326 iface
, strerror(errno
)));
329 tcparray
= arp
->tcparray
;
331 for (i
=0;i
<tcparray
->num
;i
++) {
332 struct ctdb_tcp_connection
*tcon
;
334 tcon
= &tcparray
->connections
[i
];
335 DEBUG(DEBUG_INFO
,("sending tcp tickle ack for %u->%s:%u\n",
336 (unsigned)ntohs(tcon
->dst_addr
.ip
.sin_port
),
337 ctdb_addr_to_str(&tcon
->src_addr
),
338 (unsigned)ntohs(tcon
->src_addr
.ip
.sin_port
)));
339 ret
= ctdb_sys_send_tcp(
344 DEBUG(DEBUG_CRIT
,(__location__
" Failed to send tcp tickle ack for %s\n",
345 ctdb_addr_to_str(&tcon
->src_addr
)));
352 if (arp
->count
== CTDB_ARP_REPEAT
) {
357 event_add_timed(arp
->ctdb
->ev
, arp
->vnn
->takeover_ctx
,
358 timeval_current_ofs(CTDB_ARP_INTERVAL
, 100000),
359 ctdb_control_send_arp
, arp
);
362 static int32_t ctdb_announce_vnn_iface(struct ctdb_context
*ctdb
,
363 struct ctdb_vnn
*vnn
)
365 struct ctdb_takeover_arp
*arp
;
366 struct ctdb_tcp_array
*tcparray
;
368 if (!vnn
->takeover_ctx
) {
369 vnn
->takeover_ctx
= talloc_new(vnn
);
370 if (!vnn
->takeover_ctx
) {
375 arp
= talloc_zero(vnn
->takeover_ctx
, struct ctdb_takeover_arp
);
381 arp
->addr
= vnn
->public_address
;
384 tcparray
= vnn
->tcp_array
;
386 /* add all of the known tcp connections for this IP to the
387 list of tcp connections to send tickle acks for */
388 arp
->tcparray
= talloc_steal(arp
, tcparray
);
390 vnn
->tcp_array
= NULL
;
391 vnn
->tcp_update_needed
= true;
394 event_add_timed(arp
->ctdb
->ev
, vnn
->takeover_ctx
,
395 timeval_zero(), ctdb_control_send_arp
, arp
);
400 struct takeover_callback_state
{
401 struct ctdb_req_control
*c
;
402 ctdb_sock_addr
*addr
;
403 struct ctdb_vnn
*vnn
;
406 struct ctdb_do_takeip_state
{
407 struct ctdb_req_control
*c
;
408 struct ctdb_vnn
*vnn
;
412 called when takeip event finishes
414 static void ctdb_do_takeip_callback(struct ctdb_context
*ctdb
, int status
,
417 struct ctdb_do_takeip_state
*state
=
418 talloc_get_type(private_data
, struct ctdb_do_takeip_state
);
423 struct ctdb_node
*node
= ctdb
->nodes
[ctdb
->pnn
];
425 if (status
== -ETIME
) {
428 DEBUG(DEBUG_ERR
,(__location__
" Failed to takeover IP %s on interface %s\n",
429 ctdb_addr_to_str(&state
->vnn
->public_address
),
430 ctdb_vnn_iface_string(state
->vnn
)));
431 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, status
, NULL
);
433 node
->flags
|= NODE_FLAGS_UNHEALTHY
;
438 if (ctdb
->do_checkpublicip
) {
440 ret
= ctdb_announce_vnn_iface(ctdb
, state
->vnn
);
442 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, -1, NULL
);
449 data
.dptr
= (uint8_t *)ctdb_addr_to_str(&state
->vnn
->public_address
);
450 data
.dsize
= strlen((char *)data
.dptr
) + 1;
451 DEBUG(DEBUG_INFO
,(__location__
" sending TAKE_IP for '%s'\n", data
.dptr
));
453 ctdb_daemon_send_message(ctdb
, ctdb
->pnn
, CTDB_SRVID_TAKE_IP
, data
);
456 /* the control succeeded */
457 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, 0, NULL
);
462 static int ctdb_takeip_destructor(struct ctdb_do_takeip_state
*state
)
464 state
->vnn
->update_in_flight
= false;
469 take over an ip address
471 static int32_t ctdb_do_takeip(struct ctdb_context
*ctdb
,
472 struct ctdb_req_control
*c
,
473 struct ctdb_vnn
*vnn
)
476 struct ctdb_do_takeip_state
*state
;
478 if (vnn
->update_in_flight
) {
479 DEBUG(DEBUG_NOTICE
,("Takeover of IP %s/%u rejected "
480 "update for this IP already in flight\n",
481 ctdb_addr_to_str(&vnn
->public_address
),
482 vnn
->public_netmask_bits
));
486 ret
= ctdb_vnn_assign_iface(ctdb
, vnn
);
488 DEBUG(DEBUG_ERR
,("Takeover of IP %s/%u failed to "
489 "assign a usable interface\n",
490 ctdb_addr_to_str(&vnn
->public_address
),
491 vnn
->public_netmask_bits
));
495 state
= talloc(vnn
, struct ctdb_do_takeip_state
);
496 CTDB_NO_MEMORY(ctdb
, state
);
498 state
->c
= talloc_steal(ctdb
, c
);
501 vnn
->update_in_flight
= true;
502 talloc_set_destructor(state
, ctdb_takeip_destructor
);
504 DEBUG(DEBUG_NOTICE
,("Takeover of IP %s/%u on interface %s\n",
505 ctdb_addr_to_str(&vnn
->public_address
),
506 vnn
->public_netmask_bits
,
507 ctdb_vnn_iface_string(vnn
)));
509 ret
= ctdb_event_script_callback(ctdb
,
511 ctdb_do_takeip_callback
,
515 ctdb_vnn_iface_string(vnn
),
516 ctdb_addr_to_str(&vnn
->public_address
),
517 vnn
->public_netmask_bits
);
520 DEBUG(DEBUG_ERR
,(__location__
" Failed to takeover IP %s on interface %s\n",
521 ctdb_addr_to_str(&vnn
->public_address
),
522 ctdb_vnn_iface_string(vnn
)));
530 struct ctdb_do_updateip_state
{
531 struct ctdb_req_control
*c
;
532 struct ctdb_iface
*old
;
533 struct ctdb_vnn
*vnn
;
537 called when updateip event finishes
539 static void ctdb_do_updateip_callback(struct ctdb_context
*ctdb
, int status
,
542 struct ctdb_do_updateip_state
*state
=
543 talloc_get_type(private_data
, struct ctdb_do_updateip_state
);
547 if (status
== -ETIME
) {
550 DEBUG(DEBUG_ERR
,(__location__
" Failed to move IP %s from interface %s to %s\n",
551 ctdb_addr_to_str(&state
->vnn
->public_address
),
553 ctdb_vnn_iface_string(state
->vnn
)));
556 * All we can do is reset the old interface
557 * and let the next run fix it
559 ctdb_vnn_unassign_iface(ctdb
, state
->vnn
);
560 state
->vnn
->iface
= state
->old
;
561 state
->vnn
->iface
->references
++;
563 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, status
, NULL
);
568 if (ctdb
->do_checkpublicip
) {
570 ret
= ctdb_announce_vnn_iface(ctdb
, state
->vnn
);
572 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, -1, NULL
);
579 /* the control succeeded */
580 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, 0, NULL
);
585 static int ctdb_updateip_destructor(struct ctdb_do_updateip_state
*state
)
587 state
->vnn
->update_in_flight
= false;
592 update (move) an ip address
594 static int32_t ctdb_do_updateip(struct ctdb_context
*ctdb
,
595 struct ctdb_req_control
*c
,
596 struct ctdb_vnn
*vnn
)
599 struct ctdb_do_updateip_state
*state
;
600 struct ctdb_iface
*old
= vnn
->iface
;
601 const char *new_name
;
603 if (vnn
->update_in_flight
) {
604 DEBUG(DEBUG_NOTICE
,("Update of IP %s/%u rejected "
605 "update for this IP already in flight\n",
606 ctdb_addr_to_str(&vnn
->public_address
),
607 vnn
->public_netmask_bits
));
611 ctdb_vnn_unassign_iface(ctdb
, vnn
);
612 ret
= ctdb_vnn_assign_iface(ctdb
, vnn
);
614 DEBUG(DEBUG_ERR
,("update of IP %s/%u failed to "
615 "assin a usable interface (old iface '%s')\n",
616 ctdb_addr_to_str(&vnn
->public_address
),
617 vnn
->public_netmask_bits
,
622 new_name
= ctdb_vnn_iface_string(vnn
);
623 if (old
->name
!= NULL
&& new_name
!= NULL
&& !strcmp(old
->name
, new_name
)) {
624 /* A benign update from one interface onto itself.
625 * no need to run the eventscripts in this case, just return
628 ctdb_request_control_reply(ctdb
, c
, NULL
, 0, NULL
);
632 state
= talloc(vnn
, struct ctdb_do_updateip_state
);
633 CTDB_NO_MEMORY(ctdb
, state
);
635 state
->c
= talloc_steal(ctdb
, c
);
639 vnn
->update_in_flight
= true;
640 talloc_set_destructor(state
, ctdb_updateip_destructor
);
642 DEBUG(DEBUG_NOTICE
,("Update of IP %s/%u from "
643 "interface %s to %s\n",
644 ctdb_addr_to_str(&vnn
->public_address
),
645 vnn
->public_netmask_bits
,
649 ret
= ctdb_event_script_callback(ctdb
,
651 ctdb_do_updateip_callback
,
653 CTDB_EVENT_UPDATE_IP
,
657 ctdb_addr_to_str(&vnn
->public_address
),
658 vnn
->public_netmask_bits
);
660 DEBUG(DEBUG_ERR
,(__location__
" Failed update IP %s from interface %s to %s\n",
661 ctdb_addr_to_str(&vnn
->public_address
),
662 old
->name
, new_name
));
671 Find the vnn of the node that has a public ip address
672 returns -1 if the address is not known as a public address
674 static struct ctdb_vnn
*find_public_ip_vnn(struct ctdb_context
*ctdb
, ctdb_sock_addr
*addr
)
676 struct ctdb_vnn
*vnn
;
678 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
679 if (ctdb_same_ip(&vnn
->public_address
, addr
)) {
688 take over an ip address
690 int32_t ctdb_control_takeover_ip(struct ctdb_context
*ctdb
,
691 struct ctdb_req_control
*c
,
696 struct ctdb_public_ip
*pip
= (struct ctdb_public_ip
*)indata
.dptr
;
697 struct ctdb_vnn
*vnn
;
698 bool have_ip
= false;
699 bool do_updateip
= false;
700 bool do_takeip
= false;
701 struct ctdb_iface
*best_iface
= NULL
;
703 if (pip
->pnn
!= ctdb
->pnn
) {
704 DEBUG(DEBUG_ERR
,(__location__
" takeoverip called for an ip '%s' "
705 "with pnn %d, but we're node %d\n",
706 ctdb_addr_to_str(&pip
->addr
),
707 pip
->pnn
, ctdb
->pnn
));
711 /* update out vnn list */
712 vnn
= find_public_ip_vnn(ctdb
, &pip
->addr
);
714 DEBUG(DEBUG_INFO
,("takeoverip called for an ip '%s' that is not a public address\n",
715 ctdb_addr_to_str(&pip
->addr
)));
719 if (ctdb
->do_checkpublicip
) {
720 have_ip
= ctdb_sys_have_ip(&pip
->addr
);
722 best_iface
= ctdb_vnn_best_iface(ctdb
, vnn
);
723 if (best_iface
== NULL
) {
724 DEBUG(DEBUG_ERR
,("takeoverip of IP %s/%u failed to find"
725 "a usable interface (old %s, have_ip %d)\n",
726 ctdb_addr_to_str(&vnn
->public_address
),
727 vnn
->public_netmask_bits
,
728 ctdb_vnn_iface_string(vnn
),
733 if (vnn
->iface
== NULL
&& vnn
->pnn
== -1 && have_ip
&& best_iface
!= NULL
) {
734 DEBUG(DEBUG_ERR
,("Taking over newly created ip\n"));
739 if (vnn
->iface
== NULL
&& have_ip
) {
740 DEBUG(DEBUG_CRIT
,(__location__
" takeoverip of IP %s is known to the kernel, "
741 "but we have no interface assigned, has someone manually configured it? Ignore for now.\n",
742 ctdb_addr_to_str(&vnn
->public_address
)));
746 if (vnn
->pnn
!= ctdb
->pnn
&& have_ip
&& vnn
->pnn
!= -1) {
747 DEBUG(DEBUG_CRIT
,(__location__
" takeoverip of IP %s is known to the kernel, "
748 "and we have it on iface[%s], but it was assigned to node %d"
749 "and we are node %d, banning ourself\n",
750 ctdb_addr_to_str(&vnn
->public_address
),
751 ctdb_vnn_iface_string(vnn
), vnn
->pnn
, ctdb
->pnn
));
756 if (vnn
->pnn
== -1 && have_ip
) {
757 vnn
->pnn
= ctdb
->pnn
;
758 DEBUG(DEBUG_CRIT
,(__location__
" takeoverip of IP %s is known to the kernel, "
759 "and we already have it on iface[%s], update local daemon\n",
760 ctdb_addr_to_str(&vnn
->public_address
),
761 ctdb_vnn_iface_string(vnn
)));
766 if (vnn
->iface
!= best_iface
) {
767 if (!vnn
->iface
->link_up
) {
769 } else if (vnn
->iface
->references
> (best_iface
->references
+ 1)) {
770 /* only move when the rebalance gains something */
778 ctdb_vnn_unassign_iface(ctdb
, vnn
);
785 ret
= ctdb_do_takeip(ctdb
, c
, vnn
);
789 } else if (do_updateip
) {
790 ret
= ctdb_do_updateip(ctdb
, c
, vnn
);
796 * The interface is up and the kernel known the ip
799 DEBUG(DEBUG_INFO
,("Redundant takeover of IP %s/%u on interface %s (ip already held)\n",
800 ctdb_addr_to_str(&pip
->addr
),
801 vnn
->public_netmask_bits
,
802 ctdb_vnn_iface_string(vnn
)));
806 /* tell ctdb_control.c that we will be replying asynchronously */
813 takeover an ip address old v4 style
815 int32_t ctdb_control_takeover_ipv4(struct ctdb_context
*ctdb
,
816 struct ctdb_req_control
*c
,
822 data
.dsize
= sizeof(struct ctdb_public_ip
);
823 data
.dptr
= (uint8_t *)talloc_zero(c
, struct ctdb_public_ip
);
824 CTDB_NO_MEMORY(ctdb
, data
.dptr
);
826 memcpy(data
.dptr
, indata
.dptr
, indata
.dsize
);
827 return ctdb_control_takeover_ip(ctdb
, c
, data
, async_reply
);
831 kill any clients that are registered with a IP that is being released
833 static void release_kill_clients(struct ctdb_context
*ctdb
, ctdb_sock_addr
*addr
)
835 struct ctdb_client_ip
*ip
;
837 DEBUG(DEBUG_INFO
,("release_kill_clients for ip %s\n",
838 ctdb_addr_to_str(addr
)));
840 for (ip
=ctdb
->client_ip_list
; ip
; ip
=ip
->next
) {
841 ctdb_sock_addr tmp_addr
;
844 DEBUG(DEBUG_INFO
,("checking for client %u with IP %s\n",
846 ctdb_addr_to_str(&ip
->addr
)));
848 if (ctdb_same_ip(&tmp_addr
, addr
)) {
849 struct ctdb_client
*client
= ctdb_reqid_find(ctdb
,
852 DEBUG(DEBUG_INFO
,("matched client %u with IP %s and pid %u\n",
854 ctdb_addr_to_str(&ip
->addr
),
857 if (client
->pid
!= 0) {
858 DEBUG(DEBUG_INFO
,(__location__
" Killing client pid %u for IP %s on client_id %u\n",
859 (unsigned)client
->pid
,
860 ctdb_addr_to_str(addr
),
862 kill(client
->pid
, SIGKILL
);
869 called when releaseip event finishes
871 static void release_ip_callback(struct ctdb_context
*ctdb
, int status
,
874 struct takeover_callback_state
*state
=
875 talloc_get_type(private_data
, struct takeover_callback_state
);
878 if (status
== -ETIME
) {
882 if (ctdb
->do_checkpublicip
&& ctdb_sys_have_ip(state
->addr
)) {
883 DEBUG(DEBUG_ERR
, ("IP %s still hosted during release IP callback, failing\n",
884 ctdb_addr_to_str(state
->addr
)));
885 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, -1, NULL
);
890 /* send a message to all clients of this node telling them
891 that the cluster has been reconfigured and they should
892 release any sockets on this IP */
893 data
.dptr
= (uint8_t *)talloc_strdup(state
, ctdb_addr_to_str(state
->addr
));
894 CTDB_NO_MEMORY_VOID(ctdb
, data
.dptr
);
895 data
.dsize
= strlen((char *)data
.dptr
)+1;
897 DEBUG(DEBUG_INFO
,(__location__
" sending RELEASE_IP for '%s'\n", data
.dptr
));
899 ctdb_daemon_send_message(ctdb
, ctdb
->pnn
, CTDB_SRVID_RELEASE_IP
, data
);
901 /* kill clients that have registered with this IP */
902 release_kill_clients(ctdb
, state
->addr
);
904 ctdb_vnn_unassign_iface(ctdb
, state
->vnn
);
906 /* the control succeeded */
907 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, 0, NULL
);
911 static int ctdb_releaseip_destructor(struct takeover_callback_state
*state
)
913 state
->vnn
->update_in_flight
= false;
918 release an ip address
920 int32_t ctdb_control_release_ip(struct ctdb_context
*ctdb
,
921 struct ctdb_req_control
*c
,
926 struct takeover_callback_state
*state
;
927 struct ctdb_public_ip
*pip
= (struct ctdb_public_ip
*)indata
.dptr
;
928 struct ctdb_vnn
*vnn
;
931 /* update our vnn list */
932 vnn
= find_public_ip_vnn(ctdb
, &pip
->addr
);
934 DEBUG(DEBUG_INFO
,("releaseip called for an ip '%s' that is not a public address\n",
935 ctdb_addr_to_str(&pip
->addr
)));
940 /* stop any previous arps */
941 talloc_free(vnn
->takeover_ctx
);
942 vnn
->takeover_ctx
= NULL
;
944 /* Some ctdb tool commands (e.g. moveip, rebalanceip) send
945 * lazy multicast to drop an IP from any node that isn't the
946 * intended new node. The following causes makes ctdbd ignore
947 * a release for any address it doesn't host.
949 if (ctdb
->do_checkpublicip
) {
950 if (!ctdb_sys_have_ip(&pip
->addr
)) {
951 DEBUG(DEBUG_DEBUG
,("Redundant release of IP %s/%u on interface %s (ip not held)\n",
952 ctdb_addr_to_str(&pip
->addr
),
953 vnn
->public_netmask_bits
,
954 ctdb_vnn_iface_string(vnn
)));
955 ctdb_vnn_unassign_iface(ctdb
, vnn
);
959 if (vnn
->iface
== NULL
) {
960 DEBUG(DEBUG_DEBUG
,("Redundant release of IP %s/%u (ip not held)\n",
961 ctdb_addr_to_str(&pip
->addr
),
962 vnn
->public_netmask_bits
));
967 /* There is a potential race between take_ip and us because we
968 * update the VNN via a callback that run when the
969 * eventscripts have been run. Avoid the race by allowing one
970 * update to be in flight at a time.
972 if (vnn
->update_in_flight
) {
973 DEBUG(DEBUG_NOTICE
,("Release of IP %s/%u rejected "
974 "update for this IP already in flight\n",
975 ctdb_addr_to_str(&vnn
->public_address
),
976 vnn
->public_netmask_bits
));
980 if (ctdb
->do_checkpublicip
) {
981 iface
= ctdb_sys_find_ifname(&pip
->addr
);
983 DEBUG(DEBUG_ERR
, ("Could not find which interface the ip address is hosted on. can not release it\n"));
986 if (vnn
->iface
== NULL
) {
988 ("Public IP %s is hosted on interface %s but we have no VNN\n",
989 ctdb_addr_to_str(&pip
->addr
),
991 } else if (strcmp(iface
, ctdb_vnn_iface_string(vnn
)) != 0) {
993 ("Public IP %s is hosted on inteterface %s but VNN says %s\n",
994 ctdb_addr_to_str(&pip
->addr
),
996 ctdb_vnn_iface_string(vnn
)));
997 /* Should we fix vnn->iface? If we do, what
998 * happens to reference counts?
1002 iface
= strdup(ctdb_vnn_iface_string(vnn
));
1005 DEBUG(DEBUG_NOTICE
,("Release of IP %s/%u on interface %s node:%d\n",
1006 ctdb_addr_to_str(&pip
->addr
),
1007 vnn
->public_netmask_bits
,
1011 state
= talloc(ctdb
, struct takeover_callback_state
);
1012 CTDB_NO_MEMORY(ctdb
, state
);
1014 state
->c
= talloc_steal(state
, c
);
1015 state
->addr
= talloc(state
, ctdb_sock_addr
);
1016 CTDB_NO_MEMORY(ctdb
, state
->addr
);
1017 *state
->addr
= pip
->addr
;
1020 vnn
->update_in_flight
= true;
1021 talloc_set_destructor(state
, ctdb_releaseip_destructor
);
1023 ret
= ctdb_event_script_callback(ctdb
,
1024 state
, release_ip_callback
, state
,
1025 CTDB_EVENT_RELEASE_IP
,
1028 ctdb_addr_to_str(&pip
->addr
),
1029 vnn
->public_netmask_bits
);
1032 DEBUG(DEBUG_ERR
,(__location__
" Failed to release IP %s on interface %s\n",
1033 ctdb_addr_to_str(&pip
->addr
),
1034 ctdb_vnn_iface_string(vnn
)));
1039 /* tell the control that we will be reply asynchronously */
1040 *async_reply
= true;
1045 release an ip address old v4 style
1047 int32_t ctdb_control_release_ipv4(struct ctdb_context
*ctdb
,
1048 struct ctdb_req_control
*c
,
1054 data
.dsize
= sizeof(struct ctdb_public_ip
);
1055 data
.dptr
= (uint8_t *)talloc_zero(c
, struct ctdb_public_ip
);
1056 CTDB_NO_MEMORY(ctdb
, data
.dptr
);
1058 memcpy(data
.dptr
, indata
.dptr
, indata
.dsize
);
1059 return ctdb_control_release_ip(ctdb
, c
, data
, async_reply
);
1063 static int ctdb_add_public_address(struct ctdb_context
*ctdb
,
1064 ctdb_sock_addr
*addr
,
1065 unsigned mask
, const char *ifaces
,
1068 struct ctdb_vnn
*vnn
;
1075 tmp
= strdup(ifaces
);
1076 for (iface
= strtok(tmp
, ","); iface
; iface
= strtok(NULL
, ",")) {
1077 if (!ctdb_sys_check_iface_exists(iface
)) {
1078 DEBUG(DEBUG_CRIT
,("Interface %s does not exist. Can not add public-address : %s\n", iface
, ctdb_addr_to_str(addr
)));
1085 /* Verify that we dont have an entry for this ip yet */
1086 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
1087 if (ctdb_same_sockaddr(addr
, &vnn
->public_address
)) {
1088 DEBUG(DEBUG_CRIT
,("Same ip '%s' specified multiple times in the public address list \n",
1089 ctdb_addr_to_str(addr
)));
1094 /* create a new vnn structure for this ip address */
1095 vnn
= talloc_zero(ctdb
, struct ctdb_vnn
);
1096 CTDB_NO_MEMORY_FATAL(ctdb
, vnn
);
1097 vnn
->ifaces
= talloc_array(vnn
, const char *, num
+ 2);
1098 tmp
= talloc_strdup(vnn
, ifaces
);
1099 CTDB_NO_MEMORY_FATAL(ctdb
, tmp
);
1100 for (iface
= strtok(tmp
, ","); iface
; iface
= strtok(NULL
, ",")) {
1101 vnn
->ifaces
= talloc_realloc(vnn
, vnn
->ifaces
, const char *, num
+ 2);
1102 CTDB_NO_MEMORY_FATAL(ctdb
, vnn
->ifaces
);
1103 vnn
->ifaces
[num
] = talloc_strdup(vnn
, iface
);
1104 CTDB_NO_MEMORY_FATAL(ctdb
, vnn
->ifaces
[num
]);
1108 vnn
->ifaces
[num
] = NULL
;
1109 vnn
->public_address
= *addr
;
1110 vnn
->public_netmask_bits
= mask
;
1112 if (check_address
) {
1113 if (ctdb_sys_have_ip(addr
)) {
1114 DEBUG(DEBUG_ERR
,("We are already hosting public address '%s'. setting PNN to ourself:%d\n", ctdb_addr_to_str(addr
), ctdb
->pnn
));
1115 vnn
->pnn
= ctdb
->pnn
;
1119 for (i
=0; vnn
->ifaces
[i
]; i
++) {
1120 ret
= ctdb_add_local_iface(ctdb
, vnn
->ifaces
[i
]);
1122 DEBUG(DEBUG_CRIT
, (__location__
" failed to add iface[%s] "
1123 "for public_address[%s]\n",
1124 vnn
->ifaces
[i
], ctdb_addr_to_str(addr
)));
1130 DLIST_ADD(ctdb
->vnn
, vnn
);
1135 static void ctdb_check_interfaces_event(struct event_context
*ev
, struct timed_event
*te
,
1136 struct timeval t
, void *private_data
)
1138 struct ctdb_context
*ctdb
= talloc_get_type(private_data
,
1139 struct ctdb_context
);
1140 struct ctdb_vnn
*vnn
;
1142 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
1145 for (i
=0; vnn
->ifaces
[i
] != NULL
; i
++) {
1146 if (!ctdb_sys_check_iface_exists(vnn
->ifaces
[i
])) {
1147 DEBUG(DEBUG_CRIT
,("Interface %s does not exist but is used by public ip %s\n",
1149 ctdb_addr_to_str(&vnn
->public_address
)));
1154 event_add_timed(ctdb
->ev
, ctdb
->check_public_ifaces_ctx
,
1155 timeval_current_ofs(30, 0),
1156 ctdb_check_interfaces_event
, ctdb
);
1160 int ctdb_start_monitoring_interfaces(struct ctdb_context
*ctdb
)
1162 if (ctdb
->check_public_ifaces_ctx
!= NULL
) {
1163 talloc_free(ctdb
->check_public_ifaces_ctx
);
1164 ctdb
->check_public_ifaces_ctx
= NULL
;
1167 ctdb
->check_public_ifaces_ctx
= talloc_new(ctdb
);
1168 if (ctdb
->check_public_ifaces_ctx
== NULL
) {
1169 ctdb_fatal(ctdb
, "failed to allocate context for checking interfaces");
1172 event_add_timed(ctdb
->ev
, ctdb
->check_public_ifaces_ctx
,
1173 timeval_current_ofs(30, 0),
1174 ctdb_check_interfaces_event
, ctdb
);
1181 setup the public address lists from a file
1183 int ctdb_set_public_addresses(struct ctdb_context
*ctdb
, bool check_addresses
)
1189 lines
= file_lines_load(ctdb
->public_addresses_file
, &nlines
, ctdb
);
1190 if (lines
== NULL
) {
1191 ctdb_set_error(ctdb
, "Failed to load public address list '%s'\n", ctdb
->public_addresses_file
);
1194 while (nlines
> 0 && strcmp(lines
[nlines
-1], "") == 0) {
1198 for (i
=0;i
<nlines
;i
++) {
1200 ctdb_sock_addr addr
;
1201 const char *addrstr
;
1206 while ((*line
== ' ') || (*line
== '\t')) {
1212 if (strcmp(line
, "") == 0) {
1215 tok
= strtok(line
, " \t");
1217 tok
= strtok(NULL
, " \t");
1219 if (NULL
== ctdb
->default_public_interface
) {
1220 DEBUG(DEBUG_CRIT
,("No default public interface and no interface specified at line %u of public address list\n",
1225 ifaces
= ctdb
->default_public_interface
;
1230 if (!addrstr
|| !parse_ip_mask(addrstr
, ifaces
, &addr
, &mask
)) {
1231 DEBUG(DEBUG_CRIT
,("Badly formed line %u in public address list\n", i
+1));
1235 if (ctdb_add_public_address(ctdb
, &addr
, mask
, ifaces
, check_addresses
)) {
1236 DEBUG(DEBUG_CRIT
,("Failed to add line %u to the public address list\n", i
+1));
1247 int ctdb_set_single_public_ip(struct ctdb_context
*ctdb
,
1251 struct ctdb_vnn
*svnn
;
1252 struct ctdb_iface
*cur
= NULL
;
1256 svnn
= talloc_zero(ctdb
, struct ctdb_vnn
);
1257 CTDB_NO_MEMORY(ctdb
, svnn
);
1259 svnn
->ifaces
= talloc_array(svnn
, const char *, 2);
1260 CTDB_NO_MEMORY(ctdb
, svnn
->ifaces
);
1261 svnn
->ifaces
[0] = talloc_strdup(svnn
->ifaces
, iface
);
1262 CTDB_NO_MEMORY(ctdb
, svnn
->ifaces
[0]);
1263 svnn
->ifaces
[1] = NULL
;
1265 ok
= parse_ip(ip
, iface
, 0, &svnn
->public_address
);
1271 ret
= ctdb_add_local_iface(ctdb
, svnn
->ifaces
[0]);
1273 DEBUG(DEBUG_CRIT
, (__location__
" failed to add iface[%s] "
1274 "for single_ip[%s]\n",
1276 ctdb_addr_to_str(&svnn
->public_address
)));
1281 /* assume the single public ip interface is initially "good" */
1282 cur
= ctdb_find_iface(ctdb
, iface
);
1284 DEBUG(DEBUG_CRIT
,("Can not find public interface %s used by --single-public-ip", iface
));
1287 cur
->link_up
= true;
1289 ret
= ctdb_vnn_assign_iface(ctdb
, svnn
);
1295 ctdb
->single_ip_vnn
= svnn
;
1299 struct ctdb_public_ip_list
{
1300 struct ctdb_public_ip_list
*next
;
1302 ctdb_sock_addr addr
;
1305 /* Given a physical node, return the number of
1306 public addresses that is currently assigned to this node.
1308 static int node_ip_coverage(struct ctdb_context
*ctdb
,
1310 struct ctdb_public_ip_list
*ips
)
1314 for (;ips
;ips
=ips
->next
) {
1315 if (ips
->pnn
== pnn
) {
1323 /* Can the given node host the given IP: is the public IP known to the
1324 * node and is NOIPHOST unset?
1326 static bool can_node_host_ip(struct ctdb_context
*ctdb
, int32_t pnn
,
1327 struct ctdb_ipflags ipflags
,
1328 struct ctdb_public_ip_list
*ip
)
1330 struct ctdb_all_public_ips
*public_ips
;
1333 if (ipflags
.noiphost
) {
1337 public_ips
= ctdb
->nodes
[pnn
]->available_public_ips
;
1339 if (public_ips
== NULL
) {
1343 for (i
=0; i
<public_ips
->num
; i
++) {
1344 if (ctdb_same_ip(&ip
->addr
, &public_ips
->ips
[i
].addr
)) {
1345 /* yes, this node can serve this public ip */
1353 static bool can_node_takeover_ip(struct ctdb_context
*ctdb
, int32_t pnn
,
1354 struct ctdb_ipflags ipflags
,
1355 struct ctdb_public_ip_list
*ip
)
1357 if (ipflags
.noiptakeover
) {
1361 return can_node_host_ip(ctdb
, pnn
, ipflags
, ip
);
1364 /* search the node lists list for a node to takeover this ip.
1365 pick the node that currently are serving the least number of ips
1366 so that the ips get spread out evenly.
1368 static int find_takeover_node(struct ctdb_context
*ctdb
,
1369 struct ctdb_ipflags
*ipflags
,
1370 struct ctdb_public_ip_list
*ip
,
1371 struct ctdb_public_ip_list
*all_ips
)
1373 int pnn
, min
=0, num
;
1376 numnodes
= talloc_array_length(ipflags
);
1378 for (i
=0; i
<numnodes
; i
++) {
1379 /* verify that this node can serve this ip */
1380 if (!can_node_takeover_ip(ctdb
, i
, ipflags
[i
], ip
)) {
1381 /* no it couldnt so skip to the next node */
1385 num
= node_ip_coverage(ctdb
, i
, all_ips
);
1386 /* was this the first node we checked ? */
1398 DEBUG(DEBUG_WARNING
,(__location__
" Could not find node to take over public address '%s'\n",
1399 ctdb_addr_to_str(&ip
->addr
)));
1409 static uint32_t *ip_key(ctdb_sock_addr
*ip
)
1411 static uint32_t key
[IP_KEYLEN
];
1413 bzero(key
, sizeof(key
));
1415 switch (ip
->sa
.sa_family
) {
1417 key
[3] = htonl(ip
->ip
.sin_addr
.s_addr
);
1420 uint32_t *s6_a32
= (uint32_t *)&(ip
->ip6
.sin6_addr
.s6_addr
);
1421 key
[0] = htonl(s6_a32
[0]);
1422 key
[1] = htonl(s6_a32
[1]);
1423 key
[2] = htonl(s6_a32
[2]);
1424 key
[3] = htonl(s6_a32
[3]);
1428 DEBUG(DEBUG_ERR
, (__location__
" ERROR, unknown family passed :%u\n", ip
->sa
.sa_family
));
1435 static void *add_ip_callback(void *parm
, void *data
)
1437 struct ctdb_public_ip_list
*this_ip
= parm
;
1438 struct ctdb_public_ip_list
*prev_ip
= data
;
1440 if (prev_ip
== NULL
) {
1443 if (this_ip
->pnn
== -1) {
1444 this_ip
->pnn
= prev_ip
->pnn
;
1450 static int getips_count_callback(void *param
, void *data
)
1452 struct ctdb_public_ip_list
**ip_list
= (struct ctdb_public_ip_list
**)param
;
1453 struct ctdb_public_ip_list
*new_ip
= (struct ctdb_public_ip_list
*)data
;
1455 new_ip
->next
= *ip_list
;
1460 static struct ctdb_public_ip_list
*
1461 create_merged_ip_list(struct ctdb_context
*ctdb
)
1464 struct ctdb_public_ip_list
*ip_list
;
1465 struct ctdb_all_public_ips
*public_ips
;
1467 if (ctdb
->ip_tree
!= NULL
) {
1468 talloc_free(ctdb
->ip_tree
);
1469 ctdb
->ip_tree
= NULL
;
1471 ctdb
->ip_tree
= trbt_create(ctdb
, 0);
1473 for (i
=0;i
<ctdb
->num_nodes
;i
++) {
1474 public_ips
= ctdb
->nodes
[i
]->known_public_ips
;
1476 if (ctdb
->nodes
[i
]->flags
& NODE_FLAGS_DELETED
) {
1480 /* there were no public ips for this node */
1481 if (public_ips
== NULL
) {
1485 for (j
=0;j
<public_ips
->num
;j
++) {
1486 struct ctdb_public_ip_list
*tmp_ip
;
1488 tmp_ip
= talloc_zero(ctdb
->ip_tree
, struct ctdb_public_ip_list
);
1489 CTDB_NO_MEMORY_NULL(ctdb
, tmp_ip
);
1490 /* Do not use information about IP addresses hosted
1491 * on other nodes, it may not be accurate */
1492 if (public_ips
->ips
[j
].pnn
== ctdb
->nodes
[i
]->pnn
) {
1493 tmp_ip
->pnn
= public_ips
->ips
[j
].pnn
;
1497 tmp_ip
->addr
= public_ips
->ips
[j
].addr
;
1498 tmp_ip
->next
= NULL
;
1500 trbt_insertarray32_callback(ctdb
->ip_tree
,
1501 IP_KEYLEN
, ip_key(&public_ips
->ips
[j
].addr
),
1508 trbt_traversearray32(ctdb
->ip_tree
, IP_KEYLEN
, getips_count_callback
, &ip_list
);
1514 * This is the length of the longtest common prefix between the IPs.
1515 * It is calculated by XOR-ing the 2 IPs together and counting the
1516 * number of leading zeroes. The implementation means that all
1517 * addresses end up being 128 bits long.
1519 * FIXME? Should we consider IPv4 and IPv6 separately given that the
1520 * 12 bytes of 0 prefix padding will hurt the algorithm if there are
1521 * lots of nodes and IP addresses?
1523 static uint32_t ip_distance(ctdb_sock_addr
*ip1
, ctdb_sock_addr
*ip2
)
1525 uint32_t ip1_k
[IP_KEYLEN
];
1530 uint32_t distance
= 0;
1532 memcpy(ip1_k
, ip_key(ip1
), sizeof(ip1_k
));
1534 for (i
=0; i
<IP_KEYLEN
; i
++) {
1535 x
= ip1_k
[i
] ^ t
[i
];
1539 /* Count number of leading zeroes.
1540 * FIXME? This could be optimised...
1542 while ((x
& (1 << 31)) == 0) {
1552 /* Calculate the IP distance for the given IP relative to IPs on the
1553 given node. The ips argument is generally the all_ips variable
1554 used in the main part of the algorithm.
1556 static uint32_t ip_distance_2_sum(ctdb_sock_addr
*ip
,
1557 struct ctdb_public_ip_list
*ips
,
1560 struct ctdb_public_ip_list
*t
;
1565 for (t
=ips
; t
!= NULL
; t
=t
->next
) {
1566 if (t
->pnn
!= pnn
) {
1570 /* Optimisation: We never calculate the distance
1571 * between an address and itself. This allows us to
1572 * calculate the effect of removing an address from a
1573 * node by simply calculating the distance between
1574 * that address and all of the exitsing addresses.
1575 * Moreover, we assume that we're only ever dealing
1576 * with addresses from all_ips so we can identify an
1577 * address via a pointer rather than doing a more
1578 * expensive address comparison. */
1579 if (&(t
->addr
) == ip
) {
1583 d
= ip_distance(ip
, &(t
->addr
));
1584 sum
+= d
* d
; /* Cheaper than pulling in math.h :-) */
1590 /* Return the LCP2 imbalance metric for addresses currently assigned
1593 static uint32_t lcp2_imbalance(struct ctdb_public_ip_list
* all_ips
, int pnn
)
1595 struct ctdb_public_ip_list
*t
;
1597 uint32_t imbalance
= 0;
1599 for (t
=all_ips
; t
!=NULL
; t
=t
->next
) {
1600 if (t
->pnn
!= pnn
) {
1603 /* Pass the rest of the IPs rather than the whole
1606 imbalance
+= ip_distance_2_sum(&(t
->addr
), t
->next
, pnn
);
1612 /* Allocate any unassigned IPs just by looping through the IPs and
1613 * finding the best node for each.
1615 static void basic_allocate_unassigned(struct ctdb_context
*ctdb
,
1616 struct ctdb_ipflags
*ipflags
,
1617 struct ctdb_public_ip_list
*all_ips
)
1619 struct ctdb_public_ip_list
*tmp_ip
;
1621 /* loop over all ip's and find a physical node to cover for
1624 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
1625 if (tmp_ip
->pnn
== -1) {
1626 if (find_takeover_node(ctdb
, ipflags
, tmp_ip
, all_ips
)) {
1627 DEBUG(DEBUG_WARNING
,("Failed to find node to cover ip %s\n",
1628 ctdb_addr_to_str(&tmp_ip
->addr
)));
1634 /* Basic non-deterministic rebalancing algorithm.
1636 static void basic_failback(struct ctdb_context
*ctdb
,
1637 struct ctdb_ipflags
*ipflags
,
1638 struct ctdb_public_ip_list
*all_ips
,
1642 int maxnode
, maxnum
, minnode
, minnum
, num
, retries
;
1643 struct ctdb_public_ip_list
*tmp_ip
;
1645 numnodes
= talloc_array_length(ipflags
);
1652 /* for each ip address, loop over all nodes that can serve
1653 this ip and make sure that the difference between the node
1654 serving the most and the node serving the least ip's are
1657 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
1658 if (tmp_ip
->pnn
== -1) {
1662 /* Get the highest and lowest number of ips's served by any
1663 valid node which can serve this ip.
1667 for (i
=0; i
<numnodes
; i
++) {
1668 /* only check nodes that can actually serve this ip */
1669 if (!can_node_takeover_ip(ctdb
, i
, ipflags
[i
], tmp_ip
)) {
1670 /* no it couldnt so skip to the next node */
1674 num
= node_ip_coverage(ctdb
, i
, all_ips
);
1675 if (maxnode
== -1) {
1684 if (minnode
== -1) {
1694 if (maxnode
== -1) {
1695 DEBUG(DEBUG_WARNING
,(__location__
" Could not find maxnode. May not be able to serve ip '%s'\n",
1696 ctdb_addr_to_str(&tmp_ip
->addr
)));
1701 /* if the spread between the smallest and largest coverage by
1702 a node is >=2 we steal one of the ips from the node with
1703 most coverage to even things out a bit.
1704 try to do this a limited number of times since we dont
1705 want to spend too much time balancing the ip coverage.
1707 if ( (maxnum
> minnum
+1)
1708 && (retries
< (num_ips
+ 5)) ){
1709 struct ctdb_public_ip_list
*tmp
;
1711 /* Reassign one of maxnode's VNNs */
1712 for (tmp
=all_ips
;tmp
;tmp
=tmp
->next
) {
1713 if (tmp
->pnn
== maxnode
) {
1714 (void)find_takeover_node(ctdb
, ipflags
, tmp
, all_ips
);
1723 static void lcp2_init(struct ctdb_context
*tmp_ctx
,
1724 struct ctdb_ipflags
*ipflags
,
1725 struct ctdb_public_ip_list
*all_ips
,
1726 uint32_t *force_rebalance_nodes
,
1727 uint32_t **lcp2_imbalances
,
1728 bool **rebalance_candidates
)
1731 struct ctdb_public_ip_list
*tmp_ip
;
1733 numnodes
= talloc_array_length(ipflags
);
1735 *rebalance_candidates
= talloc_array(tmp_ctx
, bool, numnodes
);
1736 CTDB_NO_MEMORY_FATAL(tmp_ctx
, *rebalance_candidates
);
1737 *lcp2_imbalances
= talloc_array(tmp_ctx
, uint32_t, numnodes
);
1738 CTDB_NO_MEMORY_FATAL(tmp_ctx
, *lcp2_imbalances
);
1740 for (i
=0; i
<numnodes
; i
++) {
1741 (*lcp2_imbalances
)[i
] = lcp2_imbalance(all_ips
, i
);
1742 /* First step: assume all nodes are candidates */
1743 (*rebalance_candidates
)[i
] = true;
1746 /* 2nd step: if a node has IPs assigned then it must have been
1747 * healthy before, so we remove it from consideration. This
1748 * is overkill but is all we have because we don't maintain
1749 * state between takeover runs. An alternative would be to
1750 * keep state and invalidate it every time the recovery master
1753 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
1754 if (tmp_ip
->pnn
!= -1) {
1755 (*rebalance_candidates
)[tmp_ip
->pnn
] = false;
1759 /* 3rd step: if a node is forced to re-balance then
1760 we allow failback onto the node */
1761 if (force_rebalance_nodes
== NULL
) {
1764 for (i
= 0; i
< talloc_array_length(force_rebalance_nodes
); i
++) {
1765 uint32_t pnn
= force_rebalance_nodes
[i
];
1766 if (pnn
>= numnodes
) {
1768 (__location__
"unknown node %u\n", pnn
));
1773 ("Forcing rebalancing of IPs to node %u\n", pnn
));
1774 (*rebalance_candidates
)[pnn
] = true;
1778 /* Allocate any unassigned addresses using the LCP2 algorithm to find
1779 * the IP/node combination that will cost the least.
1781 static void lcp2_allocate_unassigned(struct ctdb_context
*ctdb
,
1782 struct ctdb_ipflags
*ipflags
,
1783 struct ctdb_public_ip_list
*all_ips
,
1784 uint32_t *lcp2_imbalances
)
1786 struct ctdb_public_ip_list
*tmp_ip
;
1787 int dstnode
, numnodes
;
1790 uint32_t mindsum
, dstdsum
, dstimbl
, minimbl
;
1791 struct ctdb_public_ip_list
*minip
;
1793 bool should_loop
= true;
1794 bool have_unassigned
= true;
1796 numnodes
= talloc_array_length(ipflags
);
1798 while (have_unassigned
&& should_loop
) {
1799 should_loop
= false;
1801 DEBUG(DEBUG_DEBUG
,(" ----------------------------------------\n"));
1802 DEBUG(DEBUG_DEBUG
,(" CONSIDERING MOVES (UNASSIGNED)\n"));
1808 /* loop over each unassigned ip. */
1809 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
1810 if (tmp_ip
->pnn
!= -1) {
1814 for (dstnode
=0; dstnode
<numnodes
; dstnode
++) {
1815 /* only check nodes that can actually takeover this ip */
1816 if (!can_node_takeover_ip(ctdb
, dstnode
,
1819 /* no it couldnt so skip to the next node */
1823 dstdsum
= ip_distance_2_sum(&(tmp_ip
->addr
), all_ips
, dstnode
);
1824 dstimbl
= lcp2_imbalances
[dstnode
] + dstdsum
;
1825 DEBUG(DEBUG_DEBUG
,(" %s -> %d [+%d]\n",
1826 ctdb_addr_to_str(&(tmp_ip
->addr
)),
1828 dstimbl
- lcp2_imbalances
[dstnode
]));
1831 if ((minnode
== -1) || (dstdsum
< mindsum
)) {
1841 DEBUG(DEBUG_DEBUG
,(" ----------------------------------------\n"));
1843 /* If we found one then assign it to the given node. */
1844 if (minnode
!= -1) {
1845 minip
->pnn
= minnode
;
1846 lcp2_imbalances
[minnode
] = minimbl
;
1847 DEBUG(DEBUG_INFO
,(" %s -> %d [+%d]\n",
1848 ctdb_addr_to_str(&(minip
->addr
)),
1853 /* There might be a better way but at least this is clear. */
1854 have_unassigned
= false;
1855 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
1856 if (tmp_ip
->pnn
== -1) {
1857 have_unassigned
= true;
1862 /* We know if we have an unassigned addresses so we might as
1865 if (have_unassigned
) {
1866 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
1867 if (tmp_ip
->pnn
== -1) {
1868 DEBUG(DEBUG_WARNING
,("Failed to find node to cover ip %s\n",
1869 ctdb_addr_to_str(&tmp_ip
->addr
)));
1875 /* LCP2 algorithm for rebalancing the cluster. Given a candidate node
1876 * to move IPs from, determines the best IP/destination node
1877 * combination to move from the source node.
1879 static bool lcp2_failback_candidate(struct ctdb_context
*ctdb
,
1880 struct ctdb_ipflags
*ipflags
,
1881 struct ctdb_public_ip_list
*all_ips
,
1884 uint32_t *lcp2_imbalances
,
1885 bool *rebalance_candidates
)
1887 int dstnode
, mindstnode
, numnodes
;
1888 uint32_t srcimbl
, srcdsum
, dstimbl
, dstdsum
;
1889 uint32_t minsrcimbl
, mindstimbl
;
1890 struct ctdb_public_ip_list
*minip
;
1891 struct ctdb_public_ip_list
*tmp_ip
;
1893 /* Find an IP and destination node that best reduces imbalance. */
1900 numnodes
= talloc_array_length(ipflags
);
1902 DEBUG(DEBUG_DEBUG
,(" ----------------------------------------\n"));
1903 DEBUG(DEBUG_DEBUG
,(" CONSIDERING MOVES FROM %d [%d]\n", srcnode
, candimbl
));
1905 for (tmp_ip
=all_ips
; tmp_ip
; tmp_ip
=tmp_ip
->next
) {
1906 /* Only consider addresses on srcnode. */
1907 if (tmp_ip
->pnn
!= srcnode
) {
1911 /* What is this IP address costing the source node? */
1912 srcdsum
= ip_distance_2_sum(&(tmp_ip
->addr
), all_ips
, srcnode
);
1913 srcimbl
= candimbl
- srcdsum
;
1915 /* Consider this IP address would cost each potential
1916 * destination node. Destination nodes are limited to
1917 * those that are newly healthy, since we don't want
1918 * to do gratuitous failover of IPs just to make minor
1919 * balance improvements.
1921 for (dstnode
=0; dstnode
<numnodes
; dstnode
++) {
1922 if (!rebalance_candidates
[dstnode
]) {
1926 /* only check nodes that can actually takeover this ip */
1927 if (!can_node_takeover_ip(ctdb
, dstnode
,
1928 ipflags
[dstnode
], tmp_ip
)) {
1929 /* no it couldnt so skip to the next node */
1933 dstdsum
= ip_distance_2_sum(&(tmp_ip
->addr
), all_ips
, dstnode
);
1934 dstimbl
= lcp2_imbalances
[dstnode
] + dstdsum
;
1935 DEBUG(DEBUG_DEBUG
,(" %d [%d] -> %s -> %d [+%d]\n",
1936 srcnode
, srcimbl
- lcp2_imbalances
[srcnode
],
1937 ctdb_addr_to_str(&(tmp_ip
->addr
)),
1938 dstnode
, dstimbl
- lcp2_imbalances
[dstnode
]));
1940 if ((dstimbl
< candimbl
) && (dstdsum
< srcdsum
) && \
1941 ((mindstnode
== -1) || \
1942 ((srcimbl
+ dstimbl
) < (minsrcimbl
+ mindstimbl
)))) {
1945 minsrcimbl
= srcimbl
;
1946 mindstnode
= dstnode
;
1947 mindstimbl
= dstimbl
;
1951 DEBUG(DEBUG_DEBUG
,(" ----------------------------------------\n"));
1953 if (mindstnode
!= -1) {
1954 /* We found a move that makes things better... */
1955 DEBUG(DEBUG_INFO
,("%d [%d] -> %s -> %d [+%d]\n",
1956 srcnode
, minsrcimbl
- lcp2_imbalances
[srcnode
],
1957 ctdb_addr_to_str(&(minip
->addr
)),
1958 mindstnode
, mindstimbl
- lcp2_imbalances
[mindstnode
]));
1961 lcp2_imbalances
[srcnode
] = minsrcimbl
;
1962 lcp2_imbalances
[mindstnode
] = mindstimbl
;
1963 minip
->pnn
= mindstnode
;
1972 struct lcp2_imbalance_pnn
{
1977 static int lcp2_cmp_imbalance_pnn(const void * a
, const void * b
)
1979 const struct lcp2_imbalance_pnn
* lipa
= (const struct lcp2_imbalance_pnn
*) a
;
1980 const struct lcp2_imbalance_pnn
* lipb
= (const struct lcp2_imbalance_pnn
*) b
;
1982 if (lipa
->imbalance
> lipb
->imbalance
) {
1984 } else if (lipa
->imbalance
== lipb
->imbalance
) {
1991 /* LCP2 algorithm for rebalancing the cluster. This finds the source
1992 * node with the highest LCP2 imbalance, and then determines the best
1993 * IP/destination node combination to move from the source node.
1995 static void lcp2_failback(struct ctdb_context
*ctdb
,
1996 struct ctdb_ipflags
*ipflags
,
1997 struct ctdb_public_ip_list
*all_ips
,
1998 uint32_t *lcp2_imbalances
,
1999 bool *rebalance_candidates
)
2001 int i
, num_rebalance_candidates
, numnodes
;
2002 struct lcp2_imbalance_pnn
* lips
;
2005 numnodes
= talloc_array_length(ipflags
);
2009 /* It is only worth continuing if we have suitable target
2010 * nodes to transfer IPs to. This check is much cheaper than
2013 num_rebalance_candidates
= 0;
2014 for (i
=0; i
<numnodes
; i
++) {
2015 if (rebalance_candidates
[i
]) {
2016 num_rebalance_candidates
++;
2019 if (num_rebalance_candidates
== 0) {
2023 /* Put the imbalances and nodes into an array, sort them and
2024 * iterate through candidates. Usually the 1st one will be
2025 * used, so this doesn't cost much...
2027 DEBUG(DEBUG_DEBUG
,("+++++++++++++++++++++++++++++++++++++++++\n"));
2028 DEBUG(DEBUG_DEBUG
,("Selecting most imbalanced node from:\n"));
2029 lips
= talloc_array(ctdb
, struct lcp2_imbalance_pnn
, numnodes
);
2030 for (i
=0; i
<numnodes
; i
++) {
2031 lips
[i
].imbalance
= lcp2_imbalances
[i
];
2033 DEBUG(DEBUG_DEBUG
,(" %d [%d]\n", i
, lcp2_imbalances
[i
]));
2035 qsort(lips
, numnodes
, sizeof(struct lcp2_imbalance_pnn
),
2036 lcp2_cmp_imbalance_pnn
);
2039 for (i
=0; i
<numnodes
; i
++) {
2040 /* This means that all nodes had 0 or 1 addresses, so
2041 * can't be imbalanced.
2043 if (lips
[i
].imbalance
== 0) {
2047 if (lcp2_failback_candidate(ctdb
,
2053 rebalance_candidates
)) {
2065 static void unassign_unsuitable_ips(struct ctdb_context
*ctdb
,
2066 struct ctdb_ipflags
*ipflags
,
2067 struct ctdb_public_ip_list
*all_ips
)
2069 struct ctdb_public_ip_list
*tmp_ip
;
2071 /* verify that the assigned nodes can serve that public ip
2072 and set it to -1 if not
2074 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
2075 if (tmp_ip
->pnn
== -1) {
2078 if (!can_node_host_ip(ctdb
, tmp_ip
->pnn
,
2079 ipflags
[tmp_ip
->pnn
], tmp_ip
) != 0) {
2080 /* this node can not serve this ip. */
2081 DEBUG(DEBUG_DEBUG
,("Unassign IP: %s from %d\n",
2082 ctdb_addr_to_str(&(tmp_ip
->addr
)),
2089 static void ip_alloc_deterministic_ips(struct ctdb_context
*ctdb
,
2090 struct ctdb_ipflags
*ipflags
,
2091 struct ctdb_public_ip_list
*all_ips
)
2093 struct ctdb_public_ip_list
*tmp_ip
;
2096 numnodes
= talloc_array_length(ipflags
);
2098 DEBUG(DEBUG_NOTICE
,("Deterministic IPs enabled. Resetting all ip allocations\n"));
2099 /* Allocate IPs to nodes in a modulo fashion so that IPs will
2100 * always be allocated the same way for a specific set of
2101 * available/unavailable nodes.
2104 for (i
=0,tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
,i
++) {
2105 tmp_ip
->pnn
= i
% numnodes
;
2108 /* IP failback doesn't make sense with deterministic
2109 * IPs, since the modulo step above implicitly fails
2110 * back IPs to their "home" node.
2112 if (1 == ctdb
->tunable
.no_ip_failback
) {
2113 DEBUG(DEBUG_WARNING
, ("WARNING: 'NoIPFailback' set but ignored - incompatible with 'DeterministicIPs\n"));
2116 unassign_unsuitable_ips(ctdb
, ipflags
, all_ips
);
2118 basic_allocate_unassigned(ctdb
, ipflags
, all_ips
);
2120 /* No failback here! */
2123 static void ip_alloc_nondeterministic_ips(struct ctdb_context
*ctdb
,
2124 struct ctdb_ipflags
*ipflags
,
2125 struct ctdb_public_ip_list
*all_ips
)
2127 /* This should be pushed down into basic_failback. */
2128 struct ctdb_public_ip_list
*tmp_ip
;
2130 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
2134 unassign_unsuitable_ips(ctdb
, ipflags
, all_ips
);
2136 basic_allocate_unassigned(ctdb
, ipflags
, all_ips
);
2138 /* If we don't want IPs to fail back then don't rebalance IPs. */
2139 if (1 == ctdb
->tunable
.no_ip_failback
) {
2143 /* Now, try to make sure the ip adresses are evenly distributed
2146 basic_failback(ctdb
, ipflags
, all_ips
, num_ips
);
2149 static void ip_alloc_lcp2(struct ctdb_context
*ctdb
,
2150 struct ctdb_ipflags
*ipflags
,
2151 struct ctdb_public_ip_list
*all_ips
,
2152 uint32_t *force_rebalance_nodes
)
2154 uint32_t *lcp2_imbalances
;
2155 bool *rebalance_candidates
;
2157 TALLOC_CTX
*tmp_ctx
= talloc_new(ctdb
);
2159 unassign_unsuitable_ips(ctdb
, ipflags
, all_ips
);
2161 lcp2_init(tmp_ctx
, ipflags
, all_ips
,force_rebalance_nodes
,
2162 &lcp2_imbalances
, &rebalance_candidates
);
2164 lcp2_allocate_unassigned(ctdb
, ipflags
, all_ips
, lcp2_imbalances
);
2166 /* If we don't want IPs to fail back then don't rebalance IPs. */
2167 if (1 == ctdb
->tunable
.no_ip_failback
) {
2171 /* Now, try to make sure the ip adresses are evenly distributed
2174 lcp2_failback(ctdb
, ipflags
, all_ips
,
2175 lcp2_imbalances
, rebalance_candidates
);
2178 talloc_free(tmp_ctx
);
2181 static bool all_nodes_are_disabled(struct ctdb_node_map
*nodemap
)
2185 /* Count how many completely healthy nodes we have */
2187 for (i
=0;i
<nodemap
->num
;i
++) {
2188 if (!(nodemap
->nodes
[i
].flags
& (NODE_FLAGS_INACTIVE
|NODE_FLAGS_DISABLED
))) {
2193 return num_healthy
== 0;
2196 /* The calculation part of the IP allocation algorithm. */
2197 static void ctdb_takeover_run_core(struct ctdb_context
*ctdb
,
2198 struct ctdb_ipflags
*ipflags
,
2199 struct ctdb_public_ip_list
**all_ips_p
,
2200 uint32_t *force_rebalance_nodes
)
2202 /* since nodes only know about those public addresses that
2203 can be served by that particular node, no single node has
2204 a full list of all public addresses that exist in the cluster.
2205 Walk over all node structures and create a merged list of
2206 all public addresses that exist in the cluster.
2208 keep the tree of ips around as ctdb->ip_tree
2210 *all_ips_p
= create_merged_ip_list(ctdb
);
2212 if (1 == ctdb
->tunable
.lcp2_public_ip_assignment
) {
2213 ip_alloc_lcp2(ctdb
, ipflags
, *all_ips_p
, force_rebalance_nodes
);
2214 } else if (1 == ctdb
->tunable
.deterministic_public_ips
) {
2215 ip_alloc_deterministic_ips(ctdb
, ipflags
, *all_ips_p
);
2217 ip_alloc_nondeterministic_ips(ctdb
, ipflags
, *all_ips_p
);
2220 /* at this point ->pnn is the node which will own each IP
2221 or -1 if there is no node that can cover this ip
2227 struct get_tunable_callback_data
{
2228 const char *tunable
;
2233 static void get_tunable_callback(struct ctdb_context
*ctdb
, uint32_t pnn
,
2234 int32_t res
, TDB_DATA outdata
,
2237 struct get_tunable_callback_data
*cd
=
2238 (struct get_tunable_callback_data
*)callback
;
2242 /* Already handled in fail callback */
2246 if (outdata
.dsize
!= sizeof(uint32_t)) {
2247 DEBUG(DEBUG_ERR
,("Wrong size of returned data when reading \"%s\" tunable from node %d. Expected %d bytes but received %d bytes\n",
2248 cd
->tunable
, pnn
, (int)sizeof(uint32_t),
2249 (int)outdata
.dsize
));
2254 size
= talloc_array_length(cd
->out
);
2256 DEBUG(DEBUG_ERR
,("Got %s reply from node %d but nodemap only has %d entries\n",
2257 cd
->tunable
, pnn
, size
));
2262 cd
->out
[pnn
] = *(uint32_t *)outdata
.dptr
;
2265 static void get_tunable_fail_callback(struct ctdb_context
*ctdb
, uint32_t pnn
,
2266 int32_t res
, TDB_DATA outdata
,
2269 struct get_tunable_callback_data
*cd
=
2270 (struct get_tunable_callback_data
*)callback
;
2275 ("Timed out getting tunable \"%s\" from node %d\n",
2281 DEBUG(DEBUG_WARNING
,
2282 ("Tunable \"%s\" not implemented on node %d\n",
2287 ("Unexpected error getting tunable \"%s\" from node %d\n",
2293 static uint32_t *get_tunable_from_nodes(struct ctdb_context
*ctdb
,
2294 TALLOC_CTX
*tmp_ctx
,
2295 struct ctdb_node_map
*nodemap
,
2296 const char *tunable
,
2297 uint32_t default_value
)
2300 struct ctdb_control_get_tunable
*t
;
2303 struct get_tunable_callback_data callback_data
;
2306 tvals
= talloc_array(tmp_ctx
, uint32_t, nodemap
->num
);
2307 CTDB_NO_MEMORY_NULL(ctdb
, tvals
);
2308 for (i
=0; i
<nodemap
->num
; i
++) {
2309 tvals
[i
] = default_value
;
2312 callback_data
.out
= tvals
;
2313 callback_data
.tunable
= tunable
;
2314 callback_data
.fatal
= false;
2316 data
.dsize
= offsetof(struct ctdb_control_get_tunable
, name
) + strlen(tunable
) + 1;
2317 data
.dptr
= talloc_size(tmp_ctx
, data
.dsize
);
2318 t
= (struct ctdb_control_get_tunable
*)data
.dptr
;
2319 t
->length
= strlen(tunable
)+1;
2320 memcpy(t
->name
, tunable
, t
->length
);
2321 nodes
= list_of_connected_nodes(ctdb
, nodemap
, tmp_ctx
, true);
2322 if (ctdb_client_async_control(ctdb
, CTDB_CONTROL_GET_TUNABLE
,
2323 nodes
, 0, TAKEOVER_TIMEOUT(),
2325 get_tunable_callback
,
2326 get_tunable_fail_callback
,
2327 &callback_data
) != 0) {
2328 if (callback_data
.fatal
) {
2334 talloc_free(data
.dptr
);
2339 struct get_runstate_callback_data
{
2340 enum ctdb_runstate
*out
;
2344 static void get_runstate_callback(struct ctdb_context
*ctdb
, uint32_t pnn
,
2345 int32_t res
, TDB_DATA outdata
,
2346 void *callback_data
)
2348 struct get_runstate_callback_data
*cd
=
2349 (struct get_runstate_callback_data
*)callback_data
;
2353 /* Already handled in fail callback */
2357 if (outdata
.dsize
!= sizeof(uint32_t)) {
2358 DEBUG(DEBUG_ERR
,("Wrong size of returned data when getting runstate from node %d. Expected %d bytes but received %d bytes\n",
2359 pnn
, (int)sizeof(uint32_t),
2360 (int)outdata
.dsize
));
2365 size
= talloc_array_length(cd
->out
);
2367 DEBUG(DEBUG_ERR
,("Got reply from node %d but nodemap only has %d entries\n",
2372 cd
->out
[pnn
] = (enum ctdb_runstate
)*(uint32_t *)outdata
.dptr
;
2375 static void get_runstate_fail_callback(struct ctdb_context
*ctdb
, uint32_t pnn
,
2376 int32_t res
, TDB_DATA outdata
,
2379 struct get_runstate_callback_data
*cd
=
2380 (struct get_runstate_callback_data
*)callback
;
2385 ("Timed out getting runstate from node %d\n", pnn
));
2389 DEBUG(DEBUG_WARNING
,
2390 ("Error getting runstate from node %d - assuming runstates not supported\n",
2395 static enum ctdb_runstate
* get_runstate_from_nodes(struct ctdb_context
*ctdb
,
2396 TALLOC_CTX
*tmp_ctx
,
2397 struct ctdb_node_map
*nodemap
,
2398 enum ctdb_runstate default_value
)
2401 enum ctdb_runstate
*rs
;
2402 struct get_runstate_callback_data callback_data
;
2405 rs
= talloc_array(tmp_ctx
, enum ctdb_runstate
, nodemap
->num
);
2406 CTDB_NO_MEMORY_NULL(ctdb
, rs
);
2407 for (i
=0; i
<nodemap
->num
; i
++) {
2408 rs
[i
] = default_value
;
2411 callback_data
.out
= rs
;
2412 callback_data
.fatal
= false;
2414 nodes
= list_of_connected_nodes(ctdb
, nodemap
, tmp_ctx
, true);
2415 if (ctdb_client_async_control(ctdb
, CTDB_CONTROL_GET_RUNSTATE
,
2416 nodes
, 0, TAKEOVER_TIMEOUT(),
2418 get_runstate_callback
,
2419 get_runstate_fail_callback
,
2420 &callback_data
) != 0) {
2421 if (callback_data
.fatal
) {
2431 /* Set internal flags for IP allocation:
2433 * Set NOIPTAKOVER ip flags from per-node NoIPTakeover tunable
2434 * Set NOIPHOST ip flag for each INACTIVE node
2435 * if all nodes are disabled:
2436 * Set NOIPHOST ip flags from per-node NoIPHostOnAllDisabled tunable
2438 * Set NOIPHOST ip flags for disabled nodes
2440 static struct ctdb_ipflags
*
2441 set_ipflags_internal(struct ctdb_context
*ctdb
,
2442 TALLOC_CTX
*tmp_ctx
,
2443 struct ctdb_node_map
*nodemap
,
2444 uint32_t *tval_noiptakeover
,
2445 uint32_t *tval_noiphostonalldisabled
,
2446 enum ctdb_runstate
*runstate
)
2449 struct ctdb_ipflags
*ipflags
;
2451 /* Clear IP flags - implicit due to talloc_zero */
2452 ipflags
= talloc_zero_array(tmp_ctx
, struct ctdb_ipflags
, nodemap
->num
);
2453 CTDB_NO_MEMORY_NULL(ctdb
, ipflags
);
2455 for (i
=0;i
<nodemap
->num
;i
++) {
2456 /* Can not take IPs on node with NoIPTakeover set */
2457 if (tval_noiptakeover
[i
] != 0) {
2458 ipflags
[i
].noiptakeover
= true;
2461 /* Can not host IPs on node not in RUNNING state */
2462 if (runstate
[i
] != CTDB_RUNSTATE_RUNNING
) {
2463 ipflags
[i
].noiphost
= true;
2466 /* Can not host IPs on INACTIVE node */
2467 if (nodemap
->nodes
[i
].flags
& NODE_FLAGS_INACTIVE
) {
2468 ipflags
[i
].noiphost
= true;
2472 if (all_nodes_are_disabled(nodemap
)) {
2473 /* If all nodes are disabled, can not host IPs on node
2474 * with NoIPHostOnAllDisabled set
2476 for (i
=0;i
<nodemap
->num
;i
++) {
2477 if (tval_noiphostonalldisabled
[i
] != 0) {
2478 ipflags
[i
].noiphost
= true;
2482 /* If some nodes are not disabled, then can not host
2483 * IPs on DISABLED node
2485 for (i
=0;i
<nodemap
->num
;i
++) {
2486 if (nodemap
->nodes
[i
].flags
& NODE_FLAGS_DISABLED
) {
2487 ipflags
[i
].noiphost
= true;
2495 static struct ctdb_ipflags
*set_ipflags(struct ctdb_context
*ctdb
,
2496 TALLOC_CTX
*tmp_ctx
,
2497 struct ctdb_node_map
*nodemap
)
2499 uint32_t *tval_noiptakeover
;
2500 uint32_t *tval_noiphostonalldisabled
;
2501 struct ctdb_ipflags
*ipflags
;
2502 enum ctdb_runstate
*runstate
;
2505 tval_noiptakeover
= get_tunable_from_nodes(ctdb
, tmp_ctx
, nodemap
,
2507 if (tval_noiptakeover
== NULL
) {
2511 tval_noiphostonalldisabled
=
2512 get_tunable_from_nodes(ctdb
, tmp_ctx
, nodemap
,
2513 "NoIPHostOnAllDisabled", 0);
2514 if (tval_noiphostonalldisabled
== NULL
) {
2515 /* Caller frees tmp_ctx */
2519 /* Any nodes where CTDB_CONTROL_GET_RUNSTATE is not supported
2520 * will default to CTDB_RUNSTATE_RUNNING. This ensures
2521 * reasonable behaviour on a mixed cluster during upgrade.
2523 runstate
= get_runstate_from_nodes(ctdb
, tmp_ctx
, nodemap
,
2524 CTDB_RUNSTATE_RUNNING
);
2525 if (runstate
== NULL
) {
2526 /* Caller frees tmp_ctx */
2530 ipflags
= set_ipflags_internal(ctdb
, tmp_ctx
, nodemap
,
2532 tval_noiphostonalldisabled
,
2535 talloc_free(tval_noiptakeover
);
2536 talloc_free(tval_noiphostonalldisabled
);
2537 talloc_free(runstate
);
2542 struct iprealloc_callback_data
{
2545 client_async_callback fail_callback
;
2546 void *fail_callback_data
;
2547 struct ctdb_node_map
*nodemap
;
2550 static void iprealloc_fail_callback(struct ctdb_context
*ctdb
, uint32_t pnn
,
2551 int32_t res
, TDB_DATA outdata
,
2555 struct iprealloc_callback_data
*cd
=
2556 (struct iprealloc_callback_data
*)callback
;
2558 numnodes
= talloc_array_length(cd
->retry_nodes
);
2559 if (pnn
> numnodes
) {
2561 ("ipreallocated failure from node %d, "
2562 "but only %d nodes in nodemap\n",
2567 /* Can't run the "ipreallocated" event on a INACTIVE node */
2568 if (cd
->nodemap
->nodes
[pnn
].flags
& NODE_FLAGS_INACTIVE
) {
2569 DEBUG(DEBUG_WARNING
,
2570 ("ipreallocated failed on inactive node %d, ignoring\n",
2577 /* If the control timed out then that's a real error,
2578 * so call the real fail callback
2580 cd
->fail_callback(ctdb
, pnn
, res
, outdata
,
2581 cd
->fail_callback_data
);
2584 /* If not a timeout then either the ipreallocated
2585 * eventscript (or some setup) failed. This might
2586 * have failed because the IPREALLOCATED control isn't
2587 * implemented - right now there is no way of knowing
2588 * because the error codes are all folded down to -1.
2589 * Consider retrying using EVENTSCRIPT control...
2591 DEBUG(DEBUG_WARNING
,
2592 ("ipreallocated failure from node %d, flagging retry\n",
2594 cd
->retry_nodes
[pnn
] = true;
2599 struct takeover_callback_data
{
2601 client_async_callback fail_callback
;
2602 void *fail_callback_data
;
2603 struct ctdb_node_map
*nodemap
;
2606 static void takeover_run_fail_callback(struct ctdb_context
*ctdb
,
2607 uint32_t node_pnn
, int32_t res
,
2608 TDB_DATA outdata
, void *callback_data
)
2610 struct takeover_callback_data
*cd
=
2611 talloc_get_type_abort(callback_data
,
2612 struct takeover_callback_data
);
2615 for (i
= 0; i
< cd
->nodemap
->num
; i
++) {
2616 if (node_pnn
== cd
->nodemap
->nodes
[i
].pnn
) {
2621 if (i
== cd
->nodemap
->num
) {
2622 DEBUG(DEBUG_ERR
, (__location__
" invalid PNN %u\n", node_pnn
));
2626 if (!cd
->node_failed
[i
]) {
2627 cd
->node_failed
[i
] = true;
2628 cd
->fail_callback(ctdb
, node_pnn
, res
, outdata
,
2629 cd
->fail_callback_data
);
2634 make any IP alias changes for public addresses that are necessary
2636 int ctdb_takeover_run(struct ctdb_context
*ctdb
, struct ctdb_node_map
*nodemap
,
2637 uint32_t *force_rebalance_nodes
,
2638 client_async_callback fail_callback
, void *callback_data
)
2641 struct ctdb_public_ip ip
;
2642 struct ctdb_public_ipv4 ipv4
;
2644 struct ctdb_public_ip_list
*all_ips
, *tmp_ip
;
2646 struct timeval timeout
;
2647 struct client_async_data
*async_data
;
2648 struct ctdb_client_control_state
*state
;
2649 TALLOC_CTX
*tmp_ctx
= talloc_new(ctdb
);
2650 struct ctdb_ipflags
*ipflags
;
2651 struct takeover_callback_data
*takeover_data
;
2652 struct iprealloc_callback_data iprealloc_data
;
2656 * ip failover is completely disabled, just send out the
2657 * ipreallocated event.
2659 if (ctdb
->tunable
.disable_ip_failover
!= 0) {
2663 ipflags
= set_ipflags(ctdb
, tmp_ctx
, nodemap
);
2664 if (ipflags
== NULL
) {
2665 DEBUG(DEBUG_ERR
,("Failed to set IP flags - aborting takeover run\n"));
2666 talloc_free(tmp_ctx
);
2672 /* Do the IP reassignment calculations */
2673 ctdb_takeover_run_core(ctdb
, ipflags
, &all_ips
, force_rebalance_nodes
);
2675 /* Now tell all nodes to release any public IPs should not
2676 * host. This will be a NOOP on nodes that don't currently
2677 * hold the given IP.
2679 takeover_data
= talloc_zero(tmp_ctx
, struct takeover_callback_data
);
2680 CTDB_NO_MEMORY_FATAL(ctdb
, takeover_data
);
2682 takeover_data
->node_failed
= talloc_zero_array(tmp_ctx
,
2683 bool, nodemap
->num
);
2684 CTDB_NO_MEMORY_FATAL(ctdb
, takeover_data
->node_failed
);
2685 takeover_data
->fail_callback
= fail_callback
;
2686 takeover_data
->fail_callback_data
= callback_data
;
2687 takeover_data
->nodemap
= nodemap
;
2689 async_data
= talloc_zero(tmp_ctx
, struct client_async_data
);
2690 CTDB_NO_MEMORY_FATAL(ctdb
, async_data
);
2692 async_data
->fail_callback
= takeover_run_fail_callback
;
2693 async_data
->callback_data
= takeover_data
;
2695 for (i
=0;i
<nodemap
->num
;i
++) {
2696 /* don't talk to unconnected nodes, but do talk to banned nodes */
2697 if (nodemap
->nodes
[i
].flags
& NODE_FLAGS_DISCONNECTED
) {
2701 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
2702 if (tmp_ip
->pnn
== nodemap
->nodes
[i
].pnn
) {
2703 /* This node should be serving this
2704 vnn so dont tell it to release the ip
2708 if (tmp_ip
->addr
.sa
.sa_family
== AF_INET
) {
2709 ipv4
.pnn
= tmp_ip
->pnn
;
2710 ipv4
.sin
= tmp_ip
->addr
.ip
;
2712 timeout
= TAKEOVER_TIMEOUT();
2713 data
.dsize
= sizeof(ipv4
);
2714 data
.dptr
= (uint8_t *)&ipv4
;
2715 state
= ctdb_control_send(ctdb
, nodemap
->nodes
[i
].pnn
,
2716 0, CTDB_CONTROL_RELEASE_IPv4
, 0,
2720 ip
.pnn
= tmp_ip
->pnn
;
2721 ip
.addr
= tmp_ip
->addr
;
2723 timeout
= TAKEOVER_TIMEOUT();
2724 data
.dsize
= sizeof(ip
);
2725 data
.dptr
= (uint8_t *)&ip
;
2726 state
= ctdb_control_send(ctdb
, nodemap
->nodes
[i
].pnn
,
2727 0, CTDB_CONTROL_RELEASE_IP
, 0,
2732 if (state
== NULL
) {
2733 DEBUG(DEBUG_ERR
,(__location__
" Failed to call async control CTDB_CONTROL_RELEASE_IP to node %u\n", nodemap
->nodes
[i
].pnn
));
2734 talloc_free(tmp_ctx
);
2738 ctdb_client_async_add(async_data
, state
);
2741 if (ctdb_client_async_wait(ctdb
, async_data
) != 0) {
2742 DEBUG(DEBUG_ERR
,(__location__
" Async control CTDB_CONTROL_RELEASE_IP failed\n"));
2743 talloc_free(tmp_ctx
);
2746 talloc_free(async_data
);
2749 /* tell all nodes to get their own IPs */
2750 async_data
= talloc_zero(tmp_ctx
, struct client_async_data
);
2751 CTDB_NO_MEMORY_FATAL(ctdb
, async_data
);
2753 async_data
->fail_callback
= fail_callback
;
2754 async_data
->callback_data
= callback_data
;
2756 for (tmp_ip
=all_ips
;tmp_ip
;tmp_ip
=tmp_ip
->next
) {
2757 if (tmp_ip
->pnn
== -1) {
2758 /* this IP won't be taken over */
2762 if (tmp_ip
->addr
.sa
.sa_family
== AF_INET
) {
2763 ipv4
.pnn
= tmp_ip
->pnn
;
2764 ipv4
.sin
= tmp_ip
->addr
.ip
;
2766 timeout
= TAKEOVER_TIMEOUT();
2767 data
.dsize
= sizeof(ipv4
);
2768 data
.dptr
= (uint8_t *)&ipv4
;
2769 state
= ctdb_control_send(ctdb
, tmp_ip
->pnn
,
2770 0, CTDB_CONTROL_TAKEOVER_IPv4
, 0,
2774 ip
.pnn
= tmp_ip
->pnn
;
2775 ip
.addr
= tmp_ip
->addr
;
2777 timeout
= TAKEOVER_TIMEOUT();
2778 data
.dsize
= sizeof(ip
);
2779 data
.dptr
= (uint8_t *)&ip
;
2780 state
= ctdb_control_send(ctdb
, tmp_ip
->pnn
,
2781 0, CTDB_CONTROL_TAKEOVER_IP
, 0,
2785 if (state
== NULL
) {
2786 DEBUG(DEBUG_ERR
,(__location__
" Failed to call async control CTDB_CONTROL_TAKEOVER_IP to node %u\n", tmp_ip
->pnn
));
2787 talloc_free(tmp_ctx
);
2791 ctdb_client_async_add(async_data
, state
);
2793 if (ctdb_client_async_wait(ctdb
, async_data
) != 0) {
2794 DEBUG(DEBUG_ERR
,(__location__
" Async control CTDB_CONTROL_TAKEOVER_IP failed\n"));
2795 talloc_free(tmp_ctx
);
2801 * Tell all nodes to run eventscripts to process the
2802 * "ipreallocated" event. This can do a lot of things,
2803 * including restarting services to reconfigure them if public
2804 * IPs have moved. Once upon a time this event only used to
2807 retry_data
= talloc_zero_array(tmp_ctx
, bool, nodemap
->num
);
2808 CTDB_NO_MEMORY_FATAL(ctdb
, retry_data
);
2809 iprealloc_data
.retry_nodes
= retry_data
;
2810 iprealloc_data
.retry_count
= 0;
2811 iprealloc_data
.fail_callback
= fail_callback
;
2812 iprealloc_data
.fail_callback_data
= callback_data
;
2813 iprealloc_data
.nodemap
= nodemap
;
2815 nodes
= list_of_connected_nodes(ctdb
, nodemap
, tmp_ctx
, true);
2816 ret
= ctdb_client_async_control(ctdb
, CTDB_CONTROL_IPREALLOCATED
,
2817 nodes
, 0, TAKEOVER_TIMEOUT(),
2819 NULL
, iprealloc_fail_callback
,
2822 /* If the control failed then we should retry to any
2823 * nodes flagged by iprealloc_fail_callback using the
2824 * EVENTSCRIPT control. This is a best-effort at
2825 * backward compatiblity when running a mixed cluster
2826 * where some nodes have not yet been upgraded to
2827 * support the IPREALLOCATED control.
2829 DEBUG(DEBUG_WARNING
,
2830 ("Retry ipreallocated to some nodes using eventscript control\n"));
2832 nodes
= talloc_array(tmp_ctx
, uint32_t,
2833 iprealloc_data
.retry_count
);
2834 CTDB_NO_MEMORY_FATAL(ctdb
, nodes
);
2837 for (i
=0; i
<nodemap
->num
; i
++) {
2838 if (iprealloc_data
.retry_nodes
[i
]) {
2844 data
.dptr
= discard_const("ipreallocated");
2845 data
.dsize
= strlen((char *)data
.dptr
) + 1;
2846 ret
= ctdb_client_async_control(ctdb
,
2847 CTDB_CONTROL_RUN_EVENTSCRIPTS
,
2848 nodes
, 0, TAKEOVER_TIMEOUT(),
2850 NULL
, fail_callback
,
2853 DEBUG(DEBUG_ERR
, (__location__
" failed to send control to run eventscripts with \"ipreallocated\"\n"));
2857 talloc_free(tmp_ctx
);
2863 destroy a ctdb_client_ip structure
2865 static int ctdb_client_ip_destructor(struct ctdb_client_ip
*ip
)
2867 DEBUG(DEBUG_DEBUG
,("destroying client tcp for %s:%u (client_id %u)\n",
2868 ctdb_addr_to_str(&ip
->addr
),
2869 ntohs(ip
->addr
.ip
.sin_port
),
2872 DLIST_REMOVE(ip
->ctdb
->client_ip_list
, ip
);
2877 called by a client to inform us of a TCP connection that it is managing
2878 that should tickled with an ACK when IP takeover is done
2879 we handle both the old ipv4 style of packets as well as the new ipv4/6
2882 int32_t ctdb_control_tcp_client(struct ctdb_context
*ctdb
, uint32_t client_id
,
2885 struct ctdb_client
*client
= ctdb_reqid_find(ctdb
, client_id
, struct ctdb_client
);
2886 struct ctdb_control_tcp
*old_addr
= NULL
;
2887 struct ctdb_control_tcp_addr new_addr
;
2888 struct ctdb_control_tcp_addr
*tcp_sock
= NULL
;
2889 struct ctdb_tcp_list
*tcp
;
2890 struct ctdb_tcp_connection t
;
2893 struct ctdb_client_ip
*ip
;
2894 struct ctdb_vnn
*vnn
;
2895 ctdb_sock_addr addr
;
2897 switch (indata
.dsize
) {
2898 case sizeof(struct ctdb_control_tcp
):
2899 old_addr
= (struct ctdb_control_tcp
*)indata
.dptr
;
2900 ZERO_STRUCT(new_addr
);
2901 tcp_sock
= &new_addr
;
2902 tcp_sock
->src
.ip
= old_addr
->src
;
2903 tcp_sock
->dest
.ip
= old_addr
->dest
;
2905 case sizeof(struct ctdb_control_tcp_addr
):
2906 tcp_sock
= (struct ctdb_control_tcp_addr
*)indata
.dptr
;
2909 DEBUG(DEBUG_ERR
,(__location__
" Invalid data structure passed "
2910 "to ctdb_control_tcp_client. size was %d but "
2911 "only allowed sizes are %lu and %lu\n",
2913 (long unsigned)sizeof(struct ctdb_control_tcp
),
2914 (long unsigned)sizeof(struct ctdb_control_tcp_addr
)));
2918 addr
= tcp_sock
->src
;
2919 ctdb_canonicalize_ip(&addr
, &tcp_sock
->src
);
2920 addr
= tcp_sock
->dest
;
2921 ctdb_canonicalize_ip(&addr
, &tcp_sock
->dest
);
2924 memcpy(&addr
, &tcp_sock
->dest
, sizeof(addr
));
2925 vnn
= find_public_ip_vnn(ctdb
, &addr
);
2927 switch (addr
.sa
.sa_family
) {
2929 if (ntohl(addr
.ip
.sin_addr
.s_addr
) != INADDR_LOOPBACK
) {
2930 DEBUG(DEBUG_ERR
,("Could not add client IP %s. This is not a public address.\n",
2931 ctdb_addr_to_str(&addr
)));
2935 DEBUG(DEBUG_ERR
,("Could not add client IP %s. This is not a public ipv6 address.\n",
2936 ctdb_addr_to_str(&addr
)));
2939 DEBUG(DEBUG_ERR
,(__location__
" Unknown family type %d\n", addr
.sa
.sa_family
));
2945 if (vnn
->pnn
!= ctdb
->pnn
) {
2946 DEBUG(DEBUG_ERR
,("Attempt to register tcp client for IP %s we don't hold - failing (client_id %u pid %u)\n",
2947 ctdb_addr_to_str(&addr
),
2948 client_id
, client
->pid
));
2949 /* failing this call will tell smbd to die */
2953 ip
= talloc(client
, struct ctdb_client_ip
);
2954 CTDB_NO_MEMORY(ctdb
, ip
);
2958 ip
->client_id
= client_id
;
2959 talloc_set_destructor(ip
, ctdb_client_ip_destructor
);
2960 DLIST_ADD(ctdb
->client_ip_list
, ip
);
2962 tcp
= talloc(client
, struct ctdb_tcp_list
);
2963 CTDB_NO_MEMORY(ctdb
, tcp
);
2965 tcp
->connection
.src_addr
= tcp_sock
->src
;
2966 tcp
->connection
.dst_addr
= tcp_sock
->dest
;
2968 DLIST_ADD(client
->tcp_list
, tcp
);
2970 t
.src_addr
= tcp_sock
->src
;
2971 t
.dst_addr
= tcp_sock
->dest
;
2973 data
.dptr
= (uint8_t *)&t
;
2974 data
.dsize
= sizeof(t
);
2976 switch (addr
.sa
.sa_family
) {
2978 DEBUG(DEBUG_INFO
,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2979 (unsigned)ntohs(tcp_sock
->dest
.ip
.sin_port
),
2980 ctdb_addr_to_str(&tcp_sock
->src
),
2981 (unsigned)ntohs(tcp_sock
->src
.ip
.sin_port
), client_id
, client
->pid
));
2984 DEBUG(DEBUG_INFO
,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2985 (unsigned)ntohs(tcp_sock
->dest
.ip6
.sin6_port
),
2986 ctdb_addr_to_str(&tcp_sock
->src
),
2987 (unsigned)ntohs(tcp_sock
->src
.ip6
.sin6_port
), client_id
, client
->pid
));
2990 DEBUG(DEBUG_ERR
,(__location__
" Unknown family %d\n", addr
.sa
.sa_family
));
2994 /* tell all nodes about this tcp connection */
2995 ret
= ctdb_daemon_send_control(ctdb
, CTDB_BROADCAST_CONNECTED
, 0,
2996 CTDB_CONTROL_TCP_ADD
,
2997 0, CTDB_CTRL_FLAG_NOREPLY
, data
, NULL
, NULL
);
2999 DEBUG(DEBUG_ERR
,(__location__
" Failed to send CTDB_CONTROL_TCP_ADD\n"));
3007 find a tcp address on a list
3009 static struct ctdb_tcp_connection
*ctdb_tcp_find(struct ctdb_tcp_array
*array
,
3010 struct ctdb_tcp_connection
*tcp
)
3014 if (array
== NULL
) {
3018 for (i
=0;i
<array
->num
;i
++) {
3019 if (ctdb_same_sockaddr(&array
->connections
[i
].src_addr
, &tcp
->src_addr
) &&
3020 ctdb_same_sockaddr(&array
->connections
[i
].dst_addr
, &tcp
->dst_addr
)) {
3021 return &array
->connections
[i
];
3030 called by a daemon to inform us of a TCP connection that one of its
3031 clients managing that should tickled with an ACK when IP takeover is
3034 int32_t ctdb_control_tcp_add(struct ctdb_context
*ctdb
, TDB_DATA indata
, bool tcp_update_needed
)
3036 struct ctdb_tcp_connection
*p
= (struct ctdb_tcp_connection
*)indata
.dptr
;
3037 struct ctdb_tcp_array
*tcparray
;
3038 struct ctdb_tcp_connection tcp
;
3039 struct ctdb_vnn
*vnn
;
3041 vnn
= find_public_ip_vnn(ctdb
, &p
->dst_addr
);
3043 DEBUG(DEBUG_INFO
,(__location__
" got TCP_ADD control for an address which is not a public address '%s'\n",
3044 ctdb_addr_to_str(&p
->dst_addr
)));
3050 tcparray
= vnn
->tcp_array
;
3052 /* If this is the first tickle */
3053 if (tcparray
== NULL
) {
3054 tcparray
= talloc_size(ctdb
->nodes
,
3055 offsetof(struct ctdb_tcp_array
, connections
) +
3056 sizeof(struct ctdb_tcp_connection
) * 1);
3057 CTDB_NO_MEMORY(ctdb
, tcparray
);
3058 vnn
->tcp_array
= tcparray
;
3061 tcparray
->connections
= talloc_size(tcparray
, sizeof(struct ctdb_tcp_connection
));
3062 CTDB_NO_MEMORY(ctdb
, tcparray
->connections
);
3064 tcparray
->connections
[tcparray
->num
].src_addr
= p
->src_addr
;
3065 tcparray
->connections
[tcparray
->num
].dst_addr
= p
->dst_addr
;
3068 if (tcp_update_needed
) {
3069 vnn
->tcp_update_needed
= true;
3075 /* Do we already have this tickle ?*/
3076 tcp
.src_addr
= p
->src_addr
;
3077 tcp
.dst_addr
= p
->dst_addr
;
3078 if (ctdb_tcp_find(vnn
->tcp_array
, &tcp
) != NULL
) {
3079 DEBUG(DEBUG_DEBUG
,("Already had tickle info for %s:%u for vnn:%u\n",
3080 ctdb_addr_to_str(&tcp
.dst_addr
),
3081 ntohs(tcp
.dst_addr
.ip
.sin_port
),
3086 /* A new tickle, we must add it to the array */
3087 tcparray
->connections
= talloc_realloc(tcparray
, tcparray
->connections
,
3088 struct ctdb_tcp_connection
,
3090 CTDB_NO_MEMORY(ctdb
, tcparray
->connections
);
3092 vnn
->tcp_array
= tcparray
;
3093 tcparray
->connections
[tcparray
->num
].src_addr
= p
->src_addr
;
3094 tcparray
->connections
[tcparray
->num
].dst_addr
= p
->dst_addr
;
3097 DEBUG(DEBUG_INFO
,("Added tickle info for %s:%u from vnn %u\n",
3098 ctdb_addr_to_str(&tcp
.dst_addr
),
3099 ntohs(tcp
.dst_addr
.ip
.sin_port
),
3102 if (tcp_update_needed
) {
3103 vnn
->tcp_update_needed
= true;
3111 called by a daemon to inform us of a TCP connection that one of its
3112 clients managing that should tickled with an ACK when IP takeover is
3115 static void ctdb_remove_tcp_connection(struct ctdb_context
*ctdb
, struct ctdb_tcp_connection
*conn
)
3117 struct ctdb_tcp_connection
*tcpp
;
3118 struct ctdb_vnn
*vnn
= find_public_ip_vnn(ctdb
, &conn
->dst_addr
);
3121 DEBUG(DEBUG_ERR
,(__location__
" unable to find public address %s\n",
3122 ctdb_addr_to_str(&conn
->dst_addr
)));
3126 /* if the array is empty we cant remove it
3127 and we dont need to do anything
3129 if (vnn
->tcp_array
== NULL
) {
3130 DEBUG(DEBUG_INFO
,("Trying to remove tickle that doesnt exist (array is empty) %s:%u\n",
3131 ctdb_addr_to_str(&conn
->dst_addr
),
3132 ntohs(conn
->dst_addr
.ip
.sin_port
)));
3137 /* See if we know this connection
3138 if we dont know this connection then we dont need to do anything
3140 tcpp
= ctdb_tcp_find(vnn
->tcp_array
, conn
);
3142 DEBUG(DEBUG_INFO
,("Trying to remove tickle that doesnt exist %s:%u\n",
3143 ctdb_addr_to_str(&conn
->dst_addr
),
3144 ntohs(conn
->dst_addr
.ip
.sin_port
)));
3149 /* We need to remove this entry from the array.
3150 Instead of allocating a new array and copying data to it
3151 we cheat and just copy the last entry in the existing array
3152 to the entry that is to be removed and just shring the
3155 *tcpp
= vnn
->tcp_array
->connections
[vnn
->tcp_array
->num
- 1];
3156 vnn
->tcp_array
->num
--;
3158 /* If we deleted the last entry we also need to remove the entire array
3160 if (vnn
->tcp_array
->num
== 0) {
3161 talloc_free(vnn
->tcp_array
);
3162 vnn
->tcp_array
= NULL
;
3165 vnn
->tcp_update_needed
= true;
3167 DEBUG(DEBUG_INFO
,("Removed tickle info for %s:%u\n",
3168 ctdb_addr_to_str(&conn
->src_addr
),
3169 ntohs(conn
->src_addr
.ip
.sin_port
)));
3174 called by a daemon to inform us of a TCP connection that one of its
3175 clients used are no longer needed in the tickle database
3177 int32_t ctdb_control_tcp_remove(struct ctdb_context
*ctdb
, TDB_DATA indata
)
3179 struct ctdb_tcp_connection
*conn
= (struct ctdb_tcp_connection
*)indata
.dptr
;
3181 ctdb_remove_tcp_connection(ctdb
, conn
);
3188 called when a daemon restarts - send all tickes for all public addresses
3189 we are serving immediately to the new node.
3191 int32_t ctdb_control_startup(struct ctdb_context
*ctdb
, uint32_t vnn
)
3193 /*XXX here we should send all tickes we are serving to the new node */
3199 called when a client structure goes away - hook to remove
3200 elements from the tcp_list in all daemons
3202 void ctdb_takeover_client_destructor_hook(struct ctdb_client
*client
)
3204 while (client
->tcp_list
) {
3205 struct ctdb_tcp_list
*tcp
= client
->tcp_list
;
3206 DLIST_REMOVE(client
->tcp_list
, tcp
);
3207 ctdb_remove_tcp_connection(client
->ctdb
, &tcp
->connection
);
3213 release all IPs on shutdown
3215 void ctdb_release_all_ips(struct ctdb_context
*ctdb
)
3217 struct ctdb_vnn
*vnn
;
3220 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
3221 if (!ctdb_sys_have_ip(&vnn
->public_address
)) {
3222 ctdb_vnn_unassign_iface(ctdb
, vnn
);
3229 DEBUG(DEBUG_INFO
,("Release of IP %s/%u on interface %s node:-1\n",
3230 ctdb_addr_to_str(&vnn
->public_address
),
3231 vnn
->public_netmask_bits
,
3232 ctdb_vnn_iface_string(vnn
)));
3234 ctdb_event_script_args(ctdb
, CTDB_EVENT_RELEASE_IP
, "%s %s %u",
3235 ctdb_vnn_iface_string(vnn
),
3236 ctdb_addr_to_str(&vnn
->public_address
),
3237 vnn
->public_netmask_bits
);
3238 release_kill_clients(ctdb
, &vnn
->public_address
);
3239 ctdb_vnn_unassign_iface(ctdb
, vnn
);
3243 DEBUG(DEBUG_NOTICE
,(__location__
" Released %d public IPs\n", count
));
3248 get list of public IPs
3250 int32_t ctdb_control_get_public_ips(struct ctdb_context
*ctdb
,
3251 struct ctdb_req_control
*c
, TDB_DATA
*outdata
)
3254 struct ctdb_all_public_ips
*ips
;
3255 struct ctdb_vnn
*vnn
;
3256 bool only_available
= false;
3258 if (c
->flags
& CTDB_PUBLIC_IP_FLAGS_ONLY_AVAILABLE
) {
3259 only_available
= true;
3262 /* count how many public ip structures we have */
3264 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
3268 len
= offsetof(struct ctdb_all_public_ips
, ips
) +
3269 num
*sizeof(struct ctdb_public_ip
);
3270 ips
= talloc_zero_size(outdata
, len
);
3271 CTDB_NO_MEMORY(ctdb
, ips
);
3274 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
3275 if (only_available
&& !ctdb_vnn_available(ctdb
, vnn
)) {
3278 ips
->ips
[i
].pnn
= vnn
->pnn
;
3279 ips
->ips
[i
].addr
= vnn
->public_address
;
3283 len
= offsetof(struct ctdb_all_public_ips
, ips
) +
3284 i
*sizeof(struct ctdb_public_ip
);
3286 outdata
->dsize
= len
;
3287 outdata
->dptr
= (uint8_t *)ips
;
3294 get list of public IPs, old ipv4 style. only returns ipv4 addresses
3296 int32_t ctdb_control_get_public_ipsv4(struct ctdb_context
*ctdb
,
3297 struct ctdb_req_control
*c
, TDB_DATA
*outdata
)
3300 struct ctdb_all_public_ipsv4
*ips
;
3301 struct ctdb_vnn
*vnn
;
3303 /* count how many public ip structures we have */
3305 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
3306 if (vnn
->public_address
.sa
.sa_family
!= AF_INET
) {
3312 len
= offsetof(struct ctdb_all_public_ipsv4
, ips
) +
3313 num
*sizeof(struct ctdb_public_ipv4
);
3314 ips
= talloc_zero_size(outdata
, len
);
3315 CTDB_NO_MEMORY(ctdb
, ips
);
3317 outdata
->dsize
= len
;
3318 outdata
->dptr
= (uint8_t *)ips
;
3322 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
3323 if (vnn
->public_address
.sa
.sa_family
!= AF_INET
) {
3326 ips
->ips
[i
].pnn
= vnn
->pnn
;
3327 ips
->ips
[i
].sin
= vnn
->public_address
.ip
;
3334 int32_t ctdb_control_get_public_ip_info(struct ctdb_context
*ctdb
,
3335 struct ctdb_req_control
*c
,
3340 ctdb_sock_addr
*addr
;
3341 struct ctdb_control_public_ip_info
*info
;
3342 struct ctdb_vnn
*vnn
;
3344 addr
= (ctdb_sock_addr
*)indata
.dptr
;
3346 vnn
= find_public_ip_vnn(ctdb
, addr
);
3348 /* if it is not a public ip it could be our 'single ip' */
3349 if (ctdb
->single_ip_vnn
) {
3350 if (ctdb_same_ip(&ctdb
->single_ip_vnn
->public_address
, addr
)) {
3351 vnn
= ctdb
->single_ip_vnn
;
3356 DEBUG(DEBUG_ERR
,(__location__
" Could not get public ip info, "
3357 "'%s'not a public address\n",
3358 ctdb_addr_to_str(addr
)));
3362 /* count how many public ip structures we have */
3364 for (;vnn
->ifaces
[num
];) {
3368 len
= offsetof(struct ctdb_control_public_ip_info
, ifaces
) +
3369 num
*sizeof(struct ctdb_control_iface_info
);
3370 info
= talloc_zero_size(outdata
, len
);
3371 CTDB_NO_MEMORY(ctdb
, info
);
3373 info
->ip
.addr
= vnn
->public_address
;
3374 info
->ip
.pnn
= vnn
->pnn
;
3375 info
->active_idx
= 0xFFFFFFFF;
3377 for (i
=0; vnn
->ifaces
[i
]; i
++) {
3378 struct ctdb_iface
*cur
;
3380 cur
= ctdb_find_iface(ctdb
, vnn
->ifaces
[i
]);
3382 DEBUG(DEBUG_CRIT
, (__location__
" internal error iface[%s] unknown\n",
3386 if (vnn
->iface
== cur
) {
3387 info
->active_idx
= i
;
3389 strncpy(info
->ifaces
[i
].name
, cur
->name
, sizeof(info
->ifaces
[i
].name
)-1);
3390 info
->ifaces
[i
].link_state
= cur
->link_up
;
3391 info
->ifaces
[i
].references
= cur
->references
;
3394 len
= offsetof(struct ctdb_control_public_ip_info
, ifaces
) +
3395 i
*sizeof(struct ctdb_control_iface_info
);
3397 outdata
->dsize
= len
;
3398 outdata
->dptr
= (uint8_t *)info
;
3403 int32_t ctdb_control_get_ifaces(struct ctdb_context
*ctdb
,
3404 struct ctdb_req_control
*c
,
3408 struct ctdb_control_get_ifaces
*ifaces
;
3409 struct ctdb_iface
*cur
;
3411 /* count how many public ip structures we have */
3413 for (cur
=ctdb
->ifaces
;cur
;cur
=cur
->next
) {
3417 len
= offsetof(struct ctdb_control_get_ifaces
, ifaces
) +
3418 num
*sizeof(struct ctdb_control_iface_info
);
3419 ifaces
= talloc_zero_size(outdata
, len
);
3420 CTDB_NO_MEMORY(ctdb
, ifaces
);
3423 for (cur
=ctdb
->ifaces
;cur
;cur
=cur
->next
) {
3424 strcpy(ifaces
->ifaces
[i
].name
, cur
->name
);
3425 ifaces
->ifaces
[i
].link_state
= cur
->link_up
;
3426 ifaces
->ifaces
[i
].references
= cur
->references
;
3430 len
= offsetof(struct ctdb_control_get_ifaces
, ifaces
) +
3431 i
*sizeof(struct ctdb_control_iface_info
);
3433 outdata
->dsize
= len
;
3434 outdata
->dptr
= (uint8_t *)ifaces
;
3439 int32_t ctdb_control_set_iface_link(struct ctdb_context
*ctdb
,
3440 struct ctdb_req_control
*c
,
3443 struct ctdb_control_iface_info
*info
;
3444 struct ctdb_iface
*iface
;
3445 bool link_up
= false;
3447 info
= (struct ctdb_control_iface_info
*)indata
.dptr
;
3449 if (info
->name
[CTDB_IFACE_SIZE
] != '\0') {
3450 int len
= strnlen(info
->name
, CTDB_IFACE_SIZE
);
3451 DEBUG(DEBUG_ERR
, (__location__
" name[%*.*s] not terminated\n",
3452 len
, len
, info
->name
));
3456 switch (info
->link_state
) {
3464 DEBUG(DEBUG_ERR
, (__location__
" link_state[%u] invalid\n",
3465 (unsigned int)info
->link_state
));
3469 if (info
->references
!= 0) {
3470 DEBUG(DEBUG_ERR
, (__location__
" references[%u] should be 0\n",
3471 (unsigned int)info
->references
));
3475 iface
= ctdb_find_iface(ctdb
, info
->name
);
3476 if (iface
== NULL
) {
3480 if (link_up
== iface
->link_up
) {
3484 DEBUG(iface
->link_up
?DEBUG_ERR
:DEBUG_NOTICE
,
3485 ("iface[%s] has changed it's link status %s => %s\n",
3487 iface
->link_up
?"up":"down",
3488 link_up
?"up":"down"));
3490 iface
->link_up
= link_up
;
3496 structure containing the listening socket and the list of tcp connections
3497 that the ctdb daemon is to kill
3499 struct ctdb_kill_tcp
{
3500 struct ctdb_vnn
*vnn
;
3501 struct ctdb_context
*ctdb
;
3503 struct fd_event
*fde
;
3504 trbt_tree_t
*connections
;
3509 a tcp connection that is to be killed
3511 struct ctdb_killtcp_con
{
3512 ctdb_sock_addr src_addr
;
3513 ctdb_sock_addr dst_addr
;
3515 struct ctdb_kill_tcp
*killtcp
;
3518 /* this function is used to create a key to represent this socketpair
3519 in the killtcp tree.
3520 this key is used to insert and lookup matching socketpairs that are
3521 to be tickled and RST
3523 #define KILLTCP_KEYLEN 10
3524 static uint32_t *killtcp_key(ctdb_sock_addr
*src
, ctdb_sock_addr
*dst
)
3526 static uint32_t key
[KILLTCP_KEYLEN
];
3528 bzero(key
, sizeof(key
));
3530 if (src
->sa
.sa_family
!= dst
->sa
.sa_family
) {
3531 DEBUG(DEBUG_ERR
, (__location__
" ERROR, different families passed :%u vs %u\n", src
->sa
.sa_family
, dst
->sa
.sa_family
));
3535 switch (src
->sa
.sa_family
) {
3537 key
[0] = dst
->ip
.sin_addr
.s_addr
;
3538 key
[1] = src
->ip
.sin_addr
.s_addr
;
3539 key
[2] = dst
->ip
.sin_port
;
3540 key
[3] = src
->ip
.sin_port
;
3543 uint32_t *dst6_addr32
=
3544 (uint32_t *)&(dst
->ip6
.sin6_addr
.s6_addr
);
3545 uint32_t *src6_addr32
=
3546 (uint32_t *)&(src
->ip6
.sin6_addr
.s6_addr
);
3547 key
[0] = dst6_addr32
[3];
3548 key
[1] = src6_addr32
[3];
3549 key
[2] = dst6_addr32
[2];
3550 key
[3] = src6_addr32
[2];
3551 key
[4] = dst6_addr32
[1];
3552 key
[5] = src6_addr32
[1];
3553 key
[6] = dst6_addr32
[0];
3554 key
[7] = src6_addr32
[0];
3555 key
[8] = dst
->ip6
.sin6_port
;
3556 key
[9] = src
->ip6
.sin6_port
;
3560 DEBUG(DEBUG_ERR
, (__location__
" ERROR, unknown family passed :%u\n", src
->sa
.sa_family
));
3568 called when we get a read event on the raw socket
3570 static void capture_tcp_handler(struct event_context
*ev
, struct fd_event
*fde
,
3571 uint16_t flags
, void *private_data
)
3573 struct ctdb_kill_tcp
*killtcp
= talloc_get_type(private_data
, struct ctdb_kill_tcp
);
3574 struct ctdb_killtcp_con
*con
;
3575 ctdb_sock_addr src
, dst
;
3576 uint32_t ack_seq
, seq
;
3578 if (!(flags
& EVENT_FD_READ
)) {
3582 if (ctdb_sys_read_tcp_packet(killtcp
->capture_fd
,
3583 killtcp
->private_data
,
3585 &ack_seq
, &seq
) != 0) {
3586 /* probably a non-tcp ACK packet */
3590 /* check if we have this guy in our list of connections
3593 con
= trbt_lookuparray32(killtcp
->connections
,
3594 KILLTCP_KEYLEN
, killtcp_key(&src
, &dst
));
3596 /* no this was some other packet we can just ignore */
3600 /* This one has been tickled !
3601 now reset him and remove him from the list.
3603 DEBUG(DEBUG_INFO
, ("sending a tcp reset to kill connection :%d -> %s:%d\n",
3604 ntohs(con
->dst_addr
.ip
.sin_port
),
3605 ctdb_addr_to_str(&con
->src_addr
),
3606 ntohs(con
->src_addr
.ip
.sin_port
)));
3608 ctdb_sys_send_tcp(&con
->dst_addr
, &con
->src_addr
, ack_seq
, seq
, 1);
3613 /* when traversing the list of all tcp connections to send tickle acks to
3614 (so that we can capture the ack coming back and kill the connection
3616 this callback is called for each connection we are currently trying to kill
3618 static int tickle_connection_traverse(void *param
, void *data
)
3620 struct ctdb_killtcp_con
*con
= talloc_get_type(data
, struct ctdb_killtcp_con
);
3622 /* have tried too many times, just give up */
3623 if (con
->count
>= 5) {
3624 /* can't delete in traverse: reparent to delete_cons */
3625 talloc_steal(param
, con
);
3629 /* othervise, try tickling it again */
3632 (ctdb_sock_addr
*)&con
->dst_addr
,
3633 (ctdb_sock_addr
*)&con
->src_addr
,
3640 called every second until all sentenced connections have been reset
3642 static void ctdb_tickle_sentenced_connections(struct event_context
*ev
, struct timed_event
*te
,
3643 struct timeval t
, void *private_data
)
3645 struct ctdb_kill_tcp
*killtcp
= talloc_get_type(private_data
, struct ctdb_kill_tcp
);
3646 void *delete_cons
= talloc_new(NULL
);
3648 /* loop over all connections sending tickle ACKs */
3649 trbt_traversearray32(killtcp
->connections
, KILLTCP_KEYLEN
, tickle_connection_traverse
, delete_cons
);
3651 /* now we've finished traverse, it's safe to do deletion. */
3652 talloc_free(delete_cons
);
3654 /* If there are no more connections to kill we can remove the
3655 entire killtcp structure
3657 if ( (killtcp
->connections
== NULL
) ||
3658 (killtcp
->connections
->root
== NULL
) ) {
3659 talloc_free(killtcp
);
3663 /* try tickling them again in a seconds time
3665 event_add_timed(killtcp
->ctdb
->ev
, killtcp
, timeval_current_ofs(1, 0),
3666 ctdb_tickle_sentenced_connections
, killtcp
);
3670 destroy the killtcp structure
3672 static int ctdb_killtcp_destructor(struct ctdb_kill_tcp
*killtcp
)
3674 struct ctdb_vnn
*tmpvnn
;
3676 /* verify that this vnn is still active */
3677 for (tmpvnn
= killtcp
->ctdb
->vnn
; tmpvnn
; tmpvnn
= tmpvnn
->next
) {
3678 if (tmpvnn
== killtcp
->vnn
) {
3683 if (tmpvnn
== NULL
) {
3687 if (killtcp
->vnn
->killtcp
!= killtcp
) {
3691 killtcp
->vnn
->killtcp
= NULL
;
3697 /* nothing fancy here, just unconditionally replace any existing
3698 connection structure with the new one.
3700 dont even free the old one if it did exist, that one is talloc_stolen
3701 by the same node in the tree anyway and will be deleted when the new data
3704 static void *add_killtcp_callback(void *parm
, void *data
)
3710 add a tcp socket to the list of connections we want to RST
3712 static int ctdb_killtcp_add_connection(struct ctdb_context
*ctdb
,
3716 ctdb_sock_addr src
, dst
;
3717 struct ctdb_kill_tcp
*killtcp
;
3718 struct ctdb_killtcp_con
*con
;
3719 struct ctdb_vnn
*vnn
;
3721 ctdb_canonicalize_ip(s
, &src
);
3722 ctdb_canonicalize_ip(d
, &dst
);
3724 vnn
= find_public_ip_vnn(ctdb
, &dst
);
3726 vnn
= find_public_ip_vnn(ctdb
, &src
);
3729 /* if it is not a public ip it could be our 'single ip' */
3730 if (ctdb
->single_ip_vnn
) {
3731 if (ctdb_same_ip(&ctdb
->single_ip_vnn
->public_address
, &dst
)) {
3732 vnn
= ctdb
->single_ip_vnn
;
3737 DEBUG(DEBUG_ERR
,(__location__
" Could not killtcp, not a public address\n"));
3741 killtcp
= vnn
->killtcp
;
3743 /* If this is the first connection to kill we must allocate
3746 if (killtcp
== NULL
) {
3747 killtcp
= talloc_zero(vnn
, struct ctdb_kill_tcp
);
3748 CTDB_NO_MEMORY(ctdb
, killtcp
);
3751 killtcp
->ctdb
= ctdb
;
3752 killtcp
->capture_fd
= -1;
3753 killtcp
->connections
= trbt_create(killtcp
, 0);
3755 vnn
->killtcp
= killtcp
;
3756 talloc_set_destructor(killtcp
, ctdb_killtcp_destructor
);
3761 /* create a structure that describes this connection we want to
3762 RST and store it in killtcp->connections
3764 con
= talloc(killtcp
, struct ctdb_killtcp_con
);
3765 CTDB_NO_MEMORY(ctdb
, con
);
3766 con
->src_addr
= src
;
3767 con
->dst_addr
= dst
;
3769 con
->killtcp
= killtcp
;
3772 trbt_insertarray32_callback(killtcp
->connections
,
3773 KILLTCP_KEYLEN
, killtcp_key(&con
->dst_addr
, &con
->src_addr
),
3774 add_killtcp_callback
, con
);
3777 If we dont have a socket to listen on yet we must create it
3779 if (killtcp
->capture_fd
== -1) {
3780 const char *iface
= ctdb_vnn_iface_string(vnn
);
3781 killtcp
->capture_fd
= ctdb_sys_open_capture_socket(iface
, &killtcp
->private_data
);
3782 if (killtcp
->capture_fd
== -1) {
3783 DEBUG(DEBUG_CRIT
,(__location__
" Failed to open capturing "
3784 "socket on iface '%s' for killtcp (%s)\n",
3785 iface
, strerror(errno
)));
3791 if (killtcp
->fde
== NULL
) {
3792 killtcp
->fde
= event_add_fd(ctdb
->ev
, killtcp
, killtcp
->capture_fd
,
3794 capture_tcp_handler
, killtcp
);
3795 tevent_fd_set_auto_close(killtcp
->fde
);
3797 /* We also need to set up some events to tickle all these connections
3798 until they are all reset
3800 event_add_timed(ctdb
->ev
, killtcp
, timeval_current_ofs(1, 0),
3801 ctdb_tickle_sentenced_connections
, killtcp
);
3804 /* tickle him once now */
3813 talloc_free(vnn
->killtcp
);
3814 vnn
->killtcp
= NULL
;
3819 kill a TCP connection.
3821 int32_t ctdb_control_kill_tcp(struct ctdb_context
*ctdb
, TDB_DATA indata
)
3823 struct ctdb_control_killtcp
*killtcp
= (struct ctdb_control_killtcp
*)indata
.dptr
;
3825 return ctdb_killtcp_add_connection(ctdb
, &killtcp
->src_addr
, &killtcp
->dst_addr
);
3829 called by a daemon to inform us of the entire list of TCP tickles for
3830 a particular public address.
3831 this control should only be sent by the node that is currently serving
3832 that public address.
3834 int32_t ctdb_control_set_tcp_tickle_list(struct ctdb_context
*ctdb
, TDB_DATA indata
)
3836 struct ctdb_control_tcp_tickle_list
*list
= (struct ctdb_control_tcp_tickle_list
*)indata
.dptr
;
3837 struct ctdb_tcp_array
*tcparray
;
3838 struct ctdb_vnn
*vnn
;
3840 /* We must at least have tickles.num or else we cant verify the size
3841 of the received data blob
3843 if (indata
.dsize
< offsetof(struct ctdb_control_tcp_tickle_list
,
3844 tickles
.connections
)) {
3845 DEBUG(DEBUG_ERR
,("Bad indata in ctdb_control_set_tcp_tickle_list. Not enough data for the tickle.num field\n"));
3849 /* verify that the size of data matches what we expect */
3850 if (indata
.dsize
< offsetof(struct ctdb_control_tcp_tickle_list
,
3851 tickles
.connections
)
3852 + sizeof(struct ctdb_tcp_connection
)
3853 * list
->tickles
.num
) {
3854 DEBUG(DEBUG_ERR
,("Bad indata in ctdb_control_set_tcp_tickle_list\n"));
3858 vnn
= find_public_ip_vnn(ctdb
, &list
->addr
);
3860 DEBUG(DEBUG_INFO
,(__location__
" Could not set tcp tickle list, '%s' is not a public address\n",
3861 ctdb_addr_to_str(&list
->addr
)));
3866 /* remove any old ticklelist we might have */
3867 talloc_free(vnn
->tcp_array
);
3868 vnn
->tcp_array
= NULL
;
3870 tcparray
= talloc(ctdb
->nodes
, struct ctdb_tcp_array
);
3871 CTDB_NO_MEMORY(ctdb
, tcparray
);
3873 tcparray
->num
= list
->tickles
.num
;
3875 tcparray
->connections
= talloc_array(tcparray
, struct ctdb_tcp_connection
, tcparray
->num
);
3876 CTDB_NO_MEMORY(ctdb
, tcparray
->connections
);
3878 memcpy(tcparray
->connections
, &list
->tickles
.connections
[0],
3879 sizeof(struct ctdb_tcp_connection
)*tcparray
->num
);
3881 /* We now have a new fresh tickle list array for this vnn */
3882 vnn
->tcp_array
= talloc_steal(vnn
, tcparray
);
3888 called to return the full list of tickles for the puclic address associated
3889 with the provided vnn
3891 int32_t ctdb_control_get_tcp_tickle_list(struct ctdb_context
*ctdb
, TDB_DATA indata
, TDB_DATA
*outdata
)
3893 ctdb_sock_addr
*addr
= (ctdb_sock_addr
*)indata
.dptr
;
3894 struct ctdb_control_tcp_tickle_list
*list
;
3895 struct ctdb_tcp_array
*tcparray
;
3897 struct ctdb_vnn
*vnn
;
3899 vnn
= find_public_ip_vnn(ctdb
, addr
);
3901 DEBUG(DEBUG_ERR
,(__location__
" Could not get tcp tickle list, '%s' is not a public address\n",
3902 ctdb_addr_to_str(addr
)));
3907 tcparray
= vnn
->tcp_array
;
3909 num
= tcparray
->num
;
3914 outdata
->dsize
= offsetof(struct ctdb_control_tcp_tickle_list
,
3915 tickles
.connections
)
3916 + sizeof(struct ctdb_tcp_connection
) * num
;
3918 outdata
->dptr
= talloc_size(outdata
, outdata
->dsize
);
3919 CTDB_NO_MEMORY(ctdb
, outdata
->dptr
);
3920 list
= (struct ctdb_control_tcp_tickle_list
*)outdata
->dptr
;
3923 list
->tickles
.num
= num
;
3925 memcpy(&list
->tickles
.connections
[0], tcparray
->connections
,
3926 sizeof(struct ctdb_tcp_connection
) * num
);
3934 set the list of all tcp tickles for a public address
3936 static int ctdb_ctrl_set_tcp_tickles(struct ctdb_context
*ctdb
,
3937 struct timeval timeout
, uint32_t destnode
,
3938 ctdb_sock_addr
*addr
,
3939 struct ctdb_tcp_array
*tcparray
)
3943 struct ctdb_control_tcp_tickle_list
*list
;
3946 num
= tcparray
->num
;
3951 data
.dsize
= offsetof(struct ctdb_control_tcp_tickle_list
,
3952 tickles
.connections
) +
3953 sizeof(struct ctdb_tcp_connection
) * num
;
3954 data
.dptr
= talloc_size(ctdb
, data
.dsize
);
3955 CTDB_NO_MEMORY(ctdb
, data
.dptr
);
3957 list
= (struct ctdb_control_tcp_tickle_list
*)data
.dptr
;
3959 list
->tickles
.num
= num
;
3961 memcpy(&list
->tickles
.connections
[0], tcparray
->connections
, sizeof(struct ctdb_tcp_connection
) * num
);
3964 ret
= ctdb_daemon_send_control(ctdb
, CTDB_BROADCAST_CONNECTED
, 0,
3965 CTDB_CONTROL_SET_TCP_TICKLE_LIST
,
3966 0, CTDB_CTRL_FLAG_NOREPLY
, data
, NULL
, NULL
);
3968 DEBUG(DEBUG_ERR
,(__location__
" ctdb_control for set tcp tickles failed\n"));
3972 talloc_free(data
.dptr
);
3979 perform tickle updates if required
3981 static void ctdb_update_tcp_tickles(struct event_context
*ev
,
3982 struct timed_event
*te
,
3983 struct timeval t
, void *private_data
)
3985 struct ctdb_context
*ctdb
= talloc_get_type(private_data
, struct ctdb_context
);
3987 struct ctdb_vnn
*vnn
;
3989 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
3990 /* we only send out updates for public addresses that
3993 if (ctdb
->pnn
!= vnn
->pnn
) {
3996 /* We only send out the updates if we need to */
3997 if (!vnn
->tcp_update_needed
) {
4000 ret
= ctdb_ctrl_set_tcp_tickles(ctdb
,
4002 CTDB_BROADCAST_CONNECTED
,
4003 &vnn
->public_address
,
4006 DEBUG(DEBUG_ERR
,("Failed to send the tickle update for public address %s\n",
4007 ctdb_addr_to_str(&vnn
->public_address
)));
4011 event_add_timed(ctdb
->ev
, ctdb
->tickle_update_context
,
4012 timeval_current_ofs(ctdb
->tunable
.tickle_update_interval
, 0),
4013 ctdb_update_tcp_tickles
, ctdb
);
4018 start periodic update of tcp tickles
4020 void ctdb_start_tcp_tickle_update(struct ctdb_context
*ctdb
)
4022 ctdb
->tickle_update_context
= talloc_new(ctdb
);
4024 event_add_timed(ctdb
->ev
, ctdb
->tickle_update_context
,
4025 timeval_current_ofs(ctdb
->tunable
.tickle_update_interval
, 0),
4026 ctdb_update_tcp_tickles
, ctdb
);
4032 struct control_gratious_arp
{
4033 struct ctdb_context
*ctdb
;
4034 ctdb_sock_addr addr
;
4040 send a control_gratuitous arp
4042 static void send_gratious_arp(struct event_context
*ev
, struct timed_event
*te
,
4043 struct timeval t
, void *private_data
)
4046 struct control_gratious_arp
*arp
= talloc_get_type(private_data
,
4047 struct control_gratious_arp
);
4049 ret
= ctdb_sys_send_arp(&arp
->addr
, arp
->iface
);
4051 DEBUG(DEBUG_ERR
,(__location__
" sending of gratious arp on iface '%s' failed (%s)\n",
4052 arp
->iface
, strerror(errno
)));
4057 if (arp
->count
== CTDB_ARP_REPEAT
) {
4062 event_add_timed(arp
->ctdb
->ev
, arp
,
4063 timeval_current_ofs(CTDB_ARP_INTERVAL
, 0),
4064 send_gratious_arp
, arp
);
4071 int32_t ctdb_control_send_gratious_arp(struct ctdb_context
*ctdb
, TDB_DATA indata
)
4073 struct ctdb_control_gratious_arp
*gratious_arp
= (struct ctdb_control_gratious_arp
*)indata
.dptr
;
4074 struct control_gratious_arp
*arp
;
4076 /* verify the size of indata */
4077 if (indata
.dsize
< offsetof(struct ctdb_control_gratious_arp
, iface
)) {
4078 DEBUG(DEBUG_ERR
,(__location__
" Too small indata to hold a ctdb_control_gratious_arp structure. Got %u require %u bytes\n",
4079 (unsigned)indata
.dsize
,
4080 (unsigned)offsetof(struct ctdb_control_gratious_arp
, iface
)));
4084 ( offsetof(struct ctdb_control_gratious_arp
, iface
)
4085 + gratious_arp
->len
) ){
4087 DEBUG(DEBUG_ERR
,(__location__
" Wrong size of indata. Was %u bytes "
4088 "but should be %u bytes\n",
4089 (unsigned)indata
.dsize
,
4090 (unsigned)(offsetof(struct ctdb_control_gratious_arp
, iface
)+gratious_arp
->len
)));
4095 arp
= talloc(ctdb
, struct control_gratious_arp
);
4096 CTDB_NO_MEMORY(ctdb
, arp
);
4099 arp
->addr
= gratious_arp
->addr
;
4100 arp
->iface
= talloc_strdup(arp
, gratious_arp
->iface
);
4101 CTDB_NO_MEMORY(ctdb
, arp
->iface
);
4104 event_add_timed(arp
->ctdb
->ev
, arp
,
4105 timeval_zero(), send_gratious_arp
, arp
);
4110 int32_t ctdb_control_add_public_address(struct ctdb_context
*ctdb
, TDB_DATA indata
)
4112 struct ctdb_control_ip_iface
*pub
= (struct ctdb_control_ip_iface
*)indata
.dptr
;
4115 /* verify the size of indata */
4116 if (indata
.dsize
< offsetof(struct ctdb_control_ip_iface
, iface
)) {
4117 DEBUG(DEBUG_ERR
,(__location__
" Too small indata to hold a ctdb_control_ip_iface structure\n"));
4121 ( offsetof(struct ctdb_control_ip_iface
, iface
)
4124 DEBUG(DEBUG_ERR
,(__location__
" Wrong size of indata. Was %u bytes "
4125 "but should be %u bytes\n",
4126 (unsigned)indata
.dsize
,
4127 (unsigned)(offsetof(struct ctdb_control_ip_iface
, iface
)+pub
->len
)));
4131 DEBUG(DEBUG_NOTICE
,("Add IP %s\n", ctdb_addr_to_str(&pub
->addr
)));
4133 ret
= ctdb_add_public_address(ctdb
, &pub
->addr
, pub
->mask
, &pub
->iface
[0], true);
4136 DEBUG(DEBUG_ERR
,(__location__
" Failed to add public address\n"));
4144 called when releaseip event finishes for del_public_address
4146 static void delete_ip_callback(struct ctdb_context
*ctdb
, int status
,
4149 talloc_free(private_data
);
4152 int32_t ctdb_control_del_public_address(struct ctdb_context
*ctdb
, TDB_DATA indata
)
4154 struct ctdb_control_ip_iface
*pub
= (struct ctdb_control_ip_iface
*)indata
.dptr
;
4155 struct ctdb_vnn
*vnn
;
4158 /* verify the size of indata */
4159 if (indata
.dsize
< offsetof(struct ctdb_control_ip_iface
, iface
)) {
4160 DEBUG(DEBUG_ERR
,(__location__
" Too small indata to hold a ctdb_control_ip_iface structure\n"));
4164 ( offsetof(struct ctdb_control_ip_iface
, iface
)
4167 DEBUG(DEBUG_ERR
,(__location__
" Wrong size of indata. Was %u bytes "
4168 "but should be %u bytes\n",
4169 (unsigned)indata
.dsize
,
4170 (unsigned)(offsetof(struct ctdb_control_ip_iface
, iface
)+pub
->len
)));
4174 DEBUG(DEBUG_NOTICE
,("Delete IP %s\n", ctdb_addr_to_str(&pub
->addr
)));
4176 /* walk over all public addresses until we find a match */
4177 for (vnn
=ctdb
->vnn
;vnn
;vnn
=vnn
->next
) {
4178 if (ctdb_same_ip(&vnn
->public_address
, &pub
->addr
)) {
4179 TALLOC_CTX
*mem_ctx
= talloc_new(ctdb
);
4181 DLIST_REMOVE(ctdb
->vnn
, vnn
);
4182 talloc_steal(mem_ctx
, vnn
);
4183 ctdb_remove_orphaned_ifaces(ctdb
, vnn
, mem_ctx
);
4184 if (vnn
->pnn
!= ctdb
->pnn
) {
4185 if (vnn
->iface
!= NULL
) {
4186 ctdb_vnn_unassign_iface(ctdb
, vnn
);
4188 talloc_free(mem_ctx
);
4193 ret
= ctdb_event_script_callback(ctdb
,
4194 mem_ctx
, delete_ip_callback
, mem_ctx
,
4195 CTDB_EVENT_RELEASE_IP
,
4197 ctdb_vnn_iface_string(vnn
),
4198 ctdb_addr_to_str(&vnn
->public_address
),
4199 vnn
->public_netmask_bits
);
4200 if (vnn
->iface
!= NULL
) {
4201 ctdb_vnn_unassign_iface(ctdb
, vnn
);
4214 struct ipreallocated_callback_state
{
4215 struct ctdb_req_control
*c
;
4218 static void ctdb_ipreallocated_callback(struct ctdb_context
*ctdb
,
4219 int status
, void *p
)
4221 struct ipreallocated_callback_state
*state
=
4222 talloc_get_type(p
, struct ipreallocated_callback_state
);
4226 (" \"ipreallocated\" event script failed (status %d)\n",
4228 if (status
== -ETIME
) {
4229 ctdb_ban_self(ctdb
);
4233 ctdb_request_control_reply(ctdb
, state
->c
, NULL
, status
, NULL
);
4237 /* A control to run the ipreallocated event */
4238 int32_t ctdb_control_ipreallocated(struct ctdb_context
*ctdb
,
4239 struct ctdb_req_control
*c
,
4243 struct ipreallocated_callback_state
*state
;
4245 state
= talloc(ctdb
, struct ipreallocated_callback_state
);
4246 CTDB_NO_MEMORY(ctdb
, state
);
4248 DEBUG(DEBUG_INFO
,(__location__
" Running \"ipreallocated\" event\n"));
4250 ret
= ctdb_event_script_callback(ctdb
, state
,
4251 ctdb_ipreallocated_callback
, state
,
4252 CTDB_EVENT_IPREALLOCATED
,
4256 DEBUG(DEBUG_ERR
,("Failed to run \"ipreallocated\" event \n"));
4261 /* tell the control that we will be reply asynchronously */
4262 state
->c
= talloc_steal(state
, c
);
4263 *async_reply
= true;
4269 /* This function is called from the recovery daemon to verify that a remote
4270 node has the expected ip allocation.
4271 This is verified against ctdb->ip_tree
4273 int verify_remote_ip_allocation(struct ctdb_context
*ctdb
,
4274 struct ctdb_all_public_ips
*ips
,
4277 struct ctdb_public_ip_list
*tmp_ip
;
4280 if (ctdb
->ip_tree
== NULL
) {
4281 /* dont know the expected allocation yet, assume remote node
4290 for (i
=0; i
<ips
->num
; i
++) {
4291 tmp_ip
= trbt_lookuparray32(ctdb
->ip_tree
, IP_KEYLEN
, ip_key(&ips
->ips
[i
].addr
));
4292 if (tmp_ip
== NULL
) {
4293 DEBUG(DEBUG_ERR
,("Node %u has new or unknown public IP %s\n", pnn
, ctdb_addr_to_str(&ips
->ips
[i
].addr
)));
4297 if (tmp_ip
->pnn
== -1 || ips
->ips
[i
].pnn
== -1) {
4301 if (tmp_ip
->pnn
!= ips
->ips
[i
].pnn
) {
4303 ("Inconsistent IP allocation - node %u thinks %s is held by node %u while it is assigned to node %u\n",
4305 ctdb_addr_to_str(&ips
->ips
[i
].addr
),
4306 ips
->ips
[i
].pnn
, tmp_ip
->pnn
));
4314 int update_ip_assignment_tree(struct ctdb_context
*ctdb
, struct ctdb_public_ip
*ip
)
4316 struct ctdb_public_ip_list
*tmp_ip
;
4318 if (ctdb
->ip_tree
== NULL
) {
4319 DEBUG(DEBUG_ERR
,("No ctdb->ip_tree yet. Failed to update ip assignment\n"));
4323 tmp_ip
= trbt_lookuparray32(ctdb
->ip_tree
, IP_KEYLEN
, ip_key(&ip
->addr
));
4324 if (tmp_ip
== NULL
) {
4325 DEBUG(DEBUG_ERR
,(__location__
" Could not find record for address %s, update ip\n", ctdb_addr_to_str(&ip
->addr
)));
4329 DEBUG(DEBUG_NOTICE
,("Updated ip assignment tree for ip : %s from node %u to node %u\n", ctdb_addr_to_str(&ip
->addr
), tmp_ip
->pnn
, ip
->pnn
));
4330 tmp_ip
->pnn
= ip
->pnn
;
4336 struct ctdb_reloadips_handle
{
4337 struct ctdb_context
*ctdb
;
4338 struct ctdb_req_control
*c
;
4342 struct fd_event
*fde
;
4345 static int ctdb_reloadips_destructor(struct ctdb_reloadips_handle
*h
)
4347 if (h
== h
->ctdb
->reload_ips
) {
4348 h
->ctdb
->reload_ips
= NULL
;
4351 ctdb_request_control_reply(h
->ctdb
, h
->c
, NULL
, h
->status
, NULL
);
4354 ctdb_kill(h
->ctdb
, h
->child
, SIGKILL
);
4358 static void ctdb_reloadips_timeout_event(struct event_context
*ev
,
4359 struct timed_event
*te
,
4360 struct timeval t
, void *private_data
)
4362 struct ctdb_reloadips_handle
*h
= talloc_get_type(private_data
, struct ctdb_reloadips_handle
);
4367 static void ctdb_reloadips_child_handler(struct event_context
*ev
, struct fd_event
*fde
,
4368 uint16_t flags
, void *private_data
)
4370 struct ctdb_reloadips_handle
*h
= talloc_get_type(private_data
, struct ctdb_reloadips_handle
);
4375 ret
= read(h
->fd
[0], &res
, 1);
4376 if (ret
< 1 || res
!= 0) {
4377 DEBUG(DEBUG_ERR
, (__location__
" Reloadips child process returned error\n"));
4385 static int ctdb_reloadips_child(struct ctdb_context
*ctdb
)
4387 TALLOC_CTX
*mem_ctx
= talloc_new(NULL
);
4388 struct ctdb_all_public_ips
*ips
;
4389 struct ctdb_vnn
*vnn
;
4390 struct client_async_data
*async_data
;
4391 struct timeval timeout
;
4393 struct ctdb_client_control_state
*state
;
4397 CTDB_NO_MEMORY(ctdb
, mem_ctx
);
4399 /* Read IPs from local node */
4400 ret
= ctdb_ctrl_get_public_ips(ctdb
, TAKEOVER_TIMEOUT(),
4401 CTDB_CURRENT_NODE
, mem_ctx
, &ips
);
4404 ("Unable to fetch public IPs from local node\n"));
4405 talloc_free(mem_ctx
);
4409 /* Read IPs file - this is safe since this is a child process */
4411 if (ctdb_set_public_addresses(ctdb
, false) != 0) {
4412 DEBUG(DEBUG_ERR
,("Failed to re-read public addresses file\n"));
4413 talloc_free(mem_ctx
);
4417 async_data
= talloc_zero(mem_ctx
, struct client_async_data
);
4418 CTDB_NO_MEMORY(ctdb
, async_data
);
4420 /* Compare IPs between node and file for IPs to be deleted */
4421 for (i
= 0; i
< ips
->num
; i
++) {
4423 for (vnn
= ctdb
->vnn
; vnn
; vnn
= vnn
->next
) {
4424 if (ctdb_same_ip(&vnn
->public_address
,
4425 &ips
->ips
[i
].addr
)) {
4426 /* IP is still in file */
4432 /* Delete IP ips->ips[i] */
4433 struct ctdb_control_ip_iface
*pub
;
4436 ("IP %s no longer configured, deleting it\n",
4437 ctdb_addr_to_str(&ips
->ips
[i
].addr
)));
4439 pub
= talloc_zero(mem_ctx
,
4440 struct ctdb_control_ip_iface
);
4441 CTDB_NO_MEMORY(ctdb
, pub
);
4443 pub
->addr
= ips
->ips
[i
].addr
;
4447 timeout
= TAKEOVER_TIMEOUT();
4449 data
.dsize
= offsetof(struct ctdb_control_ip_iface
,
4451 data
.dptr
= (uint8_t *)pub
;
4453 state
= ctdb_control_send(ctdb
, CTDB_CURRENT_NODE
, 0,
4454 CTDB_CONTROL_DEL_PUBLIC_IP
,
4455 0, data
, async_data
,
4457 if (state
== NULL
) {
4460 " failed sending CTDB_CONTROL_DEL_PUBLIC_IP\n"));
4464 ctdb_client_async_add(async_data
, state
);
4468 /* Compare IPs between node and file for IPs to be added */
4470 for (vnn
= ctdb
->vnn
; vnn
; vnn
= vnn
->next
) {
4471 for (i
= 0; i
< ips
->num
; i
++) {
4472 if (ctdb_same_ip(&vnn
->public_address
,
4473 &ips
->ips
[i
].addr
)) {
4474 /* IP already on node */
4478 if (i
== ips
->num
) {
4479 /* Add IP ips->ips[i] */
4480 struct ctdb_control_ip_iface
*pub
;
4481 const char *ifaces
= NULL
;
4486 ("New IP %s configured, adding it\n",
4487 ctdb_addr_to_str(&vnn
->public_address
)));
4489 uint32_t pnn
= ctdb_get_pnn(ctdb
);
4491 data
.dsize
= sizeof(pnn
);
4492 data
.dptr
= (uint8_t *)&pnn
;
4494 ret
= ctdb_client_send_message(
4496 CTDB_BROADCAST_CONNECTED
,
4497 CTDB_SRVID_REBALANCE_NODE
,
4500 DEBUG(DEBUG_WARNING
,
4501 ("Failed to send message to force node reallocation - IPs may be unbalanced\n"));
4507 ifaces
= vnn
->ifaces
[0];
4509 while (vnn
->ifaces
[iface
] != NULL
) {
4510 ifaces
= talloc_asprintf(vnn
, "%s,%s", ifaces
,
4511 vnn
->ifaces
[iface
]);
4515 len
= strlen(ifaces
) + 1;
4516 pub
= talloc_zero_size(mem_ctx
,
4517 offsetof(struct ctdb_control_ip_iface
, iface
) + len
);
4518 CTDB_NO_MEMORY(ctdb
, pub
);
4520 pub
->addr
= vnn
->public_address
;
4521 pub
->mask
= vnn
->public_netmask_bits
;
4523 memcpy(&pub
->iface
[0], ifaces
, pub
->len
);
4525 timeout
= TAKEOVER_TIMEOUT();
4527 data
.dsize
= offsetof(struct ctdb_control_ip_iface
,
4529 data
.dptr
= (uint8_t *)pub
;
4531 state
= ctdb_control_send(ctdb
, CTDB_CURRENT_NODE
, 0,
4532 CTDB_CONTROL_ADD_PUBLIC_IP
,
4533 0, data
, async_data
,
4535 if (state
== NULL
) {
4538 " failed sending CTDB_CONTROL_ADD_PUBLIC_IP\n"));
4542 ctdb_client_async_add(async_data
, state
);
4546 if (ctdb_client_async_wait(ctdb
, async_data
) != 0) {
4547 DEBUG(DEBUG_ERR
,(__location__
" Add/delete IPs failed\n"));
4551 talloc_free(mem_ctx
);
4555 talloc_free(mem_ctx
);
4559 /* This control is sent to force the node to re-read the public addresses file
4560 and drop any addresses we should nnot longer host, and add new addresses
4561 that we are now able to host
4563 int32_t ctdb_control_reload_public_ips(struct ctdb_context
*ctdb
, struct ctdb_req_control
*c
, bool *async_reply
)
4565 struct ctdb_reloadips_handle
*h
;
4566 pid_t parent
= getpid();
4568 if (ctdb
->reload_ips
!= NULL
) {
4569 talloc_free(ctdb
->reload_ips
);
4570 ctdb
->reload_ips
= NULL
;
4573 h
= talloc(ctdb
, struct ctdb_reloadips_handle
);
4574 CTDB_NO_MEMORY(ctdb
, h
);
4579 if (pipe(h
->fd
) == -1) {
4580 DEBUG(DEBUG_ERR
,("Failed to create pipe for ctdb_freeze_lock\n"));
4585 h
->child
= ctdb_fork(ctdb
);
4586 if (h
->child
== (pid_t
)-1) {
4587 DEBUG(DEBUG_ERR
, ("Failed to fork a child for reloadips\n"));
4595 if (h
->child
== 0) {
4596 signed char res
= 0;
4599 debug_extra
= talloc_asprintf(NULL
, "reloadips:");
4601 ctdb_set_process_name("ctdb_reloadips");
4602 if (switch_from_server_to_client(ctdb
, "reloadips-child") != 0) {
4603 DEBUG(DEBUG_CRIT
,("ERROR: Failed to switch reloadips child into client mode\n"));
4606 res
= ctdb_reloadips_child(ctdb
);
4608 DEBUG(DEBUG_ERR
,("Failed to reload ips on local node\n"));
4612 write(h
->fd
[1], &res
, 1);
4613 /* make sure we die when our parent dies */
4614 while (ctdb_kill(ctdb
, parent
, 0) == 0 || errno
!= ESRCH
) {
4620 h
->c
= talloc_steal(h
, c
);
4623 set_close_on_exec(h
->fd
[0]);
4625 talloc_set_destructor(h
, ctdb_reloadips_destructor
);
4628 h
->fde
= event_add_fd(ctdb
->ev
, h
, h
->fd
[0],
4629 EVENT_FD_READ
, ctdb_reloadips_child_handler
,
4631 tevent_fd_set_auto_close(h
->fde
);
4633 event_add_timed(ctdb
->ev
, h
,
4634 timeval_current_ofs(120, 0),
4635 ctdb_reloadips_timeout_event
, h
);
4637 /* we reply later */
4638 *async_reply
= true;