spoolss-iremotewinspool-tests: Use more recent client OS version
[Samba.git] / lib / util / memcache.c
blob819ba44b443f28d08d7f65f3f120dd11f905423f
1 /*
2 Unix SMB/CIFS implementation.
3 In-memory cache
4 Copyright (C) Volker Lendecke 2007
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "replace.h"
21 #include <talloc.h>
22 #include "../lib/util/debug.h"
23 #include "../lib/util/samba_util.h"
24 #include "../lib/util/dlinklist.h"
25 #include "../lib/util/rbtree.h"
26 #include "memcache.h"
28 static struct memcache *global_cache;
30 struct memcache_element {
31 struct rb_node rb_node;
32 struct memcache_element *prev, *next;
33 size_t keylength, valuelength;
34 uint8_t n; /* This is really an enum, but save memory */
35 char data[1]; /* placeholder for offsetof */
38 struct memcache {
39 struct memcache_element *mru;
40 struct rb_root tree;
41 size_t size;
42 size_t max_size;
45 static void memcache_element_parse(struct memcache_element *e,
46 DATA_BLOB *key, DATA_BLOB *value);
48 static bool memcache_is_talloc(enum memcache_number n)
50 bool result;
52 switch (n) {
53 case GETPWNAM_CACHE:
54 case PDB_GETPWSID_CACHE:
55 case SINGLETON_CACHE_TALLOC:
56 case SHARE_MODE_LOCK_CACHE:
57 case GETWD_CACHE:
58 case VIRUSFILTER_SCAN_RESULTS_CACHE_TALLOC:
59 result = true;
60 break;
61 default:
62 result = false;
63 break;
66 return result;
69 static int memcache_destructor(struct memcache *cache) {
70 struct memcache_element *e, *next;
72 for (e = cache->mru; e != NULL; e = next) {
73 next = e->next;
74 TALLOC_FREE(e);
76 return 0;
79 struct memcache *memcache_init(TALLOC_CTX *mem_ctx, size_t max_size)
81 struct memcache *result;
83 result = talloc_zero(mem_ctx, struct memcache);
84 if (result == NULL) {
85 return NULL;
87 result->max_size = max_size;
88 talloc_set_destructor(result, memcache_destructor);
89 return result;
92 void memcache_set_global(struct memcache *cache)
94 TALLOC_FREE(global_cache);
95 global_cache = cache;
98 static struct memcache_element *memcache_node2elem(struct rb_node *node)
100 return (struct memcache_element *)
101 ((char *)node - offsetof(struct memcache_element, rb_node));
104 static void memcache_element_parse(struct memcache_element *e,
105 DATA_BLOB *key, DATA_BLOB *value)
107 key->data = ((uint8_t *)e) + offsetof(struct memcache_element, data);
108 key->length = e->keylength;
109 value->data = key->data + e->keylength;
110 value->length = e->valuelength;
113 static size_t memcache_element_size(size_t key_length, size_t value_length)
115 return sizeof(struct memcache_element) - 1 + key_length + value_length;
118 static int memcache_compare(struct memcache_element *e, enum memcache_number n,
119 DATA_BLOB key)
121 DATA_BLOB this_key, this_value;
123 if ((int)e->n < (int)n) return 1;
124 if ((int)e->n > (int)n) return -1;
126 if (e->keylength < key.length) return 1;
127 if (e->keylength > key.length) return -1;
129 memcache_element_parse(e, &this_key, &this_value);
130 return memcmp(this_key.data, key.data, key.length);
133 static struct memcache_element *memcache_find(
134 struct memcache *cache, enum memcache_number n, DATA_BLOB key)
136 struct rb_node *node;
138 node = cache->tree.rb_node;
140 while (node != NULL) {
141 struct memcache_element *elem = memcache_node2elem(node);
142 int cmp;
144 cmp = memcache_compare(elem, n, key);
145 if (cmp == 0) {
146 return elem;
148 node = (cmp < 0) ? node->rb_left : node->rb_right;
151 return NULL;
154 bool memcache_lookup(struct memcache *cache, enum memcache_number n,
155 DATA_BLOB key, DATA_BLOB *value)
157 struct memcache_element *e;
159 if (cache == NULL) {
160 cache = global_cache;
162 if (cache == NULL) {
163 return false;
166 e = memcache_find(cache, n, key);
167 if (e == NULL) {
168 return false;
171 if (cache->size != 0) {
172 DLIST_PROMOTE(cache->mru, e);
175 memcache_element_parse(e, &key, value);
176 return true;
179 void *memcache_lookup_talloc(struct memcache *cache, enum memcache_number n,
180 DATA_BLOB key)
182 DATA_BLOB value;
183 void *result;
185 if (!memcache_lookup(cache, n, key, &value)) {
186 return NULL;
189 if (value.length != sizeof(result)) {
190 return NULL;
193 memcpy(&result, value.data, sizeof(result));
195 return result;
198 static void memcache_delete_element(struct memcache *cache,
199 struct memcache_element *e)
201 rb_erase(&e->rb_node, &cache->tree);
203 DLIST_REMOVE(cache->mru, e);
205 if (memcache_is_talloc(e->n)) {
206 DATA_BLOB cache_key, cache_value;
207 void *ptr;
209 memcache_element_parse(e, &cache_key, &cache_value);
210 SMB_ASSERT(cache_value.length == sizeof(ptr));
211 memcpy(&ptr, cache_value.data, sizeof(ptr));
212 TALLOC_FREE(ptr);
215 cache->size -= memcache_element_size(e->keylength, e->valuelength);
217 TALLOC_FREE(e);
220 static void memcache_trim(struct memcache *cache)
222 if (cache->max_size == 0) {
223 return;
226 while ((cache->size > cache->max_size) && DLIST_TAIL(cache->mru)) {
227 memcache_delete_element(cache, DLIST_TAIL(cache->mru));
231 void memcache_delete(struct memcache *cache, enum memcache_number n,
232 DATA_BLOB key)
234 struct memcache_element *e;
236 if (cache == NULL) {
237 cache = global_cache;
239 if (cache == NULL) {
240 return;
243 e = memcache_find(cache, n, key);
244 if (e == NULL) {
245 return;
248 memcache_delete_element(cache, e);
251 void memcache_add(struct memcache *cache, enum memcache_number n,
252 DATA_BLOB key, DATA_BLOB value)
254 struct memcache_element *e;
255 struct rb_node **p;
256 struct rb_node *parent;
257 DATA_BLOB cache_key, cache_value;
258 size_t element_size;
260 if (cache == NULL) {
261 cache = global_cache;
263 if (cache == NULL) {
264 return;
267 if (key.length == 0) {
268 return;
271 e = memcache_find(cache, n, key);
273 if (e != NULL) {
274 memcache_element_parse(e, &cache_key, &cache_value);
276 if (value.length <= cache_value.length) {
277 if (memcache_is_talloc(e->n)) {
278 void *ptr;
279 SMB_ASSERT(cache_value.length == sizeof(ptr));
280 memcpy(&ptr, cache_value.data, sizeof(ptr));
281 TALLOC_FREE(ptr);
284 * We can reuse the existing record
286 memcpy(cache_value.data, value.data, value.length);
287 e->valuelength = value.length;
288 return;
291 memcache_delete_element(cache, e);
294 element_size = memcache_element_size(key.length, value.length);
296 e = talloc_size(cache, element_size);
297 if (e == NULL) {
298 DEBUG(0, ("talloc failed\n"));
299 return;
301 talloc_set_type(e, struct memcache_element);
303 e->n = n;
304 e->keylength = key.length;
305 e->valuelength = value.length;
307 memcache_element_parse(e, &cache_key, &cache_value);
308 memcpy(cache_key.data, key.data, key.length);
309 memcpy(cache_value.data, value.data, value.length);
311 parent = NULL;
312 p = &cache->tree.rb_node;
314 while (*p) {
315 struct memcache_element *elem = memcache_node2elem(*p);
316 int cmp;
318 parent = (*p);
320 cmp = memcache_compare(elem, n, key);
322 p = (cmp < 0) ? &(*p)->rb_left : &(*p)->rb_right;
325 rb_link_node(&e->rb_node, parent, p);
326 rb_insert_color(&e->rb_node, &cache->tree);
328 DLIST_ADD(cache->mru, e);
330 cache->size += element_size;
331 memcache_trim(cache);
334 void memcache_add_talloc(struct memcache *cache, enum memcache_number n,
335 DATA_BLOB key, void *pptr)
337 void **ptr = (void **)pptr;
338 void *p;
340 if (cache == NULL) {
341 cache = global_cache;
343 if (cache == NULL) {
344 return;
347 p = talloc_move(cache, ptr);
348 memcache_add(cache, n, key, data_blob_const(&p, sizeof(p)));
351 void memcache_flush(struct memcache *cache, enum memcache_number n)
353 struct rb_node *node;
355 if (cache == NULL) {
356 cache = global_cache;
358 if (cache == NULL) {
359 return;
363 * Find the smallest element of number n
366 node = cache->tree.rb_node;
367 if (node == NULL) {
368 return;
372 * First, find *any* element of number n
375 while (true) {
376 struct memcache_element *elem = memcache_node2elem(node);
377 struct rb_node *next;
379 if ((int)elem->n == (int)n) {
380 break;
383 if ((int)elem->n < (int)n) {
384 next = node->rb_right;
386 else {
387 next = node->rb_left;
389 if (next == NULL) {
390 break;
392 node = next;
396 * Then, find the leftmost element with number n
399 while (true) {
400 struct rb_node *prev = rb_prev(node);
401 struct memcache_element *elem;
403 if (prev == NULL) {
404 break;
406 elem = memcache_node2elem(prev);
407 if ((int)elem->n != (int)n) {
408 break;
410 node = prev;
413 while (node != NULL) {
414 struct memcache_element *e = memcache_node2elem(node);
415 struct rb_node *next = rb_next(node);
417 if (e->n != n) {
418 break;
421 memcache_delete_element(cache, e);
422 node = next;