param: Rename variable used for lp_perfcount_module szSMBPerfcountModule
[Samba.git] / ctdb / server / ctdb_takeover.c
blobb918e5a0c66ed7a20635bd7735ffb1befe784295
1 /*
2 ctdb ip takeover code
4 Copyright (C) Ronnie Sahlberg 2007
5 Copyright (C) Andrew Tridgell 2007
6 Copyright (C) Martin Schwenke 2011
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "includes.h"
22 #include "tdb.h"
23 #include "lib/util/dlinklist.h"
24 #include "system/network.h"
25 #include "system/filesys.h"
26 #include "system/wait.h"
27 #include "../include/ctdb_private.h"
28 #include "../common/rb_tree.h"
31 #define TAKEOVER_TIMEOUT() timeval_current_ofs(ctdb->tunable.takeover_timeout,0)
33 #define CTDB_ARP_INTERVAL 1
34 #define CTDB_ARP_REPEAT 3
36 /* Flags used in IP allocation algorithms. */
37 struct ctdb_ipflags {
38 bool noiptakeover;
39 bool noiphost;
42 struct ctdb_iface {
43 struct ctdb_iface *prev, *next;
44 const char *name;
45 bool link_up;
46 uint32_t references;
49 static const char *ctdb_vnn_iface_string(const struct ctdb_vnn *vnn)
51 if (vnn->iface) {
52 return vnn->iface->name;
55 return "__none__";
58 static int ctdb_add_local_iface(struct ctdb_context *ctdb, const char *iface)
60 struct ctdb_iface *i;
62 /* Verify that we dont have an entry for this ip yet */
63 for (i=ctdb->ifaces;i;i=i->next) {
64 if (strcmp(i->name, iface) == 0) {
65 return 0;
69 /* create a new structure for this interface */
70 i = talloc_zero(ctdb, struct ctdb_iface);
71 CTDB_NO_MEMORY_FATAL(ctdb, i);
72 i->name = talloc_strdup(i, iface);
73 CTDB_NO_MEMORY(ctdb, i->name);
75 * If link_up defaults to true then IPs can be allocated to a
76 * node during the first recovery. However, then an interface
77 * could have its link marked down during the startup event,
78 * causing the IP to move almost immediately. If link_up
79 * defaults to false then, during normal operation, IPs added
80 * to a new interface can't be assigned until a monitor cycle
81 * has occurred and marked the new interfaces up. This makes
82 * IP allocation unpredictable. The following is a neat
83 * compromise: early in startup link_up defaults to false, so
84 * IPs can't be assigned, and after startup IPs can be
85 * assigned immediately.
87 i->link_up = (ctdb->runstate == CTDB_RUNSTATE_RUNNING);
89 DLIST_ADD(ctdb->ifaces, i);
91 return 0;
94 static bool vnn_has_interface_with_name(struct ctdb_vnn *vnn,
95 const char *name)
97 int n;
99 for (n = 0; vnn->ifaces[n] != NULL; n++) {
100 if (strcmp(name, vnn->ifaces[n]) == 0) {
101 return true;
105 return false;
108 /* If any interfaces now have no possible IPs then delete them. This
109 * implementation is naive (i.e. simple) rather than clever
110 * (i.e. complex). Given that this is run on delip and that operation
111 * is rare, this doesn't need to be efficient - it needs to be
112 * foolproof. One alternative is reference counting, where the logic
113 * is distributed and can, therefore, be broken in multiple places.
114 * Another alternative is to build a red-black tree of interfaces that
115 * can have addresses (by walking ctdb->vnn and ctdb->single_ip_vnn
116 * once) and then walking ctdb->ifaces once and deleting those not in
117 * the tree. Let's go to one of those if the naive implementation
118 * causes problems... :-)
120 static void ctdb_remove_orphaned_ifaces(struct ctdb_context *ctdb,
121 struct ctdb_vnn *vnn,
122 TALLOC_CTX *mem_ctx)
124 struct ctdb_iface *i;
126 /* For each interface, check if there's an IP using it. */
127 for(i=ctdb->ifaces; i; i=i->next) {
128 struct ctdb_vnn *tv;
129 bool found;
131 /* Only consider interfaces named in the given VNN. */
132 if (!vnn_has_interface_with_name(vnn, i->name)) {
133 continue;
136 /* Is the "single IP" on this interface? */
137 if ((ctdb->single_ip_vnn != NULL) &&
138 (ctdb->single_ip_vnn->ifaces[0] != NULL) &&
139 (strcmp(i->name, ctdb->single_ip_vnn->ifaces[0]) == 0)) {
140 /* Found, next interface please... */
141 continue;
143 /* Search for a vnn with this interface. */
144 found = false;
145 for (tv=ctdb->vnn; tv; tv=tv->next) {
146 if (vnn_has_interface_with_name(tv, i->name)) {
147 found = true;
148 break;
152 if (!found) {
153 /* None of the VNNs are using this interface. */
154 DLIST_REMOVE(ctdb->ifaces, i);
155 /* Caller will free mem_ctx when convenient. */
156 talloc_steal(mem_ctx, i);
162 static struct ctdb_iface *ctdb_find_iface(struct ctdb_context *ctdb,
163 const char *iface)
165 struct ctdb_iface *i;
167 for (i=ctdb->ifaces;i;i=i->next) {
168 if (strcmp(i->name, iface) == 0) {
169 return i;
173 return NULL;
176 static struct ctdb_iface *ctdb_vnn_best_iface(struct ctdb_context *ctdb,
177 struct ctdb_vnn *vnn)
179 int i;
180 struct ctdb_iface *cur = NULL;
181 struct ctdb_iface *best = NULL;
183 for (i=0; vnn->ifaces[i]; i++) {
185 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
186 if (cur == NULL) {
187 continue;
190 if (!cur->link_up) {
191 continue;
194 if (best == NULL) {
195 best = cur;
196 continue;
199 if (cur->references < best->references) {
200 best = cur;
201 continue;
205 return best;
208 static int32_t ctdb_vnn_assign_iface(struct ctdb_context *ctdb,
209 struct ctdb_vnn *vnn)
211 struct ctdb_iface *best = NULL;
213 if (vnn->iface) {
214 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
215 "still assigned to iface '%s'\n",
216 ctdb_addr_to_str(&vnn->public_address),
217 ctdb_vnn_iface_string(vnn)));
218 return 0;
221 best = ctdb_vnn_best_iface(ctdb, vnn);
222 if (best == NULL) {
223 DEBUG(DEBUG_ERR, (__location__ " public address '%s' "
224 "cannot assign to iface any iface\n",
225 ctdb_addr_to_str(&vnn->public_address)));
226 return -1;
229 vnn->iface = best;
230 best->references++;
231 vnn->pnn = ctdb->pnn;
233 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
234 "now assigned to iface '%s' refs[%d]\n",
235 ctdb_addr_to_str(&vnn->public_address),
236 ctdb_vnn_iface_string(vnn),
237 best->references));
238 return 0;
241 static void ctdb_vnn_unassign_iface(struct ctdb_context *ctdb,
242 struct ctdb_vnn *vnn)
244 DEBUG(DEBUG_INFO, (__location__ " public address '%s' "
245 "now unassigned (old iface '%s' refs[%d])\n",
246 ctdb_addr_to_str(&vnn->public_address),
247 ctdb_vnn_iface_string(vnn),
248 vnn->iface?vnn->iface->references:0));
249 if (vnn->iface) {
250 vnn->iface->references--;
252 vnn->iface = NULL;
253 if (vnn->pnn == ctdb->pnn) {
254 vnn->pnn = -1;
258 static bool ctdb_vnn_available(struct ctdb_context *ctdb,
259 struct ctdb_vnn *vnn)
261 int i;
263 if (vnn->iface && vnn->iface->link_up) {
264 return true;
267 for (i=0; vnn->ifaces[i]; i++) {
268 struct ctdb_iface *cur;
270 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
271 if (cur == NULL) {
272 continue;
275 if (cur->link_up) {
276 return true;
280 return false;
283 struct ctdb_takeover_arp {
284 struct ctdb_context *ctdb;
285 uint32_t count;
286 ctdb_sock_addr addr;
287 struct ctdb_tcp_array *tcparray;
288 struct ctdb_vnn *vnn;
293 lists of tcp endpoints
295 struct ctdb_tcp_list {
296 struct ctdb_tcp_list *prev, *next;
297 struct ctdb_tcp_connection connection;
301 list of clients to kill on IP release
303 struct ctdb_client_ip {
304 struct ctdb_client_ip *prev, *next;
305 struct ctdb_context *ctdb;
306 ctdb_sock_addr addr;
307 uint32_t client_id;
312 send a gratuitous arp
314 static void ctdb_control_send_arp(struct event_context *ev, struct timed_event *te,
315 struct timeval t, void *private_data)
317 struct ctdb_takeover_arp *arp = talloc_get_type(private_data,
318 struct ctdb_takeover_arp);
319 int i, ret;
320 struct ctdb_tcp_array *tcparray;
321 const char *iface = ctdb_vnn_iface_string(arp->vnn);
323 ret = ctdb_sys_send_arp(&arp->addr, iface);
324 if (ret != 0) {
325 DEBUG(DEBUG_CRIT,(__location__ " sending of arp failed on iface '%s' (%s)\n",
326 iface, strerror(errno)));
329 tcparray = arp->tcparray;
330 if (tcparray) {
331 for (i=0;i<tcparray->num;i++) {
332 struct ctdb_tcp_connection *tcon;
334 tcon = &tcparray->connections[i];
335 DEBUG(DEBUG_INFO,("sending tcp tickle ack for %u->%s:%u\n",
336 (unsigned)ntohs(tcon->dst_addr.ip.sin_port),
337 ctdb_addr_to_str(&tcon->src_addr),
338 (unsigned)ntohs(tcon->src_addr.ip.sin_port)));
339 ret = ctdb_sys_send_tcp(
340 &tcon->src_addr,
341 &tcon->dst_addr,
342 0, 0, 0);
343 if (ret != 0) {
344 DEBUG(DEBUG_CRIT,(__location__ " Failed to send tcp tickle ack for %s\n",
345 ctdb_addr_to_str(&tcon->src_addr)));
350 arp->count++;
352 if (arp->count == CTDB_ARP_REPEAT) {
353 talloc_free(arp);
354 return;
357 event_add_timed(arp->ctdb->ev, arp->vnn->takeover_ctx,
358 timeval_current_ofs(CTDB_ARP_INTERVAL, 100000),
359 ctdb_control_send_arp, arp);
362 static int32_t ctdb_announce_vnn_iface(struct ctdb_context *ctdb,
363 struct ctdb_vnn *vnn)
365 struct ctdb_takeover_arp *arp;
366 struct ctdb_tcp_array *tcparray;
368 if (!vnn->takeover_ctx) {
369 vnn->takeover_ctx = talloc_new(vnn);
370 if (!vnn->takeover_ctx) {
371 return -1;
375 arp = talloc_zero(vnn->takeover_ctx, struct ctdb_takeover_arp);
376 if (!arp) {
377 return -1;
380 arp->ctdb = ctdb;
381 arp->addr = vnn->public_address;
382 arp->vnn = vnn;
384 tcparray = vnn->tcp_array;
385 if (tcparray) {
386 /* add all of the known tcp connections for this IP to the
387 list of tcp connections to send tickle acks for */
388 arp->tcparray = talloc_steal(arp, tcparray);
390 vnn->tcp_array = NULL;
391 vnn->tcp_update_needed = true;
394 event_add_timed(arp->ctdb->ev, vnn->takeover_ctx,
395 timeval_zero(), ctdb_control_send_arp, arp);
397 return 0;
400 struct takeover_callback_state {
401 struct ctdb_req_control *c;
402 ctdb_sock_addr *addr;
403 struct ctdb_vnn *vnn;
406 struct ctdb_do_takeip_state {
407 struct ctdb_req_control *c;
408 struct ctdb_vnn *vnn;
412 called when takeip event finishes
414 static void ctdb_do_takeip_callback(struct ctdb_context *ctdb, int status,
415 void *private_data)
417 struct ctdb_do_takeip_state *state =
418 talloc_get_type(private_data, struct ctdb_do_takeip_state);
419 int32_t ret;
420 TDB_DATA data;
422 if (status != 0) {
423 struct ctdb_node *node = ctdb->nodes[ctdb->pnn];
425 if (status == -ETIME) {
426 ctdb_ban_self(ctdb);
428 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
429 ctdb_addr_to_str(&state->vnn->public_address),
430 ctdb_vnn_iface_string(state->vnn)));
431 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
433 node->flags |= NODE_FLAGS_UNHEALTHY;
434 talloc_free(state);
435 return;
438 if (ctdb->do_checkpublicip) {
440 ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
441 if (ret != 0) {
442 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
443 talloc_free(state);
444 return;
449 data.dptr = (uint8_t *)ctdb_addr_to_str(&state->vnn->public_address);
450 data.dsize = strlen((char *)data.dptr) + 1;
451 DEBUG(DEBUG_INFO,(__location__ " sending TAKE_IP for '%s'\n", data.dptr));
453 ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_TAKE_IP, data);
456 /* the control succeeded */
457 ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
458 talloc_free(state);
459 return;
462 static int ctdb_takeip_destructor(struct ctdb_do_takeip_state *state)
464 state->vnn->update_in_flight = false;
465 return 0;
469 take over an ip address
471 static int32_t ctdb_do_takeip(struct ctdb_context *ctdb,
472 struct ctdb_req_control *c,
473 struct ctdb_vnn *vnn)
475 int ret;
476 struct ctdb_do_takeip_state *state;
478 if (vnn->update_in_flight) {
479 DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u rejected "
480 "update for this IP already in flight\n",
481 ctdb_addr_to_str(&vnn->public_address),
482 vnn->public_netmask_bits));
483 return -1;
486 ret = ctdb_vnn_assign_iface(ctdb, vnn);
487 if (ret != 0) {
488 DEBUG(DEBUG_ERR,("Takeover of IP %s/%u failed to "
489 "assign a usable interface\n",
490 ctdb_addr_to_str(&vnn->public_address),
491 vnn->public_netmask_bits));
492 return -1;
495 state = talloc(vnn, struct ctdb_do_takeip_state);
496 CTDB_NO_MEMORY(ctdb, state);
498 state->c = talloc_steal(ctdb, c);
499 state->vnn = vnn;
501 vnn->update_in_flight = true;
502 talloc_set_destructor(state, ctdb_takeip_destructor);
504 DEBUG(DEBUG_NOTICE,("Takeover of IP %s/%u on interface %s\n",
505 ctdb_addr_to_str(&vnn->public_address),
506 vnn->public_netmask_bits,
507 ctdb_vnn_iface_string(vnn)));
509 ret = ctdb_event_script_callback(ctdb,
510 state,
511 ctdb_do_takeip_callback,
512 state,
513 CTDB_EVENT_TAKE_IP,
514 "%s %s %u",
515 ctdb_vnn_iface_string(vnn),
516 ctdb_addr_to_str(&vnn->public_address),
517 vnn->public_netmask_bits);
519 if (ret != 0) {
520 DEBUG(DEBUG_ERR,(__location__ " Failed to takeover IP %s on interface %s\n",
521 ctdb_addr_to_str(&vnn->public_address),
522 ctdb_vnn_iface_string(vnn)));
523 talloc_free(state);
524 return -1;
527 return 0;
530 struct ctdb_do_updateip_state {
531 struct ctdb_req_control *c;
532 struct ctdb_iface *old;
533 struct ctdb_vnn *vnn;
537 called when updateip event finishes
539 static void ctdb_do_updateip_callback(struct ctdb_context *ctdb, int status,
540 void *private_data)
542 struct ctdb_do_updateip_state *state =
543 talloc_get_type(private_data, struct ctdb_do_updateip_state);
544 int32_t ret;
546 if (status != 0) {
547 if (status == -ETIME) {
548 ctdb_ban_self(ctdb);
550 DEBUG(DEBUG_ERR,(__location__ " Failed to move IP %s from interface %s to %s\n",
551 ctdb_addr_to_str(&state->vnn->public_address),
552 state->old->name,
553 ctdb_vnn_iface_string(state->vnn)));
556 * All we can do is reset the old interface
557 * and let the next run fix it
559 ctdb_vnn_unassign_iface(ctdb, state->vnn);
560 state->vnn->iface = state->old;
561 state->vnn->iface->references++;
563 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
564 talloc_free(state);
565 return;
568 if (ctdb->do_checkpublicip) {
570 ret = ctdb_announce_vnn_iface(ctdb, state->vnn);
571 if (ret != 0) {
572 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
573 talloc_free(state);
574 return;
579 /* the control succeeded */
580 ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
581 talloc_free(state);
582 return;
585 static int ctdb_updateip_destructor(struct ctdb_do_updateip_state *state)
587 state->vnn->update_in_flight = false;
588 return 0;
592 update (move) an ip address
594 static int32_t ctdb_do_updateip(struct ctdb_context *ctdb,
595 struct ctdb_req_control *c,
596 struct ctdb_vnn *vnn)
598 int ret;
599 struct ctdb_do_updateip_state *state;
600 struct ctdb_iface *old = vnn->iface;
601 const char *new_name;
603 if (vnn->update_in_flight) {
604 DEBUG(DEBUG_NOTICE,("Update of IP %s/%u rejected "
605 "update for this IP already in flight\n",
606 ctdb_addr_to_str(&vnn->public_address),
607 vnn->public_netmask_bits));
608 return -1;
611 ctdb_vnn_unassign_iface(ctdb, vnn);
612 ret = ctdb_vnn_assign_iface(ctdb, vnn);
613 if (ret != 0) {
614 DEBUG(DEBUG_ERR,("update of IP %s/%u failed to "
615 "assin a usable interface (old iface '%s')\n",
616 ctdb_addr_to_str(&vnn->public_address),
617 vnn->public_netmask_bits,
618 old->name));
619 return -1;
622 new_name = ctdb_vnn_iface_string(vnn);
623 if (old->name != NULL && new_name != NULL && !strcmp(old->name, new_name)) {
624 /* A benign update from one interface onto itself.
625 * no need to run the eventscripts in this case, just return
626 * success.
628 ctdb_request_control_reply(ctdb, c, NULL, 0, NULL);
629 return 0;
632 state = talloc(vnn, struct ctdb_do_updateip_state);
633 CTDB_NO_MEMORY(ctdb, state);
635 state->c = talloc_steal(ctdb, c);
636 state->old = old;
637 state->vnn = vnn;
639 vnn->update_in_flight = true;
640 talloc_set_destructor(state, ctdb_updateip_destructor);
642 DEBUG(DEBUG_NOTICE,("Update of IP %s/%u from "
643 "interface %s to %s\n",
644 ctdb_addr_to_str(&vnn->public_address),
645 vnn->public_netmask_bits,
646 old->name,
647 new_name));
649 ret = ctdb_event_script_callback(ctdb,
650 state,
651 ctdb_do_updateip_callback,
652 state,
653 CTDB_EVENT_UPDATE_IP,
654 "%s %s %s %u",
655 state->old->name,
656 new_name,
657 ctdb_addr_to_str(&vnn->public_address),
658 vnn->public_netmask_bits);
659 if (ret != 0) {
660 DEBUG(DEBUG_ERR,(__location__ " Failed update IP %s from interface %s to %s\n",
661 ctdb_addr_to_str(&vnn->public_address),
662 old->name, new_name));
663 talloc_free(state);
664 return -1;
667 return 0;
671 Find the vnn of the node that has a public ip address
672 returns -1 if the address is not known as a public address
674 static struct ctdb_vnn *find_public_ip_vnn(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
676 struct ctdb_vnn *vnn;
678 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
679 if (ctdb_same_ip(&vnn->public_address, addr)) {
680 return vnn;
684 return NULL;
688 take over an ip address
690 int32_t ctdb_control_takeover_ip(struct ctdb_context *ctdb,
691 struct ctdb_req_control *c,
692 TDB_DATA indata,
693 bool *async_reply)
695 int ret;
696 struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
697 struct ctdb_vnn *vnn;
698 bool have_ip = false;
699 bool do_updateip = false;
700 bool do_takeip = false;
701 struct ctdb_iface *best_iface = NULL;
703 if (pip->pnn != ctdb->pnn) {
704 DEBUG(DEBUG_ERR,(__location__" takeoverip called for an ip '%s' "
705 "with pnn %d, but we're node %d\n",
706 ctdb_addr_to_str(&pip->addr),
707 pip->pnn, ctdb->pnn));
708 return -1;
711 /* update out vnn list */
712 vnn = find_public_ip_vnn(ctdb, &pip->addr);
713 if (vnn == NULL) {
714 DEBUG(DEBUG_INFO,("takeoverip called for an ip '%s' that is not a public address\n",
715 ctdb_addr_to_str(&pip->addr)));
716 return 0;
719 if (ctdb->do_checkpublicip) {
720 have_ip = ctdb_sys_have_ip(&pip->addr);
722 best_iface = ctdb_vnn_best_iface(ctdb, vnn);
723 if (best_iface == NULL) {
724 DEBUG(DEBUG_ERR,("takeoverip of IP %s/%u failed to find"
725 "a usable interface (old %s, have_ip %d)\n",
726 ctdb_addr_to_str(&vnn->public_address),
727 vnn->public_netmask_bits,
728 ctdb_vnn_iface_string(vnn),
729 have_ip));
730 return -1;
733 if (vnn->iface == NULL && vnn->pnn == -1 && have_ip && best_iface != NULL) {
734 DEBUG(DEBUG_ERR,("Taking over newly created ip\n"));
735 have_ip = false;
739 if (vnn->iface == NULL && have_ip) {
740 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
741 "but we have no interface assigned, has someone manually configured it? Ignore for now.\n",
742 ctdb_addr_to_str(&vnn->public_address)));
743 return 0;
746 if (vnn->pnn != ctdb->pnn && have_ip && vnn->pnn != -1) {
747 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
748 "and we have it on iface[%s], but it was assigned to node %d"
749 "and we are node %d, banning ourself\n",
750 ctdb_addr_to_str(&vnn->public_address),
751 ctdb_vnn_iface_string(vnn), vnn->pnn, ctdb->pnn));
752 ctdb_ban_self(ctdb);
753 return -1;
756 if (vnn->pnn == -1 && have_ip) {
757 vnn->pnn = ctdb->pnn;
758 DEBUG(DEBUG_CRIT,(__location__ " takeoverip of IP %s is known to the kernel, "
759 "and we already have it on iface[%s], update local daemon\n",
760 ctdb_addr_to_str(&vnn->public_address),
761 ctdb_vnn_iface_string(vnn)));
762 return 0;
765 if (vnn->iface) {
766 if (vnn->iface != best_iface) {
767 if (!vnn->iface->link_up) {
768 do_updateip = true;
769 } else if (vnn->iface->references > (best_iface->references + 1)) {
770 /* only move when the rebalance gains something */
771 do_updateip = true;
776 if (!have_ip) {
777 if (do_updateip) {
778 ctdb_vnn_unassign_iface(ctdb, vnn);
779 do_updateip = false;
781 do_takeip = true;
784 if (do_takeip) {
785 ret = ctdb_do_takeip(ctdb, c, vnn);
786 if (ret != 0) {
787 return -1;
789 } else if (do_updateip) {
790 ret = ctdb_do_updateip(ctdb, c, vnn);
791 if (ret != 0) {
792 return -1;
794 } else {
796 * The interface is up and the kernel known the ip
797 * => do nothing
799 DEBUG(DEBUG_INFO,("Redundant takeover of IP %s/%u on interface %s (ip already held)\n",
800 ctdb_addr_to_str(&pip->addr),
801 vnn->public_netmask_bits,
802 ctdb_vnn_iface_string(vnn)));
803 return 0;
806 /* tell ctdb_control.c that we will be replying asynchronously */
807 *async_reply = true;
809 return 0;
813 takeover an ip address old v4 style
815 int32_t ctdb_control_takeover_ipv4(struct ctdb_context *ctdb,
816 struct ctdb_req_control *c,
817 TDB_DATA indata,
818 bool *async_reply)
820 TDB_DATA data;
822 data.dsize = sizeof(struct ctdb_public_ip);
823 data.dptr = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
824 CTDB_NO_MEMORY(ctdb, data.dptr);
826 memcpy(data.dptr, indata.dptr, indata.dsize);
827 return ctdb_control_takeover_ip(ctdb, c, data, async_reply);
831 kill any clients that are registered with a IP that is being released
833 static void release_kill_clients(struct ctdb_context *ctdb, ctdb_sock_addr *addr)
835 struct ctdb_client_ip *ip;
837 DEBUG(DEBUG_INFO,("release_kill_clients for ip %s\n",
838 ctdb_addr_to_str(addr)));
840 for (ip=ctdb->client_ip_list; ip; ip=ip->next) {
841 ctdb_sock_addr tmp_addr;
843 tmp_addr = ip->addr;
844 DEBUG(DEBUG_INFO,("checking for client %u with IP %s\n",
845 ip->client_id,
846 ctdb_addr_to_str(&ip->addr)));
848 if (ctdb_same_ip(&tmp_addr, addr)) {
849 struct ctdb_client *client = ctdb_reqid_find(ctdb,
850 ip->client_id,
851 struct ctdb_client);
852 DEBUG(DEBUG_INFO,("matched client %u with IP %s and pid %u\n",
853 ip->client_id,
854 ctdb_addr_to_str(&ip->addr),
855 client->pid));
857 if (client->pid != 0) {
858 DEBUG(DEBUG_INFO,(__location__ " Killing client pid %u for IP %s on client_id %u\n",
859 (unsigned)client->pid,
860 ctdb_addr_to_str(addr),
861 ip->client_id));
862 kill(client->pid, SIGKILL);
869 called when releaseip event finishes
871 static void release_ip_callback(struct ctdb_context *ctdb, int status,
872 void *private_data)
874 struct takeover_callback_state *state =
875 talloc_get_type(private_data, struct takeover_callback_state);
876 TDB_DATA data;
878 if (status == -ETIME) {
879 ctdb_ban_self(ctdb);
882 if (ctdb->do_checkpublicip && ctdb_sys_have_ip(state->addr)) {
883 DEBUG(DEBUG_ERR, ("IP %s still hosted during release IP callback, failing\n",
884 ctdb_addr_to_str(state->addr)));
885 ctdb_request_control_reply(ctdb, state->c, NULL, -1, NULL);
886 talloc_free(state);
887 return;
890 /* send a message to all clients of this node telling them
891 that the cluster has been reconfigured and they should
892 release any sockets on this IP */
893 data.dptr = (uint8_t *)talloc_strdup(state, ctdb_addr_to_str(state->addr));
894 CTDB_NO_MEMORY_VOID(ctdb, data.dptr);
895 data.dsize = strlen((char *)data.dptr)+1;
897 DEBUG(DEBUG_INFO,(__location__ " sending RELEASE_IP for '%s'\n", data.dptr));
899 ctdb_daemon_send_message(ctdb, ctdb->pnn, CTDB_SRVID_RELEASE_IP, data);
901 /* kill clients that have registered with this IP */
902 release_kill_clients(ctdb, state->addr);
904 ctdb_vnn_unassign_iface(ctdb, state->vnn);
906 /* the control succeeded */
907 ctdb_request_control_reply(ctdb, state->c, NULL, 0, NULL);
908 talloc_free(state);
911 static int ctdb_releaseip_destructor(struct takeover_callback_state *state)
913 state->vnn->update_in_flight = false;
914 return 0;
918 release an ip address
920 int32_t ctdb_control_release_ip(struct ctdb_context *ctdb,
921 struct ctdb_req_control *c,
922 TDB_DATA indata,
923 bool *async_reply)
925 int ret;
926 struct takeover_callback_state *state;
927 struct ctdb_public_ip *pip = (struct ctdb_public_ip *)indata.dptr;
928 struct ctdb_vnn *vnn;
929 char *iface;
931 /* update our vnn list */
932 vnn = find_public_ip_vnn(ctdb, &pip->addr);
933 if (vnn == NULL) {
934 DEBUG(DEBUG_INFO,("releaseip called for an ip '%s' that is not a public address\n",
935 ctdb_addr_to_str(&pip->addr)));
936 return 0;
938 vnn->pnn = pip->pnn;
940 /* stop any previous arps */
941 talloc_free(vnn->takeover_ctx);
942 vnn->takeover_ctx = NULL;
944 /* Some ctdb tool commands (e.g. moveip, rebalanceip) send
945 * lazy multicast to drop an IP from any node that isn't the
946 * intended new node. The following causes makes ctdbd ignore
947 * a release for any address it doesn't host.
949 if (ctdb->do_checkpublicip) {
950 if (!ctdb_sys_have_ip(&pip->addr)) {
951 DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u on interface %s (ip not held)\n",
952 ctdb_addr_to_str(&pip->addr),
953 vnn->public_netmask_bits,
954 ctdb_vnn_iface_string(vnn)));
955 ctdb_vnn_unassign_iface(ctdb, vnn);
956 return 0;
958 } else {
959 if (vnn->iface == NULL) {
960 DEBUG(DEBUG_DEBUG,("Redundant release of IP %s/%u (ip not held)\n",
961 ctdb_addr_to_str(&pip->addr),
962 vnn->public_netmask_bits));
963 return 0;
967 /* There is a potential race between take_ip and us because we
968 * update the VNN via a callback that run when the
969 * eventscripts have been run. Avoid the race by allowing one
970 * update to be in flight at a time.
972 if (vnn->update_in_flight) {
973 DEBUG(DEBUG_NOTICE,("Release of IP %s/%u rejected "
974 "update for this IP already in flight\n",
975 ctdb_addr_to_str(&vnn->public_address),
976 vnn->public_netmask_bits));
977 return -1;
980 if (ctdb->do_checkpublicip) {
981 iface = ctdb_sys_find_ifname(&pip->addr);
982 if (iface == NULL) {
983 DEBUG(DEBUG_ERR, ("Could not find which interface the ip address is hosted on. can not release it\n"));
984 return 0;
986 if (vnn->iface == NULL) {
987 DEBUG(DEBUG_WARNING,
988 ("Public IP %s is hosted on interface %s but we have no VNN\n",
989 ctdb_addr_to_str(&pip->addr),
990 iface));
991 } else if (strcmp(iface, ctdb_vnn_iface_string(vnn)) != 0) {
992 DEBUG(DEBUG_WARNING,
993 ("Public IP %s is hosted on inteterface %s but VNN says %s\n",
994 ctdb_addr_to_str(&pip->addr),
995 iface,
996 ctdb_vnn_iface_string(vnn)));
997 /* Should we fix vnn->iface? If we do, what
998 * happens to reference counts?
1001 } else {
1002 iface = strdup(ctdb_vnn_iface_string(vnn));
1005 DEBUG(DEBUG_NOTICE,("Release of IP %s/%u on interface %s node:%d\n",
1006 ctdb_addr_to_str(&pip->addr),
1007 vnn->public_netmask_bits,
1008 iface,
1009 pip->pnn));
1011 state = talloc(ctdb, struct takeover_callback_state);
1012 CTDB_NO_MEMORY(ctdb, state);
1014 state->c = talloc_steal(state, c);
1015 state->addr = talloc(state, ctdb_sock_addr);
1016 CTDB_NO_MEMORY(ctdb, state->addr);
1017 *state->addr = pip->addr;
1018 state->vnn = vnn;
1020 vnn->update_in_flight = true;
1021 talloc_set_destructor(state, ctdb_releaseip_destructor);
1023 ret = ctdb_event_script_callback(ctdb,
1024 state, release_ip_callback, state,
1025 CTDB_EVENT_RELEASE_IP,
1026 "%s %s %u",
1027 iface,
1028 ctdb_addr_to_str(&pip->addr),
1029 vnn->public_netmask_bits);
1030 free(iface);
1031 if (ret != 0) {
1032 DEBUG(DEBUG_ERR,(__location__ " Failed to release IP %s on interface %s\n",
1033 ctdb_addr_to_str(&pip->addr),
1034 ctdb_vnn_iface_string(vnn)));
1035 talloc_free(state);
1036 return -1;
1039 /* tell the control that we will be reply asynchronously */
1040 *async_reply = true;
1041 return 0;
1045 release an ip address old v4 style
1047 int32_t ctdb_control_release_ipv4(struct ctdb_context *ctdb,
1048 struct ctdb_req_control *c,
1049 TDB_DATA indata,
1050 bool *async_reply)
1052 TDB_DATA data;
1054 data.dsize = sizeof(struct ctdb_public_ip);
1055 data.dptr = (uint8_t *)talloc_zero(c, struct ctdb_public_ip);
1056 CTDB_NO_MEMORY(ctdb, data.dptr);
1058 memcpy(data.dptr, indata.dptr, indata.dsize);
1059 return ctdb_control_release_ip(ctdb, c, data, async_reply);
1063 static int ctdb_add_public_address(struct ctdb_context *ctdb,
1064 ctdb_sock_addr *addr,
1065 unsigned mask, const char *ifaces,
1066 bool check_address)
1068 struct ctdb_vnn *vnn;
1069 uint32_t num = 0;
1070 char *tmp;
1071 const char *iface;
1072 int i;
1073 int ret;
1075 tmp = strdup(ifaces);
1076 for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1077 if (!ctdb_sys_check_iface_exists(iface)) {
1078 DEBUG(DEBUG_CRIT,("Interface %s does not exist. Can not add public-address : %s\n", iface, ctdb_addr_to_str(addr)));
1079 free(tmp);
1080 return -1;
1083 free(tmp);
1085 /* Verify that we dont have an entry for this ip yet */
1086 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1087 if (ctdb_same_sockaddr(addr, &vnn->public_address)) {
1088 DEBUG(DEBUG_CRIT,("Same ip '%s' specified multiple times in the public address list \n",
1089 ctdb_addr_to_str(addr)));
1090 return -1;
1094 /* create a new vnn structure for this ip address */
1095 vnn = talloc_zero(ctdb, struct ctdb_vnn);
1096 CTDB_NO_MEMORY_FATAL(ctdb, vnn);
1097 vnn->ifaces = talloc_array(vnn, const char *, num + 2);
1098 tmp = talloc_strdup(vnn, ifaces);
1099 CTDB_NO_MEMORY_FATAL(ctdb, tmp);
1100 for (iface = strtok(tmp, ","); iface; iface = strtok(NULL, ",")) {
1101 vnn->ifaces = talloc_realloc(vnn, vnn->ifaces, const char *, num + 2);
1102 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces);
1103 vnn->ifaces[num] = talloc_strdup(vnn, iface);
1104 CTDB_NO_MEMORY_FATAL(ctdb, vnn->ifaces[num]);
1105 num++;
1107 talloc_free(tmp);
1108 vnn->ifaces[num] = NULL;
1109 vnn->public_address = *addr;
1110 vnn->public_netmask_bits = mask;
1111 vnn->pnn = -1;
1112 if (check_address) {
1113 if (ctdb_sys_have_ip(addr)) {
1114 DEBUG(DEBUG_ERR,("We are already hosting public address '%s'. setting PNN to ourself:%d\n", ctdb_addr_to_str(addr), ctdb->pnn));
1115 vnn->pnn = ctdb->pnn;
1119 for (i=0; vnn->ifaces[i]; i++) {
1120 ret = ctdb_add_local_iface(ctdb, vnn->ifaces[i]);
1121 if (ret != 0) {
1122 DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1123 "for public_address[%s]\n",
1124 vnn->ifaces[i], ctdb_addr_to_str(addr)));
1125 talloc_free(vnn);
1126 return -1;
1130 DLIST_ADD(ctdb->vnn, vnn);
1132 return 0;
1135 static void ctdb_check_interfaces_event(struct event_context *ev, struct timed_event *te,
1136 struct timeval t, void *private_data)
1138 struct ctdb_context *ctdb = talloc_get_type(private_data,
1139 struct ctdb_context);
1140 struct ctdb_vnn *vnn;
1142 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
1143 int i;
1145 for (i=0; vnn->ifaces[i] != NULL; i++) {
1146 if (!ctdb_sys_check_iface_exists(vnn->ifaces[i])) {
1147 DEBUG(DEBUG_CRIT,("Interface %s does not exist but is used by public ip %s\n",
1148 vnn->ifaces[i],
1149 ctdb_addr_to_str(&vnn->public_address)));
1154 event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx,
1155 timeval_current_ofs(30, 0),
1156 ctdb_check_interfaces_event, ctdb);
1160 int ctdb_start_monitoring_interfaces(struct ctdb_context *ctdb)
1162 if (ctdb->check_public_ifaces_ctx != NULL) {
1163 talloc_free(ctdb->check_public_ifaces_ctx);
1164 ctdb->check_public_ifaces_ctx = NULL;
1167 ctdb->check_public_ifaces_ctx = talloc_new(ctdb);
1168 if (ctdb->check_public_ifaces_ctx == NULL) {
1169 ctdb_fatal(ctdb, "failed to allocate context for checking interfaces");
1172 event_add_timed(ctdb->ev, ctdb->check_public_ifaces_ctx,
1173 timeval_current_ofs(30, 0),
1174 ctdb_check_interfaces_event, ctdb);
1176 return 0;
1181 setup the public address lists from a file
1183 int ctdb_set_public_addresses(struct ctdb_context *ctdb, bool check_addresses)
1185 char **lines;
1186 int nlines;
1187 int i;
1189 lines = file_lines_load(ctdb->public_addresses_file, &nlines, ctdb);
1190 if (lines == NULL) {
1191 ctdb_set_error(ctdb, "Failed to load public address list '%s'\n", ctdb->public_addresses_file);
1192 return -1;
1194 while (nlines > 0 && strcmp(lines[nlines-1], "") == 0) {
1195 nlines--;
1198 for (i=0;i<nlines;i++) {
1199 unsigned mask;
1200 ctdb_sock_addr addr;
1201 const char *addrstr;
1202 const char *ifaces;
1203 char *tok, *line;
1205 line = lines[i];
1206 while ((*line == ' ') || (*line == '\t')) {
1207 line++;
1209 if (*line == '#') {
1210 continue;
1212 if (strcmp(line, "") == 0) {
1213 continue;
1215 tok = strtok(line, " \t");
1216 addrstr = tok;
1217 tok = strtok(NULL, " \t");
1218 if (tok == NULL) {
1219 if (NULL == ctdb->default_public_interface) {
1220 DEBUG(DEBUG_CRIT,("No default public interface and no interface specified at line %u of public address list\n",
1221 i+1));
1222 talloc_free(lines);
1223 return -1;
1225 ifaces = ctdb->default_public_interface;
1226 } else {
1227 ifaces = tok;
1230 if (!addrstr || !parse_ip_mask(addrstr, ifaces, &addr, &mask)) {
1231 DEBUG(DEBUG_CRIT,("Badly formed line %u in public address list\n", i+1));
1232 talloc_free(lines);
1233 return -1;
1235 if (ctdb_add_public_address(ctdb, &addr, mask, ifaces, check_addresses)) {
1236 DEBUG(DEBUG_CRIT,("Failed to add line %u to the public address list\n", i+1));
1237 talloc_free(lines);
1238 return -1;
1243 talloc_free(lines);
1244 return 0;
1247 int ctdb_set_single_public_ip(struct ctdb_context *ctdb,
1248 const char *iface,
1249 const char *ip)
1251 struct ctdb_vnn *svnn;
1252 struct ctdb_iface *cur = NULL;
1253 bool ok;
1254 int ret;
1256 svnn = talloc_zero(ctdb, struct ctdb_vnn);
1257 CTDB_NO_MEMORY(ctdb, svnn);
1259 svnn->ifaces = talloc_array(svnn, const char *, 2);
1260 CTDB_NO_MEMORY(ctdb, svnn->ifaces);
1261 svnn->ifaces[0] = talloc_strdup(svnn->ifaces, iface);
1262 CTDB_NO_MEMORY(ctdb, svnn->ifaces[0]);
1263 svnn->ifaces[1] = NULL;
1265 ok = parse_ip(ip, iface, 0, &svnn->public_address);
1266 if (!ok) {
1267 talloc_free(svnn);
1268 return -1;
1271 ret = ctdb_add_local_iface(ctdb, svnn->ifaces[0]);
1272 if (ret != 0) {
1273 DEBUG(DEBUG_CRIT, (__location__ " failed to add iface[%s] "
1274 "for single_ip[%s]\n",
1275 svnn->ifaces[0],
1276 ctdb_addr_to_str(&svnn->public_address)));
1277 talloc_free(svnn);
1278 return -1;
1281 /* assume the single public ip interface is initially "good" */
1282 cur = ctdb_find_iface(ctdb, iface);
1283 if (cur == NULL) {
1284 DEBUG(DEBUG_CRIT,("Can not find public interface %s used by --single-public-ip", iface));
1285 return -1;
1287 cur->link_up = true;
1289 ret = ctdb_vnn_assign_iface(ctdb, svnn);
1290 if (ret != 0) {
1291 talloc_free(svnn);
1292 return -1;
1295 ctdb->single_ip_vnn = svnn;
1296 return 0;
1299 struct ctdb_public_ip_list {
1300 struct ctdb_public_ip_list *next;
1301 uint32_t pnn;
1302 ctdb_sock_addr addr;
1305 /* Given a physical node, return the number of
1306 public addresses that is currently assigned to this node.
1308 static int node_ip_coverage(struct ctdb_context *ctdb,
1309 int32_t pnn,
1310 struct ctdb_public_ip_list *ips)
1312 int num=0;
1314 for (;ips;ips=ips->next) {
1315 if (ips->pnn == pnn) {
1316 num++;
1319 return num;
1323 /* Can the given node host the given IP: is the public IP known to the
1324 * node and is NOIPHOST unset?
1326 static bool can_node_host_ip(struct ctdb_context *ctdb, int32_t pnn,
1327 struct ctdb_ipflags ipflags,
1328 struct ctdb_public_ip_list *ip)
1330 struct ctdb_all_public_ips *public_ips;
1331 int i;
1333 if (ipflags.noiphost) {
1334 return false;
1337 public_ips = ctdb->nodes[pnn]->available_public_ips;
1339 if (public_ips == NULL) {
1340 return false;
1343 for (i=0; i<public_ips->num; i++) {
1344 if (ctdb_same_ip(&ip->addr, &public_ips->ips[i].addr)) {
1345 /* yes, this node can serve this public ip */
1346 return true;
1350 return false;
1353 static bool can_node_takeover_ip(struct ctdb_context *ctdb, int32_t pnn,
1354 struct ctdb_ipflags ipflags,
1355 struct ctdb_public_ip_list *ip)
1357 if (ipflags.noiptakeover) {
1358 return false;
1361 return can_node_host_ip(ctdb, pnn, ipflags, ip);
1364 /* search the node lists list for a node to takeover this ip.
1365 pick the node that currently are serving the least number of ips
1366 so that the ips get spread out evenly.
1368 static int find_takeover_node(struct ctdb_context *ctdb,
1369 struct ctdb_ipflags *ipflags,
1370 struct ctdb_public_ip_list *ip,
1371 struct ctdb_public_ip_list *all_ips)
1373 int pnn, min=0, num;
1374 int i, numnodes;
1376 numnodes = talloc_array_length(ipflags);
1377 pnn = -1;
1378 for (i=0; i<numnodes; i++) {
1379 /* verify that this node can serve this ip */
1380 if (!can_node_takeover_ip(ctdb, i, ipflags[i], ip)) {
1381 /* no it couldnt so skip to the next node */
1382 continue;
1385 num = node_ip_coverage(ctdb, i, all_ips);
1386 /* was this the first node we checked ? */
1387 if (pnn == -1) {
1388 pnn = i;
1389 min = num;
1390 } else {
1391 if (num < min) {
1392 pnn = i;
1393 min = num;
1397 if (pnn == -1) {
1398 DEBUG(DEBUG_WARNING,(__location__ " Could not find node to take over public address '%s'\n",
1399 ctdb_addr_to_str(&ip->addr)));
1401 return -1;
1404 ip->pnn = pnn;
1405 return 0;
1408 #define IP_KEYLEN 4
1409 static uint32_t *ip_key(ctdb_sock_addr *ip)
1411 static uint32_t key[IP_KEYLEN];
1413 bzero(key, sizeof(key));
1415 switch (ip->sa.sa_family) {
1416 case AF_INET:
1417 key[3] = htonl(ip->ip.sin_addr.s_addr);
1418 break;
1419 case AF_INET6: {
1420 uint32_t *s6_a32 = (uint32_t *)&(ip->ip6.sin6_addr.s6_addr);
1421 key[0] = htonl(s6_a32[0]);
1422 key[1] = htonl(s6_a32[1]);
1423 key[2] = htonl(s6_a32[2]);
1424 key[3] = htonl(s6_a32[3]);
1425 break;
1427 default:
1428 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", ip->sa.sa_family));
1429 return key;
1432 return key;
1435 static void *add_ip_callback(void *parm, void *data)
1437 struct ctdb_public_ip_list *this_ip = parm;
1438 struct ctdb_public_ip_list *prev_ip = data;
1440 if (prev_ip == NULL) {
1441 return parm;
1443 if (this_ip->pnn == -1) {
1444 this_ip->pnn = prev_ip->pnn;
1447 return parm;
1450 static int getips_count_callback(void *param, void *data)
1452 struct ctdb_public_ip_list **ip_list = (struct ctdb_public_ip_list **)param;
1453 struct ctdb_public_ip_list *new_ip = (struct ctdb_public_ip_list *)data;
1455 new_ip->next = *ip_list;
1456 *ip_list = new_ip;
1457 return 0;
1460 static struct ctdb_public_ip_list *
1461 create_merged_ip_list(struct ctdb_context *ctdb)
1463 int i, j;
1464 struct ctdb_public_ip_list *ip_list;
1465 struct ctdb_all_public_ips *public_ips;
1467 if (ctdb->ip_tree != NULL) {
1468 talloc_free(ctdb->ip_tree);
1469 ctdb->ip_tree = NULL;
1471 ctdb->ip_tree = trbt_create(ctdb, 0);
1473 for (i=0;i<ctdb->num_nodes;i++) {
1474 public_ips = ctdb->nodes[i]->known_public_ips;
1476 if (ctdb->nodes[i]->flags & NODE_FLAGS_DELETED) {
1477 continue;
1480 /* there were no public ips for this node */
1481 if (public_ips == NULL) {
1482 continue;
1485 for (j=0;j<public_ips->num;j++) {
1486 struct ctdb_public_ip_list *tmp_ip;
1488 tmp_ip = talloc_zero(ctdb->ip_tree, struct ctdb_public_ip_list);
1489 CTDB_NO_MEMORY_NULL(ctdb, tmp_ip);
1490 /* Do not use information about IP addresses hosted
1491 * on other nodes, it may not be accurate */
1492 if (public_ips->ips[j].pnn == ctdb->nodes[i]->pnn) {
1493 tmp_ip->pnn = public_ips->ips[j].pnn;
1494 } else {
1495 tmp_ip->pnn = -1;
1497 tmp_ip->addr = public_ips->ips[j].addr;
1498 tmp_ip->next = NULL;
1500 trbt_insertarray32_callback(ctdb->ip_tree,
1501 IP_KEYLEN, ip_key(&public_ips->ips[j].addr),
1502 add_ip_callback,
1503 tmp_ip);
1507 ip_list = NULL;
1508 trbt_traversearray32(ctdb->ip_tree, IP_KEYLEN, getips_count_callback, &ip_list);
1510 return ip_list;
1514 * This is the length of the longtest common prefix between the IPs.
1515 * It is calculated by XOR-ing the 2 IPs together and counting the
1516 * number of leading zeroes. The implementation means that all
1517 * addresses end up being 128 bits long.
1519 * FIXME? Should we consider IPv4 and IPv6 separately given that the
1520 * 12 bytes of 0 prefix padding will hurt the algorithm if there are
1521 * lots of nodes and IP addresses?
1523 static uint32_t ip_distance(ctdb_sock_addr *ip1, ctdb_sock_addr *ip2)
1525 uint32_t ip1_k[IP_KEYLEN];
1526 uint32_t *t;
1527 int i;
1528 uint32_t x;
1530 uint32_t distance = 0;
1532 memcpy(ip1_k, ip_key(ip1), sizeof(ip1_k));
1533 t = ip_key(ip2);
1534 for (i=0; i<IP_KEYLEN; i++) {
1535 x = ip1_k[i] ^ t[i];
1536 if (x == 0) {
1537 distance += 32;
1538 } else {
1539 /* Count number of leading zeroes.
1540 * FIXME? This could be optimised...
1542 while ((x & (1 << 31)) == 0) {
1543 x <<= 1;
1544 distance += 1;
1549 return distance;
1552 /* Calculate the IP distance for the given IP relative to IPs on the
1553 given node. The ips argument is generally the all_ips variable
1554 used in the main part of the algorithm.
1556 static uint32_t ip_distance_2_sum(ctdb_sock_addr *ip,
1557 struct ctdb_public_ip_list *ips,
1558 int pnn)
1560 struct ctdb_public_ip_list *t;
1561 uint32_t d;
1563 uint32_t sum = 0;
1565 for (t=ips; t != NULL; t=t->next) {
1566 if (t->pnn != pnn) {
1567 continue;
1570 /* Optimisation: We never calculate the distance
1571 * between an address and itself. This allows us to
1572 * calculate the effect of removing an address from a
1573 * node by simply calculating the distance between
1574 * that address and all of the exitsing addresses.
1575 * Moreover, we assume that we're only ever dealing
1576 * with addresses from all_ips so we can identify an
1577 * address via a pointer rather than doing a more
1578 * expensive address comparison. */
1579 if (&(t->addr) == ip) {
1580 continue;
1583 d = ip_distance(ip, &(t->addr));
1584 sum += d * d; /* Cheaper than pulling in math.h :-) */
1587 return sum;
1590 /* Return the LCP2 imbalance metric for addresses currently assigned
1591 to the given node.
1593 static uint32_t lcp2_imbalance(struct ctdb_public_ip_list * all_ips, int pnn)
1595 struct ctdb_public_ip_list *t;
1597 uint32_t imbalance = 0;
1599 for (t=all_ips; t!=NULL; t=t->next) {
1600 if (t->pnn != pnn) {
1601 continue;
1603 /* Pass the rest of the IPs rather than the whole
1604 all_ips input list.
1606 imbalance += ip_distance_2_sum(&(t->addr), t->next, pnn);
1609 return imbalance;
1612 /* Allocate any unassigned IPs just by looping through the IPs and
1613 * finding the best node for each.
1615 static void basic_allocate_unassigned(struct ctdb_context *ctdb,
1616 struct ctdb_ipflags *ipflags,
1617 struct ctdb_public_ip_list *all_ips)
1619 struct ctdb_public_ip_list *tmp_ip;
1621 /* loop over all ip's and find a physical node to cover for
1622 each unassigned ip.
1624 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1625 if (tmp_ip->pnn == -1) {
1626 if (find_takeover_node(ctdb, ipflags, tmp_ip, all_ips)) {
1627 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1628 ctdb_addr_to_str(&tmp_ip->addr)));
1634 /* Basic non-deterministic rebalancing algorithm.
1636 static void basic_failback(struct ctdb_context *ctdb,
1637 struct ctdb_ipflags *ipflags,
1638 struct ctdb_public_ip_list *all_ips,
1639 int num_ips)
1641 int i, numnodes;
1642 int maxnode, maxnum, minnode, minnum, num, retries;
1643 struct ctdb_public_ip_list *tmp_ip;
1645 numnodes = talloc_array_length(ipflags);
1646 retries = 0;
1648 try_again:
1649 maxnum=0;
1650 minnum=0;
1652 /* for each ip address, loop over all nodes that can serve
1653 this ip and make sure that the difference between the node
1654 serving the most and the node serving the least ip's are
1655 not greater than 1.
1657 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1658 if (tmp_ip->pnn == -1) {
1659 continue;
1662 /* Get the highest and lowest number of ips's served by any
1663 valid node which can serve this ip.
1665 maxnode = -1;
1666 minnode = -1;
1667 for (i=0; i<numnodes; i++) {
1668 /* only check nodes that can actually serve this ip */
1669 if (!can_node_takeover_ip(ctdb, i, ipflags[i], tmp_ip)) {
1670 /* no it couldnt so skip to the next node */
1671 continue;
1674 num = node_ip_coverage(ctdb, i, all_ips);
1675 if (maxnode == -1) {
1676 maxnode = i;
1677 maxnum = num;
1678 } else {
1679 if (num > maxnum) {
1680 maxnode = i;
1681 maxnum = num;
1684 if (minnode == -1) {
1685 minnode = i;
1686 minnum = num;
1687 } else {
1688 if (num < minnum) {
1689 minnode = i;
1690 minnum = num;
1694 if (maxnode == -1) {
1695 DEBUG(DEBUG_WARNING,(__location__ " Could not find maxnode. May not be able to serve ip '%s'\n",
1696 ctdb_addr_to_str(&tmp_ip->addr)));
1698 continue;
1701 /* if the spread between the smallest and largest coverage by
1702 a node is >=2 we steal one of the ips from the node with
1703 most coverage to even things out a bit.
1704 try to do this a limited number of times since we dont
1705 want to spend too much time balancing the ip coverage.
1707 if ( (maxnum > minnum+1)
1708 && (retries < (num_ips + 5)) ){
1709 struct ctdb_public_ip_list *tmp;
1711 /* Reassign one of maxnode's VNNs */
1712 for (tmp=all_ips;tmp;tmp=tmp->next) {
1713 if (tmp->pnn == maxnode) {
1714 (void)find_takeover_node(ctdb, ipflags, tmp, all_ips);
1715 retries++;
1716 goto try_again;;
1723 static void lcp2_init(struct ctdb_context *tmp_ctx,
1724 struct ctdb_ipflags *ipflags,
1725 struct ctdb_public_ip_list *all_ips,
1726 uint32_t *force_rebalance_nodes,
1727 uint32_t **lcp2_imbalances,
1728 bool **rebalance_candidates)
1730 int i, numnodes;
1731 struct ctdb_public_ip_list *tmp_ip;
1733 numnodes = talloc_array_length(ipflags);
1735 *rebalance_candidates = talloc_array(tmp_ctx, bool, numnodes);
1736 CTDB_NO_MEMORY_FATAL(tmp_ctx, *rebalance_candidates);
1737 *lcp2_imbalances = talloc_array(tmp_ctx, uint32_t, numnodes);
1738 CTDB_NO_MEMORY_FATAL(tmp_ctx, *lcp2_imbalances);
1740 for (i=0; i<numnodes; i++) {
1741 (*lcp2_imbalances)[i] = lcp2_imbalance(all_ips, i);
1742 /* First step: assume all nodes are candidates */
1743 (*rebalance_candidates)[i] = true;
1746 /* 2nd step: if a node has IPs assigned then it must have been
1747 * healthy before, so we remove it from consideration. This
1748 * is overkill but is all we have because we don't maintain
1749 * state between takeover runs. An alternative would be to
1750 * keep state and invalidate it every time the recovery master
1751 * changes.
1753 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1754 if (tmp_ip->pnn != -1) {
1755 (*rebalance_candidates)[tmp_ip->pnn] = false;
1759 /* 3rd step: if a node is forced to re-balance then
1760 we allow failback onto the node */
1761 if (force_rebalance_nodes == NULL) {
1762 return;
1764 for (i = 0; i < talloc_array_length(force_rebalance_nodes); i++) {
1765 uint32_t pnn = force_rebalance_nodes[i];
1766 if (pnn >= numnodes) {
1767 DEBUG(DEBUG_ERR,
1768 (__location__ "unknown node %u\n", pnn));
1769 continue;
1772 DEBUG(DEBUG_NOTICE,
1773 ("Forcing rebalancing of IPs to node %u\n", pnn));
1774 (*rebalance_candidates)[pnn] = true;
1778 /* Allocate any unassigned addresses using the LCP2 algorithm to find
1779 * the IP/node combination that will cost the least.
1781 static void lcp2_allocate_unassigned(struct ctdb_context *ctdb,
1782 struct ctdb_ipflags *ipflags,
1783 struct ctdb_public_ip_list *all_ips,
1784 uint32_t *lcp2_imbalances)
1786 struct ctdb_public_ip_list *tmp_ip;
1787 int dstnode, numnodes;
1789 int minnode;
1790 uint32_t mindsum, dstdsum, dstimbl, minimbl;
1791 struct ctdb_public_ip_list *minip;
1793 bool should_loop = true;
1794 bool have_unassigned = true;
1796 numnodes = talloc_array_length(ipflags);
1798 while (have_unassigned && should_loop) {
1799 should_loop = false;
1801 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1802 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES (UNASSIGNED)\n"));
1804 minnode = -1;
1805 mindsum = 0;
1806 minip = NULL;
1808 /* loop over each unassigned ip. */
1809 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1810 if (tmp_ip->pnn != -1) {
1811 continue;
1814 for (dstnode=0; dstnode<numnodes; dstnode++) {
1815 /* only check nodes that can actually takeover this ip */
1816 if (!can_node_takeover_ip(ctdb, dstnode,
1817 ipflags[dstnode],
1818 tmp_ip)) {
1819 /* no it couldnt so skip to the next node */
1820 continue;
1823 dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1824 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1825 DEBUG(DEBUG_DEBUG,(" %s -> %d [+%d]\n",
1826 ctdb_addr_to_str(&(tmp_ip->addr)),
1827 dstnode,
1828 dstimbl - lcp2_imbalances[dstnode]));
1831 if ((minnode == -1) || (dstdsum < mindsum)) {
1832 minnode = dstnode;
1833 minimbl = dstimbl;
1834 mindsum = dstdsum;
1835 minip = tmp_ip;
1836 should_loop = true;
1841 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1843 /* If we found one then assign it to the given node. */
1844 if (minnode != -1) {
1845 minip->pnn = minnode;
1846 lcp2_imbalances[minnode] = minimbl;
1847 DEBUG(DEBUG_INFO,(" %s -> %d [+%d]\n",
1848 ctdb_addr_to_str(&(minip->addr)),
1849 minnode,
1850 mindsum));
1853 /* There might be a better way but at least this is clear. */
1854 have_unassigned = false;
1855 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1856 if (tmp_ip->pnn == -1) {
1857 have_unassigned = true;
1862 /* We know if we have an unassigned addresses so we might as
1863 * well optimise.
1865 if (have_unassigned) {
1866 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
1867 if (tmp_ip->pnn == -1) {
1868 DEBUG(DEBUG_WARNING,("Failed to find node to cover ip %s\n",
1869 ctdb_addr_to_str(&tmp_ip->addr)));
1875 /* LCP2 algorithm for rebalancing the cluster. Given a candidate node
1876 * to move IPs from, determines the best IP/destination node
1877 * combination to move from the source node.
1879 static bool lcp2_failback_candidate(struct ctdb_context *ctdb,
1880 struct ctdb_ipflags *ipflags,
1881 struct ctdb_public_ip_list *all_ips,
1882 int srcnode,
1883 uint32_t candimbl,
1884 uint32_t *lcp2_imbalances,
1885 bool *rebalance_candidates)
1887 int dstnode, mindstnode, numnodes;
1888 uint32_t srcimbl, srcdsum, dstimbl, dstdsum;
1889 uint32_t minsrcimbl, mindstimbl;
1890 struct ctdb_public_ip_list *minip;
1891 struct ctdb_public_ip_list *tmp_ip;
1893 /* Find an IP and destination node that best reduces imbalance. */
1894 srcimbl = 0;
1895 minip = NULL;
1896 minsrcimbl = 0;
1897 mindstnode = -1;
1898 mindstimbl = 0;
1900 numnodes = talloc_array_length(ipflags);
1902 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1903 DEBUG(DEBUG_DEBUG,(" CONSIDERING MOVES FROM %d [%d]\n", srcnode, candimbl));
1905 for (tmp_ip=all_ips; tmp_ip; tmp_ip=tmp_ip->next) {
1906 /* Only consider addresses on srcnode. */
1907 if (tmp_ip->pnn != srcnode) {
1908 continue;
1911 /* What is this IP address costing the source node? */
1912 srcdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, srcnode);
1913 srcimbl = candimbl - srcdsum;
1915 /* Consider this IP address would cost each potential
1916 * destination node. Destination nodes are limited to
1917 * those that are newly healthy, since we don't want
1918 * to do gratuitous failover of IPs just to make minor
1919 * balance improvements.
1921 for (dstnode=0; dstnode<numnodes; dstnode++) {
1922 if (!rebalance_candidates[dstnode]) {
1923 continue;
1926 /* only check nodes that can actually takeover this ip */
1927 if (!can_node_takeover_ip(ctdb, dstnode,
1928 ipflags[dstnode], tmp_ip)) {
1929 /* no it couldnt so skip to the next node */
1930 continue;
1933 dstdsum = ip_distance_2_sum(&(tmp_ip->addr), all_ips, dstnode);
1934 dstimbl = lcp2_imbalances[dstnode] + dstdsum;
1935 DEBUG(DEBUG_DEBUG,(" %d [%d] -> %s -> %d [+%d]\n",
1936 srcnode, srcimbl - lcp2_imbalances[srcnode],
1937 ctdb_addr_to_str(&(tmp_ip->addr)),
1938 dstnode, dstimbl - lcp2_imbalances[dstnode]));
1940 if ((dstimbl < candimbl) && (dstdsum < srcdsum) && \
1941 ((mindstnode == -1) || \
1942 ((srcimbl + dstimbl) < (minsrcimbl + mindstimbl)))) {
1944 minip = tmp_ip;
1945 minsrcimbl = srcimbl;
1946 mindstnode = dstnode;
1947 mindstimbl = dstimbl;
1951 DEBUG(DEBUG_DEBUG,(" ----------------------------------------\n"));
1953 if (mindstnode != -1) {
1954 /* We found a move that makes things better... */
1955 DEBUG(DEBUG_INFO,("%d [%d] -> %s -> %d [+%d]\n",
1956 srcnode, minsrcimbl - lcp2_imbalances[srcnode],
1957 ctdb_addr_to_str(&(minip->addr)),
1958 mindstnode, mindstimbl - lcp2_imbalances[mindstnode]));
1961 lcp2_imbalances[srcnode] = srcimbl;
1962 lcp2_imbalances[mindstnode] = mindstimbl;
1963 minip->pnn = mindstnode;
1965 return true;
1968 return false;
1972 struct lcp2_imbalance_pnn {
1973 uint32_t imbalance;
1974 int pnn;
1977 static int lcp2_cmp_imbalance_pnn(const void * a, const void * b)
1979 const struct lcp2_imbalance_pnn * lipa = (const struct lcp2_imbalance_pnn *) a;
1980 const struct lcp2_imbalance_pnn * lipb = (const struct lcp2_imbalance_pnn *) b;
1982 if (lipa->imbalance > lipb->imbalance) {
1983 return -1;
1984 } else if (lipa->imbalance == lipb->imbalance) {
1985 return 0;
1986 } else {
1987 return 1;
1991 /* LCP2 algorithm for rebalancing the cluster. This finds the source
1992 * node with the highest LCP2 imbalance, and then determines the best
1993 * IP/destination node combination to move from the source node.
1995 static void lcp2_failback(struct ctdb_context *ctdb,
1996 struct ctdb_ipflags *ipflags,
1997 struct ctdb_public_ip_list *all_ips,
1998 uint32_t *lcp2_imbalances,
1999 bool *rebalance_candidates)
2001 int i, num_rebalance_candidates, numnodes;
2002 struct lcp2_imbalance_pnn * lips;
2003 bool again;
2005 numnodes = talloc_array_length(ipflags);
2007 try_again:
2009 /* It is only worth continuing if we have suitable target
2010 * nodes to transfer IPs to. This check is much cheaper than
2011 * continuing on...
2013 num_rebalance_candidates = 0;
2014 for (i=0; i<numnodes; i++) {
2015 if (rebalance_candidates[i]) {
2016 num_rebalance_candidates++;
2019 if (num_rebalance_candidates == 0) {
2020 return;
2023 /* Put the imbalances and nodes into an array, sort them and
2024 * iterate through candidates. Usually the 1st one will be
2025 * used, so this doesn't cost much...
2027 lips = talloc_array(ctdb, struct lcp2_imbalance_pnn, numnodes);
2028 for (i=0; i<numnodes; i++) {
2029 lips[i].imbalance = lcp2_imbalances[i];
2030 lips[i].pnn = i;
2032 qsort(lips, numnodes, sizeof(struct lcp2_imbalance_pnn),
2033 lcp2_cmp_imbalance_pnn);
2035 again = false;
2036 for (i=0; i<numnodes; i++) {
2037 /* This means that all nodes had 0 or 1 addresses, so
2038 * can't be imbalanced.
2040 if (lips[i].imbalance == 0) {
2041 break;
2044 if (lcp2_failback_candidate(ctdb,
2045 ipflags,
2046 all_ips,
2047 lips[i].pnn,
2048 lips[i].imbalance,
2049 lcp2_imbalances,
2050 rebalance_candidates)) {
2051 again = true;
2052 break;
2056 talloc_free(lips);
2057 if (again) {
2058 goto try_again;
2062 static void unassign_unsuitable_ips(struct ctdb_context *ctdb,
2063 struct ctdb_ipflags *ipflags,
2064 struct ctdb_public_ip_list *all_ips)
2066 struct ctdb_public_ip_list *tmp_ip;
2068 /* verify that the assigned nodes can serve that public ip
2069 and set it to -1 if not
2071 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2072 if (tmp_ip->pnn == -1) {
2073 continue;
2075 if (!can_node_host_ip(ctdb, tmp_ip->pnn,
2076 ipflags[tmp_ip->pnn], tmp_ip) != 0) {
2077 /* this node can not serve this ip. */
2078 DEBUG(DEBUG_DEBUG,("Unassign IP: %s from %d\n",
2079 ctdb_addr_to_str(&(tmp_ip->addr)),
2080 tmp_ip->pnn));
2081 tmp_ip->pnn = -1;
2086 static void ip_alloc_deterministic_ips(struct ctdb_context *ctdb,
2087 struct ctdb_ipflags *ipflags,
2088 struct ctdb_public_ip_list *all_ips)
2090 struct ctdb_public_ip_list *tmp_ip;
2091 int i, numnodes;
2093 numnodes = talloc_array_length(ipflags);
2095 DEBUG(DEBUG_NOTICE,("Deterministic IPs enabled. Resetting all ip allocations\n"));
2096 /* Allocate IPs to nodes in a modulo fashion so that IPs will
2097 * always be allocated the same way for a specific set of
2098 * available/unavailable nodes.
2101 for (i=0,tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next,i++) {
2102 tmp_ip->pnn = i % numnodes;
2105 /* IP failback doesn't make sense with deterministic
2106 * IPs, since the modulo step above implicitly fails
2107 * back IPs to their "home" node.
2109 if (1 == ctdb->tunable.no_ip_failback) {
2110 DEBUG(DEBUG_WARNING, ("WARNING: 'NoIPFailback' set but ignored - incompatible with 'DeterministicIPs\n"));
2113 unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2115 basic_allocate_unassigned(ctdb, ipflags, all_ips);
2117 /* No failback here! */
2120 static void ip_alloc_nondeterministic_ips(struct ctdb_context *ctdb,
2121 struct ctdb_ipflags *ipflags,
2122 struct ctdb_public_ip_list *all_ips)
2124 /* This should be pushed down into basic_failback. */
2125 struct ctdb_public_ip_list *tmp_ip;
2126 int num_ips = 0;
2127 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2128 num_ips++;
2131 unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2133 basic_allocate_unassigned(ctdb, ipflags, all_ips);
2135 /* If we don't want IPs to fail back then don't rebalance IPs. */
2136 if (1 == ctdb->tunable.no_ip_failback) {
2137 return;
2140 /* Now, try to make sure the ip adresses are evenly distributed
2141 across the nodes.
2143 basic_failback(ctdb, ipflags, all_ips, num_ips);
2146 static void ip_alloc_lcp2(struct ctdb_context *ctdb,
2147 struct ctdb_ipflags *ipflags,
2148 struct ctdb_public_ip_list *all_ips,
2149 uint32_t *force_rebalance_nodes)
2151 uint32_t *lcp2_imbalances;
2152 bool *rebalance_candidates;
2154 TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2156 unassign_unsuitable_ips(ctdb, ipflags, all_ips);
2158 lcp2_init(tmp_ctx, ipflags, all_ips,force_rebalance_nodes,
2159 &lcp2_imbalances, &rebalance_candidates);
2161 lcp2_allocate_unassigned(ctdb, ipflags, all_ips, lcp2_imbalances);
2163 /* If we don't want IPs to fail back then don't rebalance IPs. */
2164 if (1 == ctdb->tunable.no_ip_failback) {
2165 goto finished;
2168 /* Now, try to make sure the ip adresses are evenly distributed
2169 across the nodes.
2171 lcp2_failback(ctdb, ipflags, all_ips,
2172 lcp2_imbalances, rebalance_candidates);
2174 finished:
2175 talloc_free(tmp_ctx);
2178 static bool all_nodes_are_disabled(struct ctdb_node_map *nodemap)
2180 int i, num_healthy;
2182 /* Count how many completely healthy nodes we have */
2183 num_healthy = 0;
2184 for (i=0;i<nodemap->num;i++) {
2185 if (!(nodemap->nodes[i].flags & (NODE_FLAGS_INACTIVE|NODE_FLAGS_DISABLED))) {
2186 num_healthy++;
2190 return num_healthy == 0;
2193 /* The calculation part of the IP allocation algorithm. */
2194 static void ctdb_takeover_run_core(struct ctdb_context *ctdb,
2195 struct ctdb_ipflags *ipflags,
2196 struct ctdb_public_ip_list **all_ips_p,
2197 uint32_t *force_rebalance_nodes)
2199 /* since nodes only know about those public addresses that
2200 can be served by that particular node, no single node has
2201 a full list of all public addresses that exist in the cluster.
2202 Walk over all node structures and create a merged list of
2203 all public addresses that exist in the cluster.
2205 keep the tree of ips around as ctdb->ip_tree
2207 *all_ips_p = create_merged_ip_list(ctdb);
2209 if (1 == ctdb->tunable.lcp2_public_ip_assignment) {
2210 ip_alloc_lcp2(ctdb, ipflags, *all_ips_p, force_rebalance_nodes);
2211 } else if (1 == ctdb->tunable.deterministic_public_ips) {
2212 ip_alloc_deterministic_ips(ctdb, ipflags, *all_ips_p);
2213 } else {
2214 ip_alloc_nondeterministic_ips(ctdb, ipflags, *all_ips_p);
2217 /* at this point ->pnn is the node which will own each IP
2218 or -1 if there is no node that can cover this ip
2221 return;
2224 struct get_tunable_callback_data {
2225 const char *tunable;
2226 uint32_t *out;
2227 bool fatal;
2230 static void get_tunable_callback(struct ctdb_context *ctdb, uint32_t pnn,
2231 int32_t res, TDB_DATA outdata,
2232 void *callback)
2234 struct get_tunable_callback_data *cd =
2235 (struct get_tunable_callback_data *)callback;
2236 int size;
2238 if (res != 0) {
2239 /* Already handled in fail callback */
2240 return;
2243 if (outdata.dsize != sizeof(uint32_t)) {
2244 DEBUG(DEBUG_ERR,("Wrong size of returned data when reading \"%s\" tunable from node %d. Expected %d bytes but received %d bytes\n",
2245 cd->tunable, pnn, (int)sizeof(uint32_t),
2246 (int)outdata.dsize));
2247 cd->fatal = true;
2248 return;
2251 size = talloc_array_length(cd->out);
2252 if (pnn >= size) {
2253 DEBUG(DEBUG_ERR,("Got %s reply from node %d but nodemap only has %d entries\n",
2254 cd->tunable, pnn, size));
2255 return;
2259 cd->out[pnn] = *(uint32_t *)outdata.dptr;
2262 static void get_tunable_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2263 int32_t res, TDB_DATA outdata,
2264 void *callback)
2266 struct get_tunable_callback_data *cd =
2267 (struct get_tunable_callback_data *)callback;
2269 switch (res) {
2270 case -ETIME:
2271 DEBUG(DEBUG_ERR,
2272 ("Timed out getting tunable \"%s\" from node %d\n",
2273 cd->tunable, pnn));
2274 cd->fatal = true;
2275 break;
2276 case -EINVAL:
2277 case -1:
2278 DEBUG(DEBUG_WARNING,
2279 ("Tunable \"%s\" not implemented on node %d\n",
2280 cd->tunable, pnn));
2281 break;
2282 default:
2283 DEBUG(DEBUG_ERR,
2284 ("Unexpected error getting tunable \"%s\" from node %d\n",
2285 cd->tunable, pnn));
2286 cd->fatal = true;
2290 static uint32_t *get_tunable_from_nodes(struct ctdb_context *ctdb,
2291 TALLOC_CTX *tmp_ctx,
2292 struct ctdb_node_map *nodemap,
2293 const char *tunable,
2294 uint32_t default_value)
2296 TDB_DATA data;
2297 struct ctdb_control_get_tunable *t;
2298 uint32_t *nodes;
2299 uint32_t *tvals;
2300 struct get_tunable_callback_data callback_data;
2301 int i;
2303 tvals = talloc_array(tmp_ctx, uint32_t, nodemap->num);
2304 CTDB_NO_MEMORY_NULL(ctdb, tvals);
2305 for (i=0; i<nodemap->num; i++) {
2306 tvals[i] = default_value;
2309 callback_data.out = tvals;
2310 callback_data.tunable = tunable;
2311 callback_data.fatal = false;
2313 data.dsize = offsetof(struct ctdb_control_get_tunable, name) + strlen(tunable) + 1;
2314 data.dptr = talloc_size(tmp_ctx, data.dsize);
2315 t = (struct ctdb_control_get_tunable *)data.dptr;
2316 t->length = strlen(tunable)+1;
2317 memcpy(t->name, tunable, t->length);
2318 nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2319 if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_TUNABLE,
2320 nodes, 0, TAKEOVER_TIMEOUT(),
2321 false, data,
2322 get_tunable_callback,
2323 get_tunable_fail_callback,
2324 &callback_data) != 0) {
2325 if (callback_data.fatal) {
2326 talloc_free(tvals);
2327 tvals = NULL;
2330 talloc_free(nodes);
2331 talloc_free(data.dptr);
2333 return tvals;
2336 struct get_runstate_callback_data {
2337 enum ctdb_runstate *out;
2338 bool fatal;
2341 static void get_runstate_callback(struct ctdb_context *ctdb, uint32_t pnn,
2342 int32_t res, TDB_DATA outdata,
2343 void *callback_data)
2345 struct get_runstate_callback_data *cd =
2346 (struct get_runstate_callback_data *)callback_data;
2347 int size;
2349 if (res != 0) {
2350 /* Already handled in fail callback */
2351 return;
2354 if (outdata.dsize != sizeof(uint32_t)) {
2355 DEBUG(DEBUG_ERR,("Wrong size of returned data when getting runstate from node %d. Expected %d bytes but received %d bytes\n",
2356 pnn, (int)sizeof(uint32_t),
2357 (int)outdata.dsize));
2358 cd->fatal = true;
2359 return;
2362 size = talloc_array_length(cd->out);
2363 if (pnn >= size) {
2364 DEBUG(DEBUG_ERR,("Got reply from node %d but nodemap only has %d entries\n",
2365 pnn, size));
2366 return;
2369 cd->out[pnn] = (enum ctdb_runstate)*(uint32_t *)outdata.dptr;
2372 static void get_runstate_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2373 int32_t res, TDB_DATA outdata,
2374 void *callback)
2376 struct get_runstate_callback_data *cd =
2377 (struct get_runstate_callback_data *)callback;
2379 switch (res) {
2380 case -ETIME:
2381 DEBUG(DEBUG_ERR,
2382 ("Timed out getting runstate from node %d\n", pnn));
2383 cd->fatal = true;
2384 break;
2385 default:
2386 DEBUG(DEBUG_WARNING,
2387 ("Error getting runstate from node %d - assuming runstates not supported\n",
2388 pnn));
2392 static enum ctdb_runstate * get_runstate_from_nodes(struct ctdb_context *ctdb,
2393 TALLOC_CTX *tmp_ctx,
2394 struct ctdb_node_map *nodemap,
2395 enum ctdb_runstate default_value)
2397 uint32_t *nodes;
2398 enum ctdb_runstate *rs;
2399 struct get_runstate_callback_data callback_data;
2400 int i;
2402 rs = talloc_array(tmp_ctx, enum ctdb_runstate, nodemap->num);
2403 CTDB_NO_MEMORY_NULL(ctdb, rs);
2404 for (i=0; i<nodemap->num; i++) {
2405 rs[i] = default_value;
2408 callback_data.out = rs;
2409 callback_data.fatal = false;
2411 nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2412 if (ctdb_client_async_control(ctdb, CTDB_CONTROL_GET_RUNSTATE,
2413 nodes, 0, TAKEOVER_TIMEOUT(),
2414 true, tdb_null,
2415 get_runstate_callback,
2416 get_runstate_fail_callback,
2417 &callback_data) != 0) {
2418 if (callback_data.fatal) {
2419 free(rs);
2420 rs = NULL;
2423 talloc_free(nodes);
2425 return rs;
2428 /* Set internal flags for IP allocation:
2429 * Clear ip flags
2430 * Set NOIPTAKOVER ip flags from per-node NoIPTakeover tunable
2431 * Set NOIPHOST ip flag for each INACTIVE node
2432 * if all nodes are disabled:
2433 * Set NOIPHOST ip flags from per-node NoIPHostOnAllDisabled tunable
2434 * else
2435 * Set NOIPHOST ip flags for disabled nodes
2437 static struct ctdb_ipflags *
2438 set_ipflags_internal(struct ctdb_context *ctdb,
2439 TALLOC_CTX *tmp_ctx,
2440 struct ctdb_node_map *nodemap,
2441 uint32_t *tval_noiptakeover,
2442 uint32_t *tval_noiphostonalldisabled,
2443 enum ctdb_runstate *runstate)
2445 int i;
2446 struct ctdb_ipflags *ipflags;
2448 /* Clear IP flags - implicit due to talloc_zero */
2449 ipflags = talloc_zero_array(tmp_ctx, struct ctdb_ipflags, nodemap->num);
2450 CTDB_NO_MEMORY_NULL(ctdb, ipflags);
2452 for (i=0;i<nodemap->num;i++) {
2453 /* Can not take IPs on node with NoIPTakeover set */
2454 if (tval_noiptakeover[i] != 0) {
2455 ipflags[i].noiptakeover = true;
2458 /* Can not host IPs on node not in RUNNING state */
2459 if (runstate[i] != CTDB_RUNSTATE_RUNNING) {
2460 ipflags[i].noiphost = true;
2461 continue;
2463 /* Can not host IPs on INACTIVE node */
2464 if (nodemap->nodes[i].flags & NODE_FLAGS_INACTIVE) {
2465 ipflags[i].noiphost = true;
2469 if (all_nodes_are_disabled(nodemap)) {
2470 /* If all nodes are disabled, can not host IPs on node
2471 * with NoIPHostOnAllDisabled set
2473 for (i=0;i<nodemap->num;i++) {
2474 if (tval_noiphostonalldisabled[i] != 0) {
2475 ipflags[i].noiphost = true;
2478 } else {
2479 /* If some nodes are not disabled, then can not host
2480 * IPs on DISABLED node
2482 for (i=0;i<nodemap->num;i++) {
2483 if (nodemap->nodes[i].flags & NODE_FLAGS_DISABLED) {
2484 ipflags[i].noiphost = true;
2489 return ipflags;
2492 static struct ctdb_ipflags *set_ipflags(struct ctdb_context *ctdb,
2493 TALLOC_CTX *tmp_ctx,
2494 struct ctdb_node_map *nodemap)
2496 uint32_t *tval_noiptakeover;
2497 uint32_t *tval_noiphostonalldisabled;
2498 struct ctdb_ipflags *ipflags;
2499 enum ctdb_runstate *runstate;
2502 tval_noiptakeover = get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2503 "NoIPTakeover", 0);
2504 if (tval_noiptakeover == NULL) {
2505 return NULL;
2508 tval_noiphostonalldisabled =
2509 get_tunable_from_nodes(ctdb, tmp_ctx, nodemap,
2510 "NoIPHostOnAllDisabled", 0);
2511 if (tval_noiphostonalldisabled == NULL) {
2512 /* Caller frees tmp_ctx */
2513 return NULL;
2516 /* Any nodes where CTDB_CONTROL_GET_RUNSTATE is not supported
2517 * will default to CTDB_RUNSTATE_RUNNING. This ensures
2518 * reasonable behaviour on a mixed cluster during upgrade.
2520 runstate = get_runstate_from_nodes(ctdb, tmp_ctx, nodemap,
2521 CTDB_RUNSTATE_RUNNING);
2522 if (runstate == NULL) {
2523 /* Caller frees tmp_ctx */
2524 return NULL;
2527 ipflags = set_ipflags_internal(ctdb, tmp_ctx, nodemap,
2528 tval_noiptakeover,
2529 tval_noiphostonalldisabled,
2530 runstate);
2532 talloc_free(tval_noiptakeover);
2533 talloc_free(tval_noiphostonalldisabled);
2534 talloc_free(runstate);
2536 return ipflags;
2539 struct iprealloc_callback_data {
2540 bool *retry_nodes;
2541 int retry_count;
2542 client_async_callback fail_callback;
2543 void *fail_callback_data;
2544 struct ctdb_node_map *nodemap;
2547 static void iprealloc_fail_callback(struct ctdb_context *ctdb, uint32_t pnn,
2548 int32_t res, TDB_DATA outdata,
2549 void *callback)
2551 int numnodes;
2552 struct iprealloc_callback_data *cd =
2553 (struct iprealloc_callback_data *)callback;
2555 numnodes = talloc_array_length(cd->retry_nodes);
2556 if (pnn > numnodes) {
2557 DEBUG(DEBUG_ERR,
2558 ("ipreallocated failure from node %d, "
2559 "but only %d nodes in nodemap\n",
2560 pnn, numnodes));
2561 return;
2564 /* Can't run the "ipreallocated" event on a INACTIVE node */
2565 if (cd->nodemap->nodes[pnn].flags & NODE_FLAGS_INACTIVE) {
2566 DEBUG(DEBUG_WARNING,
2567 ("ipreallocated failed on inactive node %d, ignoring\n",
2568 pnn));
2569 return;
2572 switch (res) {
2573 case -ETIME:
2574 /* If the control timed out then that's a real error,
2575 * so call the real fail callback
2577 cd->fail_callback(ctdb, pnn, res, outdata,
2578 cd->fail_callback_data);
2579 break;
2580 default:
2581 /* If not a timeout then either the ipreallocated
2582 * eventscript (or some setup) failed. This might
2583 * have failed because the IPREALLOCATED control isn't
2584 * implemented - right now there is no way of knowing
2585 * because the error codes are all folded down to -1.
2586 * Consider retrying using EVENTSCRIPT control...
2588 DEBUG(DEBUG_WARNING,
2589 ("ipreallocated failure from node %d, flagging retry\n",
2590 pnn));
2591 cd->retry_nodes[pnn] = true;
2592 cd->retry_count++;
2596 struct takeover_callback_data {
2597 bool *node_failed;
2598 client_async_callback fail_callback;
2599 void *fail_callback_data;
2600 struct ctdb_node_map *nodemap;
2603 static void takeover_run_fail_callback(struct ctdb_context *ctdb,
2604 uint32_t node_pnn, int32_t res,
2605 TDB_DATA outdata, void *callback_data)
2607 struct takeover_callback_data *cd =
2608 talloc_get_type_abort(callback_data,
2609 struct takeover_callback_data);
2610 int i;
2612 for (i = 0; i < cd->nodemap->num; i++) {
2613 if (node_pnn == cd->nodemap->nodes[i].pnn) {
2614 break;
2618 if (i == cd->nodemap->num) {
2619 DEBUG(DEBUG_ERR, (__location__ " invalid PNN %u\n", node_pnn));
2620 return;
2623 if (!cd->node_failed[i]) {
2624 cd->node_failed[i] = true;
2625 cd->fail_callback(ctdb, node_pnn, res, outdata,
2626 cd->fail_callback_data);
2631 make any IP alias changes for public addresses that are necessary
2633 int ctdb_takeover_run(struct ctdb_context *ctdb, struct ctdb_node_map *nodemap,
2634 uint32_t *force_rebalance_nodes,
2635 client_async_callback fail_callback, void *callback_data)
2637 int i, j, ret;
2638 struct ctdb_public_ip ip;
2639 struct ctdb_public_ipv4 ipv4;
2640 uint32_t *nodes;
2641 struct ctdb_public_ip_list *all_ips, *tmp_ip;
2642 TDB_DATA data;
2643 struct timeval timeout;
2644 struct client_async_data *async_data;
2645 struct ctdb_client_control_state *state;
2646 TALLOC_CTX *tmp_ctx = talloc_new(ctdb);
2647 struct ctdb_ipflags *ipflags;
2648 struct takeover_callback_data *takeover_data;
2649 struct iprealloc_callback_data iprealloc_data;
2650 bool *retry_data;
2653 * ip failover is completely disabled, just send out the
2654 * ipreallocated event.
2656 if (ctdb->tunable.disable_ip_failover != 0) {
2657 goto ipreallocated;
2660 ipflags = set_ipflags(ctdb, tmp_ctx, nodemap);
2661 if (ipflags == NULL) {
2662 DEBUG(DEBUG_ERR,("Failed to set IP flags - aborting takeover run\n"));
2663 talloc_free(tmp_ctx);
2664 return -1;
2667 ZERO_STRUCT(ip);
2669 /* Do the IP reassignment calculations */
2670 ctdb_takeover_run_core(ctdb, ipflags, &all_ips, force_rebalance_nodes);
2672 /* Now tell all nodes to release any public IPs should not
2673 * host. This will be a NOOP on nodes that don't currently
2674 * hold the given IP.
2676 takeover_data = talloc_zero(tmp_ctx, struct takeover_callback_data);
2677 CTDB_NO_MEMORY_FATAL(ctdb, takeover_data);
2679 takeover_data->node_failed = talloc_zero_array(tmp_ctx,
2680 bool, nodemap->num);
2681 CTDB_NO_MEMORY_FATAL(ctdb, takeover_data->node_failed);
2682 takeover_data->fail_callback = fail_callback;
2683 takeover_data->fail_callback_data = callback_data;
2684 takeover_data->nodemap = nodemap;
2686 async_data = talloc_zero(tmp_ctx, struct client_async_data);
2687 CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2689 async_data->fail_callback = takeover_run_fail_callback;
2690 async_data->callback_data = takeover_data;
2692 for (i=0;i<nodemap->num;i++) {
2693 /* don't talk to unconnected nodes, but do talk to banned nodes */
2694 if (nodemap->nodes[i].flags & NODE_FLAGS_DISCONNECTED) {
2695 continue;
2698 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2699 if (tmp_ip->pnn == nodemap->nodes[i].pnn) {
2700 /* This node should be serving this
2701 vnn so dont tell it to release the ip
2703 continue;
2705 if (tmp_ip->addr.sa.sa_family == AF_INET) {
2706 ipv4.pnn = tmp_ip->pnn;
2707 ipv4.sin = tmp_ip->addr.ip;
2709 timeout = TAKEOVER_TIMEOUT();
2710 data.dsize = sizeof(ipv4);
2711 data.dptr = (uint8_t *)&ipv4;
2712 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2713 0, CTDB_CONTROL_RELEASE_IPv4, 0,
2714 data, async_data,
2715 &timeout, NULL);
2716 } else {
2717 ip.pnn = tmp_ip->pnn;
2718 ip.addr = tmp_ip->addr;
2720 timeout = TAKEOVER_TIMEOUT();
2721 data.dsize = sizeof(ip);
2722 data.dptr = (uint8_t *)&ip;
2723 state = ctdb_control_send(ctdb, nodemap->nodes[i].pnn,
2724 0, CTDB_CONTROL_RELEASE_IP, 0,
2725 data, async_data,
2726 &timeout, NULL);
2729 if (state == NULL) {
2730 DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_RELEASE_IP to node %u\n", nodemap->nodes[i].pnn));
2731 talloc_free(tmp_ctx);
2732 return -1;
2735 ctdb_client_async_add(async_data, state);
2738 if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2739 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_RELEASE_IP failed\n"));
2740 talloc_free(tmp_ctx);
2741 return -1;
2743 talloc_free(async_data);
2746 /* tell all nodes to get their own IPs */
2747 async_data = talloc_zero(tmp_ctx, struct client_async_data);
2748 CTDB_NO_MEMORY_FATAL(ctdb, async_data);
2750 async_data->fail_callback = fail_callback;
2751 async_data->callback_data = callback_data;
2753 for (tmp_ip=all_ips;tmp_ip;tmp_ip=tmp_ip->next) {
2754 if (tmp_ip->pnn == -1) {
2755 /* this IP won't be taken over */
2756 continue;
2759 if (tmp_ip->addr.sa.sa_family == AF_INET) {
2760 ipv4.pnn = tmp_ip->pnn;
2761 ipv4.sin = tmp_ip->addr.ip;
2763 timeout = TAKEOVER_TIMEOUT();
2764 data.dsize = sizeof(ipv4);
2765 data.dptr = (uint8_t *)&ipv4;
2766 state = ctdb_control_send(ctdb, tmp_ip->pnn,
2767 0, CTDB_CONTROL_TAKEOVER_IPv4, 0,
2768 data, async_data,
2769 &timeout, NULL);
2770 } else {
2771 ip.pnn = tmp_ip->pnn;
2772 ip.addr = tmp_ip->addr;
2774 timeout = TAKEOVER_TIMEOUT();
2775 data.dsize = sizeof(ip);
2776 data.dptr = (uint8_t *)&ip;
2777 state = ctdb_control_send(ctdb, tmp_ip->pnn,
2778 0, CTDB_CONTROL_TAKEOVER_IP, 0,
2779 data, async_data,
2780 &timeout, NULL);
2782 if (state == NULL) {
2783 DEBUG(DEBUG_ERR,(__location__ " Failed to call async control CTDB_CONTROL_TAKEOVER_IP to node %u\n", tmp_ip->pnn));
2784 talloc_free(tmp_ctx);
2785 return -1;
2788 ctdb_client_async_add(async_data, state);
2790 if (ctdb_client_async_wait(ctdb, async_data) != 0) {
2791 DEBUG(DEBUG_ERR,(__location__ " Async control CTDB_CONTROL_TAKEOVER_IP failed\n"));
2792 talloc_free(tmp_ctx);
2793 return -1;
2796 ipreallocated:
2798 * Tell all nodes to run eventscripts to process the
2799 * "ipreallocated" event. This can do a lot of things,
2800 * including restarting services to reconfigure them if public
2801 * IPs have moved. Once upon a time this event only used to
2802 * update natwg.
2804 retry_data = talloc_zero_array(tmp_ctx, bool, nodemap->num);
2805 CTDB_NO_MEMORY_FATAL(ctdb, retry_data);
2806 iprealloc_data.retry_nodes = retry_data;
2807 iprealloc_data.retry_count = 0;
2808 iprealloc_data.fail_callback = fail_callback;
2809 iprealloc_data.fail_callback_data = callback_data;
2810 iprealloc_data.nodemap = nodemap;
2812 nodes = list_of_connected_nodes(ctdb, nodemap, tmp_ctx, true);
2813 ret = ctdb_client_async_control(ctdb, CTDB_CONTROL_IPREALLOCATED,
2814 nodes, 0, TAKEOVER_TIMEOUT(),
2815 false, tdb_null,
2816 NULL, iprealloc_fail_callback,
2817 &iprealloc_data);
2818 if (ret != 0) {
2819 /* If the control failed then we should retry to any
2820 * nodes flagged by iprealloc_fail_callback using the
2821 * EVENTSCRIPT control. This is a best-effort at
2822 * backward compatiblity when running a mixed cluster
2823 * where some nodes have not yet been upgraded to
2824 * support the IPREALLOCATED control.
2826 DEBUG(DEBUG_WARNING,
2827 ("Retry ipreallocated to some nodes using eventscript control\n"));
2829 nodes = talloc_array(tmp_ctx, uint32_t,
2830 iprealloc_data.retry_count);
2831 CTDB_NO_MEMORY_FATAL(ctdb, nodes);
2833 j = 0;
2834 for (i=0; i<nodemap->num; i++) {
2835 if (iprealloc_data.retry_nodes[i]) {
2836 nodes[j] = i;
2837 j++;
2841 data.dptr = discard_const("ipreallocated");
2842 data.dsize = strlen((char *)data.dptr) + 1;
2843 ret = ctdb_client_async_control(ctdb,
2844 CTDB_CONTROL_RUN_EVENTSCRIPTS,
2845 nodes, 0, TAKEOVER_TIMEOUT(),
2846 false, data,
2847 NULL, fail_callback,
2848 callback_data);
2849 if (ret != 0) {
2850 DEBUG(DEBUG_ERR, (__location__ " failed to send control to run eventscripts with \"ipreallocated\"\n"));
2854 talloc_free(tmp_ctx);
2855 return ret;
2860 destroy a ctdb_client_ip structure
2862 static int ctdb_client_ip_destructor(struct ctdb_client_ip *ip)
2864 DEBUG(DEBUG_DEBUG,("destroying client tcp for %s:%u (client_id %u)\n",
2865 ctdb_addr_to_str(&ip->addr),
2866 ntohs(ip->addr.ip.sin_port),
2867 ip->client_id));
2869 DLIST_REMOVE(ip->ctdb->client_ip_list, ip);
2870 return 0;
2874 called by a client to inform us of a TCP connection that it is managing
2875 that should tickled with an ACK when IP takeover is done
2876 we handle both the old ipv4 style of packets as well as the new ipv4/6
2877 pdus.
2879 int32_t ctdb_control_tcp_client(struct ctdb_context *ctdb, uint32_t client_id,
2880 TDB_DATA indata)
2882 struct ctdb_client *client = ctdb_reqid_find(ctdb, client_id, struct ctdb_client);
2883 struct ctdb_control_tcp *old_addr = NULL;
2884 struct ctdb_control_tcp_addr new_addr;
2885 struct ctdb_control_tcp_addr *tcp_sock = NULL;
2886 struct ctdb_tcp_list *tcp;
2887 struct ctdb_tcp_connection t;
2888 int ret;
2889 TDB_DATA data;
2890 struct ctdb_client_ip *ip;
2891 struct ctdb_vnn *vnn;
2892 ctdb_sock_addr addr;
2894 switch (indata.dsize) {
2895 case sizeof(struct ctdb_control_tcp):
2896 old_addr = (struct ctdb_control_tcp *)indata.dptr;
2897 ZERO_STRUCT(new_addr);
2898 tcp_sock = &new_addr;
2899 tcp_sock->src.ip = old_addr->src;
2900 tcp_sock->dest.ip = old_addr->dest;
2901 break;
2902 case sizeof(struct ctdb_control_tcp_addr):
2903 tcp_sock = (struct ctdb_control_tcp_addr *)indata.dptr;
2904 break;
2905 default:
2906 DEBUG(DEBUG_ERR,(__location__ " Invalid data structure passed "
2907 "to ctdb_control_tcp_client. size was %d but "
2908 "only allowed sizes are %lu and %lu\n",
2909 (int)indata.dsize,
2910 (long unsigned)sizeof(struct ctdb_control_tcp),
2911 (long unsigned)sizeof(struct ctdb_control_tcp_addr)));
2912 return -1;
2915 addr = tcp_sock->src;
2916 ctdb_canonicalize_ip(&addr, &tcp_sock->src);
2917 addr = tcp_sock->dest;
2918 ctdb_canonicalize_ip(&addr, &tcp_sock->dest);
2920 ZERO_STRUCT(addr);
2921 memcpy(&addr, &tcp_sock->dest, sizeof(addr));
2922 vnn = find_public_ip_vnn(ctdb, &addr);
2923 if (vnn == NULL) {
2924 switch (addr.sa.sa_family) {
2925 case AF_INET:
2926 if (ntohl(addr.ip.sin_addr.s_addr) != INADDR_LOOPBACK) {
2927 DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public address.\n",
2928 ctdb_addr_to_str(&addr)));
2930 break;
2931 case AF_INET6:
2932 DEBUG(DEBUG_ERR,("Could not add client IP %s. This is not a public ipv6 address.\n",
2933 ctdb_addr_to_str(&addr)));
2934 break;
2935 default:
2936 DEBUG(DEBUG_ERR,(__location__ " Unknown family type %d\n", addr.sa.sa_family));
2939 return 0;
2942 if (vnn->pnn != ctdb->pnn) {
2943 DEBUG(DEBUG_ERR,("Attempt to register tcp client for IP %s we don't hold - failing (client_id %u pid %u)\n",
2944 ctdb_addr_to_str(&addr),
2945 client_id, client->pid));
2946 /* failing this call will tell smbd to die */
2947 return -1;
2950 ip = talloc(client, struct ctdb_client_ip);
2951 CTDB_NO_MEMORY(ctdb, ip);
2953 ip->ctdb = ctdb;
2954 ip->addr = addr;
2955 ip->client_id = client_id;
2956 talloc_set_destructor(ip, ctdb_client_ip_destructor);
2957 DLIST_ADD(ctdb->client_ip_list, ip);
2959 tcp = talloc(client, struct ctdb_tcp_list);
2960 CTDB_NO_MEMORY(ctdb, tcp);
2962 tcp->connection.src_addr = tcp_sock->src;
2963 tcp->connection.dst_addr = tcp_sock->dest;
2965 DLIST_ADD(client->tcp_list, tcp);
2967 t.src_addr = tcp_sock->src;
2968 t.dst_addr = tcp_sock->dest;
2970 data.dptr = (uint8_t *)&t;
2971 data.dsize = sizeof(t);
2973 switch (addr.sa.sa_family) {
2974 case AF_INET:
2975 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2976 (unsigned)ntohs(tcp_sock->dest.ip.sin_port),
2977 ctdb_addr_to_str(&tcp_sock->src),
2978 (unsigned)ntohs(tcp_sock->src.ip.sin_port), client_id, client->pid));
2979 break;
2980 case AF_INET6:
2981 DEBUG(DEBUG_INFO,("registered tcp client for %u->%s:%u (client_id %u pid %u)\n",
2982 (unsigned)ntohs(tcp_sock->dest.ip6.sin6_port),
2983 ctdb_addr_to_str(&tcp_sock->src),
2984 (unsigned)ntohs(tcp_sock->src.ip6.sin6_port), client_id, client->pid));
2985 break;
2986 default:
2987 DEBUG(DEBUG_ERR,(__location__ " Unknown family %d\n", addr.sa.sa_family));
2991 /* tell all nodes about this tcp connection */
2992 ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0,
2993 CTDB_CONTROL_TCP_ADD,
2994 0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
2995 if (ret != 0) {
2996 DEBUG(DEBUG_ERR,(__location__ " Failed to send CTDB_CONTROL_TCP_ADD\n"));
2997 return -1;
3000 return 0;
3004 find a tcp address on a list
3006 static struct ctdb_tcp_connection *ctdb_tcp_find(struct ctdb_tcp_array *array,
3007 struct ctdb_tcp_connection *tcp)
3009 int i;
3011 if (array == NULL) {
3012 return NULL;
3015 for (i=0;i<array->num;i++) {
3016 if (ctdb_same_sockaddr(&array->connections[i].src_addr, &tcp->src_addr) &&
3017 ctdb_same_sockaddr(&array->connections[i].dst_addr, &tcp->dst_addr)) {
3018 return &array->connections[i];
3021 return NULL;
3027 called by a daemon to inform us of a TCP connection that one of its
3028 clients managing that should tickled with an ACK when IP takeover is
3029 done
3031 int32_t ctdb_control_tcp_add(struct ctdb_context *ctdb, TDB_DATA indata, bool tcp_update_needed)
3033 struct ctdb_tcp_connection *p = (struct ctdb_tcp_connection *)indata.dptr;
3034 struct ctdb_tcp_array *tcparray;
3035 struct ctdb_tcp_connection tcp;
3036 struct ctdb_vnn *vnn;
3038 vnn = find_public_ip_vnn(ctdb, &p->dst_addr);
3039 if (vnn == NULL) {
3040 DEBUG(DEBUG_INFO,(__location__ " got TCP_ADD control for an address which is not a public address '%s'\n",
3041 ctdb_addr_to_str(&p->dst_addr)));
3043 return -1;
3047 tcparray = vnn->tcp_array;
3049 /* If this is the first tickle */
3050 if (tcparray == NULL) {
3051 tcparray = talloc_size(ctdb->nodes,
3052 offsetof(struct ctdb_tcp_array, connections) +
3053 sizeof(struct ctdb_tcp_connection) * 1);
3054 CTDB_NO_MEMORY(ctdb, tcparray);
3055 vnn->tcp_array = tcparray;
3057 tcparray->num = 0;
3058 tcparray->connections = talloc_size(tcparray, sizeof(struct ctdb_tcp_connection));
3059 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3061 tcparray->connections[tcparray->num].src_addr = p->src_addr;
3062 tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3063 tcparray->num++;
3065 if (tcp_update_needed) {
3066 vnn->tcp_update_needed = true;
3068 return 0;
3072 /* Do we already have this tickle ?*/
3073 tcp.src_addr = p->src_addr;
3074 tcp.dst_addr = p->dst_addr;
3075 if (ctdb_tcp_find(vnn->tcp_array, &tcp) != NULL) {
3076 DEBUG(DEBUG_DEBUG,("Already had tickle info for %s:%u for vnn:%u\n",
3077 ctdb_addr_to_str(&tcp.dst_addr),
3078 ntohs(tcp.dst_addr.ip.sin_port),
3079 vnn->pnn));
3080 return 0;
3083 /* A new tickle, we must add it to the array */
3084 tcparray->connections = talloc_realloc(tcparray, tcparray->connections,
3085 struct ctdb_tcp_connection,
3086 tcparray->num+1);
3087 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3089 vnn->tcp_array = tcparray;
3090 tcparray->connections[tcparray->num].src_addr = p->src_addr;
3091 tcparray->connections[tcparray->num].dst_addr = p->dst_addr;
3092 tcparray->num++;
3094 DEBUG(DEBUG_INFO,("Added tickle info for %s:%u from vnn %u\n",
3095 ctdb_addr_to_str(&tcp.dst_addr),
3096 ntohs(tcp.dst_addr.ip.sin_port),
3097 vnn->pnn));
3099 if (tcp_update_needed) {
3100 vnn->tcp_update_needed = true;
3103 return 0;
3108 called by a daemon to inform us of a TCP connection that one of its
3109 clients managing that should tickled with an ACK when IP takeover is
3110 done
3112 static void ctdb_remove_tcp_connection(struct ctdb_context *ctdb, struct ctdb_tcp_connection *conn)
3114 struct ctdb_tcp_connection *tcpp;
3115 struct ctdb_vnn *vnn = find_public_ip_vnn(ctdb, &conn->dst_addr);
3117 if (vnn == NULL) {
3118 DEBUG(DEBUG_ERR,(__location__ " unable to find public address %s\n",
3119 ctdb_addr_to_str(&conn->dst_addr)));
3120 return;
3123 /* if the array is empty we cant remove it
3124 and we dont need to do anything
3126 if (vnn->tcp_array == NULL) {
3127 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist (array is empty) %s:%u\n",
3128 ctdb_addr_to_str(&conn->dst_addr),
3129 ntohs(conn->dst_addr.ip.sin_port)));
3130 return;
3134 /* See if we know this connection
3135 if we dont know this connection then we dont need to do anything
3137 tcpp = ctdb_tcp_find(vnn->tcp_array, conn);
3138 if (tcpp == NULL) {
3139 DEBUG(DEBUG_INFO,("Trying to remove tickle that doesnt exist %s:%u\n",
3140 ctdb_addr_to_str(&conn->dst_addr),
3141 ntohs(conn->dst_addr.ip.sin_port)));
3142 return;
3146 /* We need to remove this entry from the array.
3147 Instead of allocating a new array and copying data to it
3148 we cheat and just copy the last entry in the existing array
3149 to the entry that is to be removed and just shring the
3150 ->num field
3152 *tcpp = vnn->tcp_array->connections[vnn->tcp_array->num - 1];
3153 vnn->tcp_array->num--;
3155 /* If we deleted the last entry we also need to remove the entire array
3157 if (vnn->tcp_array->num == 0) {
3158 talloc_free(vnn->tcp_array);
3159 vnn->tcp_array = NULL;
3162 vnn->tcp_update_needed = true;
3164 DEBUG(DEBUG_INFO,("Removed tickle info for %s:%u\n",
3165 ctdb_addr_to_str(&conn->src_addr),
3166 ntohs(conn->src_addr.ip.sin_port)));
3171 called by a daemon to inform us of a TCP connection that one of its
3172 clients used are no longer needed in the tickle database
3174 int32_t ctdb_control_tcp_remove(struct ctdb_context *ctdb, TDB_DATA indata)
3176 struct ctdb_tcp_connection *conn = (struct ctdb_tcp_connection *)indata.dptr;
3178 ctdb_remove_tcp_connection(ctdb, conn);
3180 return 0;
3185 called when a daemon restarts - send all tickes for all public addresses
3186 we are serving immediately to the new node.
3188 int32_t ctdb_control_startup(struct ctdb_context *ctdb, uint32_t vnn)
3190 /*XXX here we should send all tickes we are serving to the new node */
3191 return 0;
3196 called when a client structure goes away - hook to remove
3197 elements from the tcp_list in all daemons
3199 void ctdb_takeover_client_destructor_hook(struct ctdb_client *client)
3201 while (client->tcp_list) {
3202 struct ctdb_tcp_list *tcp = client->tcp_list;
3203 DLIST_REMOVE(client->tcp_list, tcp);
3204 ctdb_remove_tcp_connection(client->ctdb, &tcp->connection);
3210 release all IPs on shutdown
3212 void ctdb_release_all_ips(struct ctdb_context *ctdb)
3214 struct ctdb_vnn *vnn;
3215 int count = 0;
3217 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3218 if (!ctdb_sys_have_ip(&vnn->public_address)) {
3219 ctdb_vnn_unassign_iface(ctdb, vnn);
3220 continue;
3222 if (!vnn->iface) {
3223 continue;
3226 DEBUG(DEBUG_INFO,("Release of IP %s/%u on interface %s node:-1\n",
3227 ctdb_addr_to_str(&vnn->public_address),
3228 vnn->public_netmask_bits,
3229 ctdb_vnn_iface_string(vnn)));
3231 ctdb_event_script_args(ctdb, CTDB_EVENT_RELEASE_IP, "%s %s %u",
3232 ctdb_vnn_iface_string(vnn),
3233 ctdb_addr_to_str(&vnn->public_address),
3234 vnn->public_netmask_bits);
3235 release_kill_clients(ctdb, &vnn->public_address);
3236 ctdb_vnn_unassign_iface(ctdb, vnn);
3237 count++;
3240 DEBUG(DEBUG_NOTICE,(__location__ " Released %d public IPs\n", count));
3245 get list of public IPs
3247 int32_t ctdb_control_get_public_ips(struct ctdb_context *ctdb,
3248 struct ctdb_req_control *c, TDB_DATA *outdata)
3250 int i, num, len;
3251 struct ctdb_all_public_ips *ips;
3252 struct ctdb_vnn *vnn;
3253 bool only_available = false;
3255 if (c->flags & CTDB_PUBLIC_IP_FLAGS_ONLY_AVAILABLE) {
3256 only_available = true;
3259 /* count how many public ip structures we have */
3260 num = 0;
3261 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3262 num++;
3265 len = offsetof(struct ctdb_all_public_ips, ips) +
3266 num*sizeof(struct ctdb_public_ip);
3267 ips = talloc_zero_size(outdata, len);
3268 CTDB_NO_MEMORY(ctdb, ips);
3270 i = 0;
3271 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3272 if (only_available && !ctdb_vnn_available(ctdb, vnn)) {
3273 continue;
3275 ips->ips[i].pnn = vnn->pnn;
3276 ips->ips[i].addr = vnn->public_address;
3277 i++;
3279 ips->num = i;
3280 len = offsetof(struct ctdb_all_public_ips, ips) +
3281 i*sizeof(struct ctdb_public_ip);
3283 outdata->dsize = len;
3284 outdata->dptr = (uint8_t *)ips;
3286 return 0;
3291 get list of public IPs, old ipv4 style. only returns ipv4 addresses
3293 int32_t ctdb_control_get_public_ipsv4(struct ctdb_context *ctdb,
3294 struct ctdb_req_control *c, TDB_DATA *outdata)
3296 int i, num, len;
3297 struct ctdb_all_public_ipsv4 *ips;
3298 struct ctdb_vnn *vnn;
3300 /* count how many public ip structures we have */
3301 num = 0;
3302 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3303 if (vnn->public_address.sa.sa_family != AF_INET) {
3304 continue;
3306 num++;
3309 len = offsetof(struct ctdb_all_public_ipsv4, ips) +
3310 num*sizeof(struct ctdb_public_ipv4);
3311 ips = talloc_zero_size(outdata, len);
3312 CTDB_NO_MEMORY(ctdb, ips);
3314 outdata->dsize = len;
3315 outdata->dptr = (uint8_t *)ips;
3317 ips->num = num;
3318 i = 0;
3319 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3320 if (vnn->public_address.sa.sa_family != AF_INET) {
3321 continue;
3323 ips->ips[i].pnn = vnn->pnn;
3324 ips->ips[i].sin = vnn->public_address.ip;
3325 i++;
3328 return 0;
3331 int32_t ctdb_control_get_public_ip_info(struct ctdb_context *ctdb,
3332 struct ctdb_req_control *c,
3333 TDB_DATA indata,
3334 TDB_DATA *outdata)
3336 int i, num, len;
3337 ctdb_sock_addr *addr;
3338 struct ctdb_control_public_ip_info *info;
3339 struct ctdb_vnn *vnn;
3341 addr = (ctdb_sock_addr *)indata.dptr;
3343 vnn = find_public_ip_vnn(ctdb, addr);
3344 if (vnn == NULL) {
3345 /* if it is not a public ip it could be our 'single ip' */
3346 if (ctdb->single_ip_vnn) {
3347 if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, addr)) {
3348 vnn = ctdb->single_ip_vnn;
3352 if (vnn == NULL) {
3353 DEBUG(DEBUG_ERR,(__location__ " Could not get public ip info, "
3354 "'%s'not a public address\n",
3355 ctdb_addr_to_str(addr)));
3356 return -1;
3359 /* count how many public ip structures we have */
3360 num = 0;
3361 for (;vnn->ifaces[num];) {
3362 num++;
3365 len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3366 num*sizeof(struct ctdb_control_iface_info);
3367 info = talloc_zero_size(outdata, len);
3368 CTDB_NO_MEMORY(ctdb, info);
3370 info->ip.addr = vnn->public_address;
3371 info->ip.pnn = vnn->pnn;
3372 info->active_idx = 0xFFFFFFFF;
3374 for (i=0; vnn->ifaces[i]; i++) {
3375 struct ctdb_iface *cur;
3377 cur = ctdb_find_iface(ctdb, vnn->ifaces[i]);
3378 if (cur == NULL) {
3379 DEBUG(DEBUG_CRIT, (__location__ " internal error iface[%s] unknown\n",
3380 vnn->ifaces[i]));
3381 return -1;
3383 if (vnn->iface == cur) {
3384 info->active_idx = i;
3386 strncpy(info->ifaces[i].name, cur->name, sizeof(info->ifaces[i].name)-1);
3387 info->ifaces[i].link_state = cur->link_up;
3388 info->ifaces[i].references = cur->references;
3390 info->num = i;
3391 len = offsetof(struct ctdb_control_public_ip_info, ifaces) +
3392 i*sizeof(struct ctdb_control_iface_info);
3394 outdata->dsize = len;
3395 outdata->dptr = (uint8_t *)info;
3397 return 0;
3400 int32_t ctdb_control_get_ifaces(struct ctdb_context *ctdb,
3401 struct ctdb_req_control *c,
3402 TDB_DATA *outdata)
3404 int i, num, len;
3405 struct ctdb_control_get_ifaces *ifaces;
3406 struct ctdb_iface *cur;
3408 /* count how many public ip structures we have */
3409 num = 0;
3410 for (cur=ctdb->ifaces;cur;cur=cur->next) {
3411 num++;
3414 len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3415 num*sizeof(struct ctdb_control_iface_info);
3416 ifaces = talloc_zero_size(outdata, len);
3417 CTDB_NO_MEMORY(ctdb, ifaces);
3419 i = 0;
3420 for (cur=ctdb->ifaces;cur;cur=cur->next) {
3421 strcpy(ifaces->ifaces[i].name, cur->name);
3422 ifaces->ifaces[i].link_state = cur->link_up;
3423 ifaces->ifaces[i].references = cur->references;
3424 i++;
3426 ifaces->num = i;
3427 len = offsetof(struct ctdb_control_get_ifaces, ifaces) +
3428 i*sizeof(struct ctdb_control_iface_info);
3430 outdata->dsize = len;
3431 outdata->dptr = (uint8_t *)ifaces;
3433 return 0;
3436 int32_t ctdb_control_set_iface_link(struct ctdb_context *ctdb,
3437 struct ctdb_req_control *c,
3438 TDB_DATA indata)
3440 struct ctdb_control_iface_info *info;
3441 struct ctdb_iface *iface;
3442 bool link_up = false;
3444 info = (struct ctdb_control_iface_info *)indata.dptr;
3446 if (info->name[CTDB_IFACE_SIZE] != '\0') {
3447 int len = strnlen(info->name, CTDB_IFACE_SIZE);
3448 DEBUG(DEBUG_ERR, (__location__ " name[%*.*s] not terminated\n",
3449 len, len, info->name));
3450 return -1;
3453 switch (info->link_state) {
3454 case 0:
3455 link_up = false;
3456 break;
3457 case 1:
3458 link_up = true;
3459 break;
3460 default:
3461 DEBUG(DEBUG_ERR, (__location__ " link_state[%u] invalid\n",
3462 (unsigned int)info->link_state));
3463 return -1;
3466 if (info->references != 0) {
3467 DEBUG(DEBUG_ERR, (__location__ " references[%u] should be 0\n",
3468 (unsigned int)info->references));
3469 return -1;
3472 iface = ctdb_find_iface(ctdb, info->name);
3473 if (iface == NULL) {
3474 return -1;
3477 if (link_up == iface->link_up) {
3478 return 0;
3481 DEBUG(iface->link_up?DEBUG_ERR:DEBUG_NOTICE,
3482 ("iface[%s] has changed it's link status %s => %s\n",
3483 iface->name,
3484 iface->link_up?"up":"down",
3485 link_up?"up":"down"));
3487 iface->link_up = link_up;
3488 return 0;
3493 structure containing the listening socket and the list of tcp connections
3494 that the ctdb daemon is to kill
3496 struct ctdb_kill_tcp {
3497 struct ctdb_vnn *vnn;
3498 struct ctdb_context *ctdb;
3499 int capture_fd;
3500 struct fd_event *fde;
3501 trbt_tree_t *connections;
3502 void *private_data;
3506 a tcp connection that is to be killed
3508 struct ctdb_killtcp_con {
3509 ctdb_sock_addr src_addr;
3510 ctdb_sock_addr dst_addr;
3511 int count;
3512 struct ctdb_kill_tcp *killtcp;
3515 /* this function is used to create a key to represent this socketpair
3516 in the killtcp tree.
3517 this key is used to insert and lookup matching socketpairs that are
3518 to be tickled and RST
3520 #define KILLTCP_KEYLEN 10
3521 static uint32_t *killtcp_key(ctdb_sock_addr *src, ctdb_sock_addr *dst)
3523 static uint32_t key[KILLTCP_KEYLEN];
3525 bzero(key, sizeof(key));
3527 if (src->sa.sa_family != dst->sa.sa_family) {
3528 DEBUG(DEBUG_ERR, (__location__ " ERROR, different families passed :%u vs %u\n", src->sa.sa_family, dst->sa.sa_family));
3529 return key;
3532 switch (src->sa.sa_family) {
3533 case AF_INET:
3534 key[0] = dst->ip.sin_addr.s_addr;
3535 key[1] = src->ip.sin_addr.s_addr;
3536 key[2] = dst->ip.sin_port;
3537 key[3] = src->ip.sin_port;
3538 break;
3539 case AF_INET6: {
3540 uint32_t *dst6_addr32 =
3541 (uint32_t *)&(dst->ip6.sin6_addr.s6_addr);
3542 uint32_t *src6_addr32 =
3543 (uint32_t *)&(src->ip6.sin6_addr.s6_addr);
3544 key[0] = dst6_addr32[3];
3545 key[1] = src6_addr32[3];
3546 key[2] = dst6_addr32[2];
3547 key[3] = src6_addr32[2];
3548 key[4] = dst6_addr32[1];
3549 key[5] = src6_addr32[1];
3550 key[6] = dst6_addr32[0];
3551 key[7] = src6_addr32[0];
3552 key[8] = dst->ip6.sin6_port;
3553 key[9] = src->ip6.sin6_port;
3554 break;
3556 default:
3557 DEBUG(DEBUG_ERR, (__location__ " ERROR, unknown family passed :%u\n", src->sa.sa_family));
3558 return key;
3561 return key;
3565 called when we get a read event on the raw socket
3567 static void capture_tcp_handler(struct event_context *ev, struct fd_event *fde,
3568 uint16_t flags, void *private_data)
3570 struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3571 struct ctdb_killtcp_con *con;
3572 ctdb_sock_addr src, dst;
3573 uint32_t ack_seq, seq;
3575 if (!(flags & EVENT_FD_READ)) {
3576 return;
3579 if (ctdb_sys_read_tcp_packet(killtcp->capture_fd,
3580 killtcp->private_data,
3581 &src, &dst,
3582 &ack_seq, &seq) != 0) {
3583 /* probably a non-tcp ACK packet */
3584 return;
3587 /* check if we have this guy in our list of connections
3588 to kill
3590 con = trbt_lookuparray32(killtcp->connections,
3591 KILLTCP_KEYLEN, killtcp_key(&src, &dst));
3592 if (con == NULL) {
3593 /* no this was some other packet we can just ignore */
3594 return;
3597 /* This one has been tickled !
3598 now reset him and remove him from the list.
3600 DEBUG(DEBUG_INFO, ("sending a tcp reset to kill connection :%d -> %s:%d\n",
3601 ntohs(con->dst_addr.ip.sin_port),
3602 ctdb_addr_to_str(&con->src_addr),
3603 ntohs(con->src_addr.ip.sin_port)));
3605 ctdb_sys_send_tcp(&con->dst_addr, &con->src_addr, ack_seq, seq, 1);
3606 talloc_free(con);
3610 /* when traversing the list of all tcp connections to send tickle acks to
3611 (so that we can capture the ack coming back and kill the connection
3612 by a RST)
3613 this callback is called for each connection we are currently trying to kill
3615 static int tickle_connection_traverse(void *param, void *data)
3617 struct ctdb_killtcp_con *con = talloc_get_type(data, struct ctdb_killtcp_con);
3619 /* have tried too many times, just give up */
3620 if (con->count >= 5) {
3621 /* can't delete in traverse: reparent to delete_cons */
3622 talloc_steal(param, con);
3623 return 0;
3626 /* othervise, try tickling it again */
3627 con->count++;
3628 ctdb_sys_send_tcp(
3629 (ctdb_sock_addr *)&con->dst_addr,
3630 (ctdb_sock_addr *)&con->src_addr,
3631 0, 0, 0);
3632 return 0;
3637 called every second until all sentenced connections have been reset
3639 static void ctdb_tickle_sentenced_connections(struct event_context *ev, struct timed_event *te,
3640 struct timeval t, void *private_data)
3642 struct ctdb_kill_tcp *killtcp = talloc_get_type(private_data, struct ctdb_kill_tcp);
3643 void *delete_cons = talloc_new(NULL);
3645 /* loop over all connections sending tickle ACKs */
3646 trbt_traversearray32(killtcp->connections, KILLTCP_KEYLEN, tickle_connection_traverse, delete_cons);
3648 /* now we've finished traverse, it's safe to do deletion. */
3649 talloc_free(delete_cons);
3651 /* If there are no more connections to kill we can remove the
3652 entire killtcp structure
3654 if ( (killtcp->connections == NULL) ||
3655 (killtcp->connections->root == NULL) ) {
3656 talloc_free(killtcp);
3657 return;
3660 /* try tickling them again in a seconds time
3662 event_add_timed(killtcp->ctdb->ev, killtcp, timeval_current_ofs(1, 0),
3663 ctdb_tickle_sentenced_connections, killtcp);
3667 destroy the killtcp structure
3669 static int ctdb_killtcp_destructor(struct ctdb_kill_tcp *killtcp)
3671 struct ctdb_vnn *tmpvnn;
3673 /* verify that this vnn is still active */
3674 for (tmpvnn = killtcp->ctdb->vnn; tmpvnn; tmpvnn = tmpvnn->next) {
3675 if (tmpvnn == killtcp->vnn) {
3676 break;
3680 if (tmpvnn == NULL) {
3681 return 0;
3684 if (killtcp->vnn->killtcp != killtcp) {
3685 return 0;
3688 killtcp->vnn->killtcp = NULL;
3690 return 0;
3694 /* nothing fancy here, just unconditionally replace any existing
3695 connection structure with the new one.
3697 dont even free the old one if it did exist, that one is talloc_stolen
3698 by the same node in the tree anyway and will be deleted when the new data
3699 is deleted
3701 static void *add_killtcp_callback(void *parm, void *data)
3703 return parm;
3707 add a tcp socket to the list of connections we want to RST
3709 static int ctdb_killtcp_add_connection(struct ctdb_context *ctdb,
3710 ctdb_sock_addr *s,
3711 ctdb_sock_addr *d)
3713 ctdb_sock_addr src, dst;
3714 struct ctdb_kill_tcp *killtcp;
3715 struct ctdb_killtcp_con *con;
3716 struct ctdb_vnn *vnn;
3718 ctdb_canonicalize_ip(s, &src);
3719 ctdb_canonicalize_ip(d, &dst);
3721 vnn = find_public_ip_vnn(ctdb, &dst);
3722 if (vnn == NULL) {
3723 vnn = find_public_ip_vnn(ctdb, &src);
3725 if (vnn == NULL) {
3726 /* if it is not a public ip it could be our 'single ip' */
3727 if (ctdb->single_ip_vnn) {
3728 if (ctdb_same_ip(&ctdb->single_ip_vnn->public_address, &dst)) {
3729 vnn = ctdb->single_ip_vnn;
3733 if (vnn == NULL) {
3734 DEBUG(DEBUG_ERR,(__location__ " Could not killtcp, not a public address\n"));
3735 return -1;
3738 killtcp = vnn->killtcp;
3740 /* If this is the first connection to kill we must allocate
3741 a new structure
3743 if (killtcp == NULL) {
3744 killtcp = talloc_zero(vnn, struct ctdb_kill_tcp);
3745 CTDB_NO_MEMORY(ctdb, killtcp);
3747 killtcp->vnn = vnn;
3748 killtcp->ctdb = ctdb;
3749 killtcp->capture_fd = -1;
3750 killtcp->connections = trbt_create(killtcp, 0);
3752 vnn->killtcp = killtcp;
3753 talloc_set_destructor(killtcp, ctdb_killtcp_destructor);
3758 /* create a structure that describes this connection we want to
3759 RST and store it in killtcp->connections
3761 con = talloc(killtcp, struct ctdb_killtcp_con);
3762 CTDB_NO_MEMORY(ctdb, con);
3763 con->src_addr = src;
3764 con->dst_addr = dst;
3765 con->count = 0;
3766 con->killtcp = killtcp;
3769 trbt_insertarray32_callback(killtcp->connections,
3770 KILLTCP_KEYLEN, killtcp_key(&con->dst_addr, &con->src_addr),
3771 add_killtcp_callback, con);
3774 If we dont have a socket to listen on yet we must create it
3776 if (killtcp->capture_fd == -1) {
3777 const char *iface = ctdb_vnn_iface_string(vnn);
3778 killtcp->capture_fd = ctdb_sys_open_capture_socket(iface, &killtcp->private_data);
3779 if (killtcp->capture_fd == -1) {
3780 DEBUG(DEBUG_CRIT,(__location__ " Failed to open capturing "
3781 "socket on iface '%s' for killtcp (%s)\n",
3782 iface, strerror(errno)));
3783 goto failed;
3788 if (killtcp->fde == NULL) {
3789 killtcp->fde = event_add_fd(ctdb->ev, killtcp, killtcp->capture_fd,
3790 EVENT_FD_READ,
3791 capture_tcp_handler, killtcp);
3792 tevent_fd_set_auto_close(killtcp->fde);
3794 /* We also need to set up some events to tickle all these connections
3795 until they are all reset
3797 event_add_timed(ctdb->ev, killtcp, timeval_current_ofs(1, 0),
3798 ctdb_tickle_sentenced_connections, killtcp);
3801 /* tickle him once now */
3802 ctdb_sys_send_tcp(
3803 &con->dst_addr,
3804 &con->src_addr,
3805 0, 0, 0);
3807 return 0;
3809 failed:
3810 talloc_free(vnn->killtcp);
3811 vnn->killtcp = NULL;
3812 return -1;
3816 kill a TCP connection.
3818 int32_t ctdb_control_kill_tcp(struct ctdb_context *ctdb, TDB_DATA indata)
3820 struct ctdb_control_killtcp *killtcp = (struct ctdb_control_killtcp *)indata.dptr;
3822 return ctdb_killtcp_add_connection(ctdb, &killtcp->src_addr, &killtcp->dst_addr);
3826 called by a daemon to inform us of the entire list of TCP tickles for
3827 a particular public address.
3828 this control should only be sent by the node that is currently serving
3829 that public address.
3831 int32_t ctdb_control_set_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata)
3833 struct ctdb_control_tcp_tickle_list *list = (struct ctdb_control_tcp_tickle_list *)indata.dptr;
3834 struct ctdb_tcp_array *tcparray;
3835 struct ctdb_vnn *vnn;
3837 /* We must at least have tickles.num or else we cant verify the size
3838 of the received data blob
3840 if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list,
3841 tickles.connections)) {
3842 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list. Not enough data for the tickle.num field\n"));
3843 return -1;
3846 /* verify that the size of data matches what we expect */
3847 if (indata.dsize < offsetof(struct ctdb_control_tcp_tickle_list,
3848 tickles.connections)
3849 + sizeof(struct ctdb_tcp_connection)
3850 * list->tickles.num) {
3851 DEBUG(DEBUG_ERR,("Bad indata in ctdb_control_set_tcp_tickle_list\n"));
3852 return -1;
3855 vnn = find_public_ip_vnn(ctdb, &list->addr);
3856 if (vnn == NULL) {
3857 DEBUG(DEBUG_INFO,(__location__ " Could not set tcp tickle list, '%s' is not a public address\n",
3858 ctdb_addr_to_str(&list->addr)));
3860 return 1;
3863 /* remove any old ticklelist we might have */
3864 talloc_free(vnn->tcp_array);
3865 vnn->tcp_array = NULL;
3867 tcparray = talloc(ctdb->nodes, struct ctdb_tcp_array);
3868 CTDB_NO_MEMORY(ctdb, tcparray);
3870 tcparray->num = list->tickles.num;
3872 tcparray->connections = talloc_array(tcparray, struct ctdb_tcp_connection, tcparray->num);
3873 CTDB_NO_MEMORY(ctdb, tcparray->connections);
3875 memcpy(tcparray->connections, &list->tickles.connections[0],
3876 sizeof(struct ctdb_tcp_connection)*tcparray->num);
3878 /* We now have a new fresh tickle list array for this vnn */
3879 vnn->tcp_array = talloc_steal(vnn, tcparray);
3881 return 0;
3885 called to return the full list of tickles for the puclic address associated
3886 with the provided vnn
3888 int32_t ctdb_control_get_tcp_tickle_list(struct ctdb_context *ctdb, TDB_DATA indata, TDB_DATA *outdata)
3890 ctdb_sock_addr *addr = (ctdb_sock_addr *)indata.dptr;
3891 struct ctdb_control_tcp_tickle_list *list;
3892 struct ctdb_tcp_array *tcparray;
3893 int num;
3894 struct ctdb_vnn *vnn;
3896 vnn = find_public_ip_vnn(ctdb, addr);
3897 if (vnn == NULL) {
3898 DEBUG(DEBUG_ERR,(__location__ " Could not get tcp tickle list, '%s' is not a public address\n",
3899 ctdb_addr_to_str(addr)));
3901 return 1;
3904 tcparray = vnn->tcp_array;
3905 if (tcparray) {
3906 num = tcparray->num;
3907 } else {
3908 num = 0;
3911 outdata->dsize = offsetof(struct ctdb_control_tcp_tickle_list,
3912 tickles.connections)
3913 + sizeof(struct ctdb_tcp_connection) * num;
3915 outdata->dptr = talloc_size(outdata, outdata->dsize);
3916 CTDB_NO_MEMORY(ctdb, outdata->dptr);
3917 list = (struct ctdb_control_tcp_tickle_list *)outdata->dptr;
3919 list->addr = *addr;
3920 list->tickles.num = num;
3921 if (num) {
3922 memcpy(&list->tickles.connections[0], tcparray->connections,
3923 sizeof(struct ctdb_tcp_connection) * num);
3926 return 0;
3931 set the list of all tcp tickles for a public address
3933 static int ctdb_ctrl_set_tcp_tickles(struct ctdb_context *ctdb,
3934 struct timeval timeout, uint32_t destnode,
3935 ctdb_sock_addr *addr,
3936 struct ctdb_tcp_array *tcparray)
3938 int ret, num;
3939 TDB_DATA data;
3940 struct ctdb_control_tcp_tickle_list *list;
3942 if (tcparray) {
3943 num = tcparray->num;
3944 } else {
3945 num = 0;
3948 data.dsize = offsetof(struct ctdb_control_tcp_tickle_list,
3949 tickles.connections) +
3950 sizeof(struct ctdb_tcp_connection) * num;
3951 data.dptr = talloc_size(ctdb, data.dsize);
3952 CTDB_NO_MEMORY(ctdb, data.dptr);
3954 list = (struct ctdb_control_tcp_tickle_list *)data.dptr;
3955 list->addr = *addr;
3956 list->tickles.num = num;
3957 if (tcparray) {
3958 memcpy(&list->tickles.connections[0], tcparray->connections, sizeof(struct ctdb_tcp_connection) * num);
3961 ret = ctdb_daemon_send_control(ctdb, CTDB_BROADCAST_CONNECTED, 0,
3962 CTDB_CONTROL_SET_TCP_TICKLE_LIST,
3963 0, CTDB_CTRL_FLAG_NOREPLY, data, NULL, NULL);
3964 if (ret != 0) {
3965 DEBUG(DEBUG_ERR,(__location__ " ctdb_control for set tcp tickles failed\n"));
3966 return -1;
3969 talloc_free(data.dptr);
3971 return ret;
3976 perform tickle updates if required
3978 static void ctdb_update_tcp_tickles(struct event_context *ev,
3979 struct timed_event *te,
3980 struct timeval t, void *private_data)
3982 struct ctdb_context *ctdb = talloc_get_type(private_data, struct ctdb_context);
3983 int ret;
3984 struct ctdb_vnn *vnn;
3986 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
3987 /* we only send out updates for public addresses that
3988 we have taken over
3990 if (ctdb->pnn != vnn->pnn) {
3991 continue;
3993 /* We only send out the updates if we need to */
3994 if (!vnn->tcp_update_needed) {
3995 continue;
3997 ret = ctdb_ctrl_set_tcp_tickles(ctdb,
3998 TAKEOVER_TIMEOUT(),
3999 CTDB_BROADCAST_CONNECTED,
4000 &vnn->public_address,
4001 vnn->tcp_array);
4002 if (ret != 0) {
4003 DEBUG(DEBUG_ERR,("Failed to send the tickle update for public address %s\n",
4004 ctdb_addr_to_str(&vnn->public_address)));
4008 event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4009 timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0),
4010 ctdb_update_tcp_tickles, ctdb);
4015 start periodic update of tcp tickles
4017 void ctdb_start_tcp_tickle_update(struct ctdb_context *ctdb)
4019 ctdb->tickle_update_context = talloc_new(ctdb);
4021 event_add_timed(ctdb->ev, ctdb->tickle_update_context,
4022 timeval_current_ofs(ctdb->tunable.tickle_update_interval, 0),
4023 ctdb_update_tcp_tickles, ctdb);
4029 struct control_gratious_arp {
4030 struct ctdb_context *ctdb;
4031 ctdb_sock_addr addr;
4032 const char *iface;
4033 int count;
4037 send a control_gratuitous arp
4039 static void send_gratious_arp(struct event_context *ev, struct timed_event *te,
4040 struct timeval t, void *private_data)
4042 int ret;
4043 struct control_gratious_arp *arp = talloc_get_type(private_data,
4044 struct control_gratious_arp);
4046 ret = ctdb_sys_send_arp(&arp->addr, arp->iface);
4047 if (ret != 0) {
4048 DEBUG(DEBUG_ERR,(__location__ " sending of gratious arp on iface '%s' failed (%s)\n",
4049 arp->iface, strerror(errno)));
4053 arp->count++;
4054 if (arp->count == CTDB_ARP_REPEAT) {
4055 talloc_free(arp);
4056 return;
4059 event_add_timed(arp->ctdb->ev, arp,
4060 timeval_current_ofs(CTDB_ARP_INTERVAL, 0),
4061 send_gratious_arp, arp);
4066 send a gratious arp
4068 int32_t ctdb_control_send_gratious_arp(struct ctdb_context *ctdb, TDB_DATA indata)
4070 struct ctdb_control_gratious_arp *gratious_arp = (struct ctdb_control_gratious_arp *)indata.dptr;
4071 struct control_gratious_arp *arp;
4073 /* verify the size of indata */
4074 if (indata.dsize < offsetof(struct ctdb_control_gratious_arp, iface)) {
4075 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_gratious_arp structure. Got %u require %u bytes\n",
4076 (unsigned)indata.dsize,
4077 (unsigned)offsetof(struct ctdb_control_gratious_arp, iface)));
4078 return -1;
4080 if (indata.dsize !=
4081 ( offsetof(struct ctdb_control_gratious_arp, iface)
4082 + gratious_arp->len ) ){
4084 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4085 "but should be %u bytes\n",
4086 (unsigned)indata.dsize,
4087 (unsigned)(offsetof(struct ctdb_control_gratious_arp, iface)+gratious_arp->len)));
4088 return -1;
4092 arp = talloc(ctdb, struct control_gratious_arp);
4093 CTDB_NO_MEMORY(ctdb, arp);
4095 arp->ctdb = ctdb;
4096 arp->addr = gratious_arp->addr;
4097 arp->iface = talloc_strdup(arp, gratious_arp->iface);
4098 CTDB_NO_MEMORY(ctdb, arp->iface);
4099 arp->count = 0;
4101 event_add_timed(arp->ctdb->ev, arp,
4102 timeval_zero(), send_gratious_arp, arp);
4104 return 0;
4107 int32_t ctdb_control_add_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4109 struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4110 int ret;
4112 /* verify the size of indata */
4113 if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4114 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4115 return -1;
4117 if (indata.dsize !=
4118 ( offsetof(struct ctdb_control_ip_iface, iface)
4119 + pub->len ) ){
4121 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4122 "but should be %u bytes\n",
4123 (unsigned)indata.dsize,
4124 (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4125 return -1;
4128 DEBUG(DEBUG_NOTICE,("Add IP %s\n", ctdb_addr_to_str(&pub->addr)));
4130 ret = ctdb_add_public_address(ctdb, &pub->addr, pub->mask, &pub->iface[0], true);
4132 if (ret != 0) {
4133 DEBUG(DEBUG_ERR,(__location__ " Failed to add public address\n"));
4134 return -1;
4137 return 0;
4141 called when releaseip event finishes for del_public_address
4143 static void delete_ip_callback(struct ctdb_context *ctdb, int status,
4144 void *private_data)
4146 talloc_free(private_data);
4149 int32_t ctdb_control_del_public_address(struct ctdb_context *ctdb, TDB_DATA indata)
4151 struct ctdb_control_ip_iface *pub = (struct ctdb_control_ip_iface *)indata.dptr;
4152 struct ctdb_vnn *vnn;
4153 int ret;
4155 /* verify the size of indata */
4156 if (indata.dsize < offsetof(struct ctdb_control_ip_iface, iface)) {
4157 DEBUG(DEBUG_ERR,(__location__ " Too small indata to hold a ctdb_control_ip_iface structure\n"));
4158 return -1;
4160 if (indata.dsize !=
4161 ( offsetof(struct ctdb_control_ip_iface, iface)
4162 + pub->len ) ){
4164 DEBUG(DEBUG_ERR,(__location__ " Wrong size of indata. Was %u bytes "
4165 "but should be %u bytes\n",
4166 (unsigned)indata.dsize,
4167 (unsigned)(offsetof(struct ctdb_control_ip_iface, iface)+pub->len)));
4168 return -1;
4171 DEBUG(DEBUG_NOTICE,("Delete IP %s\n", ctdb_addr_to_str(&pub->addr)));
4173 /* walk over all public addresses until we find a match */
4174 for (vnn=ctdb->vnn;vnn;vnn=vnn->next) {
4175 if (ctdb_same_ip(&vnn->public_address, &pub->addr)) {
4176 TALLOC_CTX *mem_ctx = talloc_new(ctdb);
4178 DLIST_REMOVE(ctdb->vnn, vnn);
4179 talloc_steal(mem_ctx, vnn);
4180 ctdb_remove_orphaned_ifaces(ctdb, vnn, mem_ctx);
4181 if (vnn->pnn != ctdb->pnn) {
4182 if (vnn->iface != NULL) {
4183 ctdb_vnn_unassign_iface(ctdb, vnn);
4185 talloc_free(mem_ctx);
4186 return 0;
4188 vnn->pnn = -1;
4190 ret = ctdb_event_script_callback(ctdb,
4191 mem_ctx, delete_ip_callback, mem_ctx,
4192 CTDB_EVENT_RELEASE_IP,
4193 "%s %s %u",
4194 ctdb_vnn_iface_string(vnn),
4195 ctdb_addr_to_str(&vnn->public_address),
4196 vnn->public_netmask_bits);
4197 if (vnn->iface != NULL) {
4198 ctdb_vnn_unassign_iface(ctdb, vnn);
4200 if (ret != 0) {
4201 return -1;
4203 return 0;
4207 return -1;
4211 struct ipreallocated_callback_state {
4212 struct ctdb_req_control *c;
4215 static void ctdb_ipreallocated_callback(struct ctdb_context *ctdb,
4216 int status, void *p)
4218 struct ipreallocated_callback_state *state =
4219 talloc_get_type(p, struct ipreallocated_callback_state);
4221 if (status != 0) {
4222 DEBUG(DEBUG_ERR,
4223 (" \"ipreallocated\" event script failed (status %d)\n",
4224 status));
4225 if (status == -ETIME) {
4226 ctdb_ban_self(ctdb);
4230 ctdb_request_control_reply(ctdb, state->c, NULL, status, NULL);
4231 talloc_free(state);
4234 /* A control to run the ipreallocated event */
4235 int32_t ctdb_control_ipreallocated(struct ctdb_context *ctdb,
4236 struct ctdb_req_control *c,
4237 bool *async_reply)
4239 int ret;
4240 struct ipreallocated_callback_state *state;
4242 state = talloc(ctdb, struct ipreallocated_callback_state);
4243 CTDB_NO_MEMORY(ctdb, state);
4245 DEBUG(DEBUG_INFO,(__location__ " Running \"ipreallocated\" event\n"));
4247 ret = ctdb_event_script_callback(ctdb, state,
4248 ctdb_ipreallocated_callback, state,
4249 CTDB_EVENT_IPREALLOCATED,
4250 "%s", "");
4252 if (ret != 0) {
4253 DEBUG(DEBUG_ERR,("Failed to run \"ipreallocated\" event \n"));
4254 talloc_free(state);
4255 return -1;
4258 /* tell the control that we will be reply asynchronously */
4259 state->c = talloc_steal(state, c);
4260 *async_reply = true;
4262 return 0;
4266 /* This function is called from the recovery daemon to verify that a remote
4267 node has the expected ip allocation.
4268 This is verified against ctdb->ip_tree
4270 int verify_remote_ip_allocation(struct ctdb_context *ctdb,
4271 struct ctdb_all_public_ips *ips,
4272 uint32_t pnn)
4274 struct ctdb_public_ip_list *tmp_ip;
4275 int i;
4277 if (ctdb->ip_tree == NULL) {
4278 /* dont know the expected allocation yet, assume remote node
4279 is correct. */
4280 return 0;
4283 if (ips == NULL) {
4284 return 0;
4287 for (i=0; i<ips->num; i++) {
4288 tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ips->ips[i].addr));
4289 if (tmp_ip == NULL) {
4290 DEBUG(DEBUG_ERR,("Node %u has new or unknown public IP %s\n", pnn, ctdb_addr_to_str(&ips->ips[i].addr)));
4291 return -1;
4294 if (tmp_ip->pnn == -1 || ips->ips[i].pnn == -1) {
4295 continue;
4298 if (tmp_ip->pnn != ips->ips[i].pnn) {
4299 DEBUG(DEBUG_ERR,
4300 ("Inconsistent IP allocation - node %u thinks %s is held by node %u while it is assigned to node %u\n",
4301 pnn,
4302 ctdb_addr_to_str(&ips->ips[i].addr),
4303 ips->ips[i].pnn, tmp_ip->pnn));
4304 return -1;
4308 return 0;
4311 int update_ip_assignment_tree(struct ctdb_context *ctdb, struct ctdb_public_ip *ip)
4313 struct ctdb_public_ip_list *tmp_ip;
4315 if (ctdb->ip_tree == NULL) {
4316 DEBUG(DEBUG_ERR,("No ctdb->ip_tree yet. Failed to update ip assignment\n"));
4317 return -1;
4320 tmp_ip = trbt_lookuparray32(ctdb->ip_tree, IP_KEYLEN, ip_key(&ip->addr));
4321 if (tmp_ip == NULL) {
4322 DEBUG(DEBUG_ERR,(__location__ " Could not find record for address %s, update ip\n", ctdb_addr_to_str(&ip->addr)));
4323 return -1;
4326 DEBUG(DEBUG_NOTICE,("Updated ip assignment tree for ip : %s from node %u to node %u\n", ctdb_addr_to_str(&ip->addr), tmp_ip->pnn, ip->pnn));
4327 tmp_ip->pnn = ip->pnn;
4329 return 0;
4333 struct ctdb_reloadips_handle {
4334 struct ctdb_context *ctdb;
4335 struct ctdb_req_control *c;
4336 int status;
4337 int fd[2];
4338 pid_t child;
4339 struct fd_event *fde;
4342 static int ctdb_reloadips_destructor(struct ctdb_reloadips_handle *h)
4344 if (h == h->ctdb->reload_ips) {
4345 h->ctdb->reload_ips = NULL;
4347 if (h->c != NULL) {
4348 ctdb_request_control_reply(h->ctdb, h->c, NULL, h->status, NULL);
4349 h->c = NULL;
4351 ctdb_kill(h->ctdb, h->child, SIGKILL);
4352 return 0;
4355 static void ctdb_reloadips_timeout_event(struct event_context *ev,
4356 struct timed_event *te,
4357 struct timeval t, void *private_data)
4359 struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4361 talloc_free(h);
4364 static void ctdb_reloadips_child_handler(struct event_context *ev, struct fd_event *fde,
4365 uint16_t flags, void *private_data)
4367 struct ctdb_reloadips_handle *h = talloc_get_type(private_data, struct ctdb_reloadips_handle);
4369 char res;
4370 int ret;
4372 ret = read(h->fd[0], &res, 1);
4373 if (ret < 1 || res != 0) {
4374 DEBUG(DEBUG_ERR, (__location__ " Reloadips child process returned error\n"));
4375 res = 1;
4377 h->status = res;
4379 talloc_free(h);
4382 static int ctdb_reloadips_child(struct ctdb_context *ctdb)
4384 TALLOC_CTX *mem_ctx = talloc_new(NULL);
4385 struct ctdb_all_public_ips *ips;
4386 struct ctdb_vnn *vnn;
4387 struct client_async_data *async_data;
4388 struct timeval timeout;
4389 TDB_DATA data;
4390 struct ctdb_client_control_state *state;
4391 bool first_add;
4392 int i, ret;
4394 CTDB_NO_MEMORY(ctdb, mem_ctx);
4396 /* Read IPs from local node */
4397 ret = ctdb_ctrl_get_public_ips(ctdb, TAKEOVER_TIMEOUT(),
4398 CTDB_CURRENT_NODE, mem_ctx, &ips);
4399 if (ret != 0) {
4400 DEBUG(DEBUG_ERR,
4401 ("Unable to fetch public IPs from local node\n"));
4402 talloc_free(mem_ctx);
4403 return -1;
4406 /* Read IPs file - this is safe since this is a child process */
4407 ctdb->vnn = NULL;
4408 if (ctdb_set_public_addresses(ctdb, false) != 0) {
4409 DEBUG(DEBUG_ERR,("Failed to re-read public addresses file\n"));
4410 talloc_free(mem_ctx);
4411 return -1;
4414 async_data = talloc_zero(mem_ctx, struct client_async_data);
4415 CTDB_NO_MEMORY(ctdb, async_data);
4417 /* Compare IPs between node and file for IPs to be deleted */
4418 for (i = 0; i < ips->num; i++) {
4419 /* */
4420 for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4421 if (ctdb_same_ip(&vnn->public_address,
4422 &ips->ips[i].addr)) {
4423 /* IP is still in file */
4424 break;
4428 if (vnn == NULL) {
4429 /* Delete IP ips->ips[i] */
4430 struct ctdb_control_ip_iface *pub;
4432 DEBUG(DEBUG_NOTICE,
4433 ("IP %s no longer configured, deleting it\n",
4434 ctdb_addr_to_str(&ips->ips[i].addr)));
4436 pub = talloc_zero(mem_ctx,
4437 struct ctdb_control_ip_iface);
4438 CTDB_NO_MEMORY(ctdb, pub);
4440 pub->addr = ips->ips[i].addr;
4441 pub->mask = 0;
4442 pub->len = 0;
4444 timeout = TAKEOVER_TIMEOUT();
4446 data.dsize = offsetof(struct ctdb_control_ip_iface,
4447 iface) + pub->len;
4448 data.dptr = (uint8_t *)pub;
4450 state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4451 CTDB_CONTROL_DEL_PUBLIC_IP,
4452 0, data, async_data,
4453 &timeout, NULL);
4454 if (state == NULL) {
4455 DEBUG(DEBUG_ERR,
4456 (__location__
4457 " failed sending CTDB_CONTROL_DEL_PUBLIC_IP\n"));
4458 goto failed;
4464 /* Compare IPs between node and file for IPs to be added */
4465 first_add = true;
4466 for (vnn = ctdb->vnn; vnn; vnn = vnn->next) {
4467 for (i = 0; i < ips->num; i++) {
4468 if (ctdb_same_ip(&vnn->public_address,
4469 &ips->ips[i].addr)) {
4470 /* IP already on node */
4471 break;
4474 if (i == ips->num) {
4475 /* Add IP ips->ips[i] */
4476 struct ctdb_control_ip_iface *pub;
4477 const char *ifaces = NULL;
4478 uint32_t len;
4479 int iface = 0;
4481 DEBUG(DEBUG_NOTICE,
4482 ("New IP %s configured, adding it\n",
4483 ctdb_addr_to_str(&vnn->public_address)));
4484 if (first_add) {
4485 uint32_t pnn = ctdb_get_pnn(ctdb);
4487 data.dsize = sizeof(pnn);
4488 data.dptr = (uint8_t *)&pnn;
4490 ret = ctdb_client_send_message(
4491 ctdb,
4492 CTDB_BROADCAST_CONNECTED,
4493 CTDB_SRVID_REBALANCE_NODE,
4494 data);
4495 if (ret != 0) {
4496 DEBUG(DEBUG_WARNING,
4497 ("Failed to send message to force node reallocation - IPs may be unbalanced\n"));
4500 first_add = false;
4503 ifaces = vnn->ifaces[0];
4504 iface = 1;
4505 while (vnn->ifaces[iface] != NULL) {
4506 ifaces = talloc_asprintf(vnn, "%s,%s", ifaces,
4507 vnn->ifaces[iface]);
4508 iface++;
4511 len = strlen(ifaces) + 1;
4512 pub = talloc_zero_size(mem_ctx,
4513 offsetof(struct ctdb_control_ip_iface, iface) + len);
4514 CTDB_NO_MEMORY(ctdb, pub);
4516 pub->addr = vnn->public_address;
4517 pub->mask = vnn->public_netmask_bits;
4518 pub->len = len;
4519 memcpy(&pub->iface[0], ifaces, pub->len);
4521 timeout = TAKEOVER_TIMEOUT();
4523 data.dsize = offsetof(struct ctdb_control_ip_iface,
4524 iface) + pub->len;
4525 data.dptr = (uint8_t *)pub;
4527 state = ctdb_control_send(ctdb, CTDB_CURRENT_NODE, 0,
4528 CTDB_CONTROL_ADD_PUBLIC_IP,
4529 0, data, async_data,
4530 &timeout, NULL);
4531 if (state == NULL) {
4532 DEBUG(DEBUG_ERR,
4533 (__location__
4534 " failed sending CTDB_CONTROL_ADD_PUBLIC_IP\n"));
4535 goto failed;
4540 if (ctdb_client_async_wait(ctdb, async_data) != 0) {
4541 DEBUG(DEBUG_ERR,(__location__ " Add/delete IPs failed\n"));
4542 goto failed;
4545 talloc_free(mem_ctx);
4546 return 0;
4548 failed:
4549 talloc_free(mem_ctx);
4550 return -1;
4553 /* This control is sent to force the node to re-read the public addresses file
4554 and drop any addresses we should nnot longer host, and add new addresses
4555 that we are now able to host
4557 int32_t ctdb_control_reload_public_ips(struct ctdb_context *ctdb, struct ctdb_req_control *c, bool *async_reply)
4559 struct ctdb_reloadips_handle *h;
4560 pid_t parent = getpid();
4562 if (ctdb->reload_ips != NULL) {
4563 talloc_free(ctdb->reload_ips);
4564 ctdb->reload_ips = NULL;
4567 h = talloc(ctdb, struct ctdb_reloadips_handle);
4568 CTDB_NO_MEMORY(ctdb, h);
4569 h->ctdb = ctdb;
4570 h->c = NULL;
4571 h->status = -1;
4573 if (pipe(h->fd) == -1) {
4574 DEBUG(DEBUG_ERR,("Failed to create pipe for ctdb_freeze_lock\n"));
4575 talloc_free(h);
4576 return -1;
4579 h->child = ctdb_fork(ctdb);
4580 if (h->child == (pid_t)-1) {
4581 DEBUG(DEBUG_ERR, ("Failed to fork a child for reloadips\n"));
4582 close(h->fd[0]);
4583 close(h->fd[1]);
4584 talloc_free(h);
4585 return -1;
4588 /* child process */
4589 if (h->child == 0) {
4590 signed char res = 0;
4592 close(h->fd[0]);
4593 debug_extra = talloc_asprintf(NULL, "reloadips:");
4595 ctdb_set_process_name("ctdb_reloadips");
4596 if (switch_from_server_to_client(ctdb, "reloadips-child") != 0) {
4597 DEBUG(DEBUG_CRIT,("ERROR: Failed to switch reloadips child into client mode\n"));
4598 res = -1;
4599 } else {
4600 res = ctdb_reloadips_child(ctdb);
4601 if (res != 0) {
4602 DEBUG(DEBUG_ERR,("Failed to reload ips on local node\n"));
4606 write(h->fd[1], &res, 1);
4607 /* make sure we die when our parent dies */
4608 while (ctdb_kill(ctdb, parent, 0) == 0 || errno != ESRCH) {
4609 sleep(5);
4611 _exit(0);
4614 h->c = talloc_steal(h, c);
4616 close(h->fd[1]);
4617 set_close_on_exec(h->fd[0]);
4619 talloc_set_destructor(h, ctdb_reloadips_destructor);
4622 h->fde = event_add_fd(ctdb->ev, h, h->fd[0],
4623 EVENT_FD_READ, ctdb_reloadips_child_handler,
4624 (void *)h);
4625 tevent_fd_set_auto_close(h->fde);
4627 event_add_timed(ctdb->ev, h,
4628 timeval_current_ofs(120, 0),
4629 ctdb_reloadips_timeout_event, h);
4631 /* we reply later */
4632 *async_reply = true;
4633 return 0;