only supporting the Net::LDAP module now
[Samba.git] / source / utils / editreg.c
blobff9dacaa13f209a6a466b6bbe158b4bc98c194b6
1 /*
2 Samba Unix/Linux SMB client utility editreg.c
3 Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19 /*************************************************************************
21 A utility to edit a Windows NT/2K etc registry file.
23 Many of the ideas in here come from other people and software.
24 I first looked in Wine in misc/registry.c and was also influenced by
25 http://www.wednesday.demon.co.uk/dosreg.html
27 Which seems to contain comments from someone else. I reproduce them here
28 incase the site above disappears. It actually comes from
29 http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt.
31 The goal here is to read the registry into memory, manipulate it, and then
32 write it out if it was changed by any actions of the user.
34 The windows NT registry has 2 different blocks, where one can occur many
35 times...
37 the "regf"-Block
38 ================
40 "regf" is obviosly the abbreviation for "Registry file". "regf" is the
41 signature of the header-block which is always 4kb in size, although only
42 the first 64 bytes seem to be used and a checksum is calculated over
43 the first 0x200 bytes only!
45 Offset Size Contents
46 0x00000000 D-Word ID: ASCII-"regf" = 0x66676572
47 0x00000004 D-Word ???? //see struct REGF
48 0x00000008 D-Word ???? Always the same value as at 0x00000004
49 0x0000000C Q-Word last modify date in WinNT date-format
50 0x00000014 D-Word 1
51 0x00000018 D-Word 3
52 0x0000001C D-Word 0
53 0x00000020 D-Word 1
54 0x00000024 D-Word Offset of 1st key record
55 0x00000028 D-Word Size of the data-blocks (Filesize-4kb)
56 0x0000002C D-Word 1
57 0x000001FC D-Word Sum of all D-Words from 0x00000000 to
58 0x000001FB //XOR of all words. Nigel
60 I have analyzed more registry files (from multiple machines running
61 NT 4.0 german version) and could not find an explanation for the values
62 marked with ???? the rest of the first 4kb page is not important...
64 the "hbin"-Block
65 ================
66 I don't know what "hbin" stands for, but this block is always a multiple
67 of 4kb in size.
69 Inside these hbin-blocks the different records are placed. The memory-
70 management looks like a C-compiler heap management to me...
72 hbin-Header
73 ===========
74 Offset Size Contents
75 0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268
76 0x0004 D-Word Offset from the 1st hbin-Block
77 0x0008 D-Word Offset to the next hbin-Block
78 0x001C D-Word Block-size
80 The values in 0x0008 and 0x001C should be the same, so I don't know
81 if they are correct or swapped...
83 From offset 0x0020 inside a hbin-block data is stored with the following
84 format:
86 Offset Size Contents
87 0x0000 D-Word Data-block size //this size must be a
88 multiple of 8. Nigel
89 0x0004 ???? Data
91 If the size field is negative (bit 31 set), the corresponding block
92 is free and has a size of -blocksize!
94 That does not seem to be true. All block lengths seem to be negative! (Richard Sharpe)
96 The data is stored as one record per block. Block size is a multiple
97 of 4 and the last block reaches the next hbin-block, leaving no room.
99 Records in the hbin-blocks
100 ==========================
102 nk-Record
104 The nk-record can be treated as a kombination of tree-record and
105 key-record of the win 95 registry.
107 lf-Record
109 The lf-record is the counterpart to the RGKN-record (the
110 hash-function)
112 vk-Record
114 The vk-record consists information to a single value.
116 sk-Record
118 sk (? Security Key ?) is the ACL of the registry.
120 Value-Lists
122 The value-lists contain information about which values are inside a
123 sub-key and don't have a header.
125 Datas
127 The datas of the registry are (like the value-list) stored without a
128 header.
130 All offset-values are relative to the first hbin-block and point to the
131 block-size field of the record-entry. to get the file offset, you have to add
132 the header size (4kb) and the size field (4 bytes)...
134 the nk-Record
135 =============
136 Offset Size Contents
137 0x0000 Word ID: ASCII-"nk" = 0x6B6E
138 0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel
139 0x0004 Q-Word write-date/time in windows nt notation
140 0x0010 D-Word Offset of Owner/Parent key
141 0x0014 D-Word number of sub-Keys
142 0x001C D-Word Offset of the sub-key lf-Records
143 0x0024 D-Word number of values
144 0x0028 D-Word Offset of the Value-List
145 0x002C D-Word Offset of the sk-Record
147 0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel
148 0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel
149 0x0048 Word name-length
150 0x004A Word class-name length
151 0x004C ???? key-name
153 the Value-List
154 ==============
155 Offset Size Contents
156 0x0000 D-Word Offset 1st Value
157 0x0004 D-Word Offset 2nd Value
158 0x???? D-Word Offset nth Value
160 To determine the number of values, you have to look at the owner-nk-record!
162 Der vk-Record
163 =============
164 Offset Size Contents
165 0x0000 Word ID: ASCII-"vk" = 0x6B76
166 0x0002 Word name length
167 0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel
168 0x0008 D-Word Offset of Data
169 0x000C D-Word Type of value
170 0x0010 Word Flag
171 0x0012 Word Unused (data-trash)
172 0x0014 ???? Name
174 If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default)
176 If the data-size is lower 5, the data-offset value is used to store the data itself!
178 The data-types
179 ==============
180 Wert Beteutung
181 0x0001 RegSZ: character string (in UNICODE!)
182 0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!)
183 0x0003 RegBin: raw-binary value
184 0x0004 RegDWord: Dword
185 0x0007 RegMultiSZ: multiple strings, seperated with 0
186 (UNICODE!)
188 The "lf"-record
189 ===============
190 Offset Size Contents
191 0x0000 Word ID: ASCII-"lf" = 0x666C
192 0x0002 Word number of keys
193 0x0004 ???? Hash-Records
195 Hash-Record
196 ===========
197 Offset Size Contents
198 0x0000 D-Word Offset of corresponding "nk"-Record
199 0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0's. Case sensitiv!
201 Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the
202 key-name you have to change the hash-value too!
204 //These hashrecords must be sorted low to high within the lf record. Nigel.
206 The "sk"-block
207 ==============
208 (due to the complexity of the SAM-info, not clear jet)
209 (This is just a security descriptor in the data. R Sharpe.)
212 Offset Size Contents
213 0x0000 Word ID: ASCII-"sk" = 0x6B73
214 0x0002 Word Unused
215 0x0004 D-Word Offset of previous "sk"-Record
216 0x0008 D-Word Offset of next "sk"-Record
217 0x000C D-Word usage-counter
218 0x0010 D-Word Size of "sk"-record in bytes
219 ???? //standard self
220 relative security desciptor. Nigel
221 ???? ???? Security and auditing settings...
222 ????
224 The usage counter counts the number of references to this
225 "sk"-record. You can use one "sk"-record for the entire registry!
227 Windows nt date/time format
228 ===========================
229 The time-format is a 64-bit integer which is incremented every
230 0,0000001 seconds by 1 (I don't know how accurate it realy is!)
231 It starts with 0 at the 1st of january 1601 0:00! All values are
232 stored in GMT time! The time-zone is important to get the real
233 time!
235 Common values for win95 and win-nt
236 ==================================
237 Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF).
238 If a value has no name (length=0, flag(bit 0)=0), it is treated as the
239 "Default" entry...
240 If a value has no data (length=0), it is displayed as empty.
242 simplyfied win-3.?? registry:
243 =============================
245 +-----------+
246 | next rec. |---+ +----->+------------+
247 | first sub | | | | Usage cnt. |
248 | name | | +-->+------------+ | | length |
249 | value | | | | next rec. | | | text |------->+-------+
250 +-----------+ | | | name rec. |--+ +------------+ | xxxxx |
251 +------------+ | | value rec. |-------->+------------+ +-------+
252 v | +------------+ | Usage cnt. |
253 +-----------+ | | length |
254 | next rec. | | | text |------->+-------+
255 | first sub |------+ +------------+ | xxxxx |
256 | name | +-------+
257 | value |
258 +-----------+
260 Greatly simplyfied structure of the nt-registry:
261 ================================================
263 +---------------------------------------------------------------+
266 +---------+ +---------->+-----------+ +----->+---------+ |
267 | "nk" | | | lf-rec. | | | nk-rec. | |
268 | ID | | | # of keys | | | parent |---+
269 | Date | | | 1st key |--+ | .... |
270 | parent | | +-----------+ +---------+
271 | suk-keys|-----+
272 | values |--------------------->+----------+
273 | SK-rec. |---------------+ | 1. value |--> +----------+
274 | class |--+ | +----------+ | vk-rec. |
275 +---------+ | | | .... |
276 v | | data |--> +-------+
277 +------------+ | +----------+ | xxxxx |
278 | Class name | | +-------+
279 +------------+ |
281 +---------+ +---------+
282 +----->| next sk |--->| Next sk |--+
283 | +---| prev sk |<---| prev sk | |
284 | | | .... | | ... | |
285 | | +---------+ +---------+ |
286 | | ^ |
287 | | | |
288 | +--------------------+ |
289 +----------------------------------+
291 ---------------------------------------------------------------------------
293 Hope this helps.... (Although it was "fun" for me to uncover this things,
294 it took me several sleepless nights ;)
296 B.D.
298 *************************************************************************/
300 #include <stdio.h>
301 #include <stdlib.h>
302 #include <errno.h>
303 #include <assert.h>
304 #include <sys/types.h>
305 #include <sys/stat.h>
306 #include <unistd.h>
307 #include <sys/mman.h>
308 #include <string.h>
309 #include <fcntl.h>
311 static int verbose = 0;
314 * These definitions are for the in-memory registry structure.
315 * It is a tree structure that mimics what you see with tools like regedit
319 * DateTime struct for Windows
322 typedef struct date_time_s {
323 unsigned int low, high;
324 } NTTIME;
327 * Definition of a Key. It has a name, classname, date/time last modified,
328 * sub-keys, values, and a security descriptor
331 #define REG_ROOT_KEY 1
332 #define REG_SUB_KEY 2
333 #define REG_SYM_LINK 3
335 typedef struct reg_key_s {
336 char *name; /* Name of the key */
337 char *class_name;
338 int type; /* One of REG_ROOT_KEY or REG_SUB_KEY */
339 NTTIME last_mod; /* Time last modified */
340 struct reg_key_s *owner;
341 struct key_list_s *sub_keys;
342 struct val_list_s *values;
343 struct key_sec_desc_s *security;
344 } REG_KEY;
347 * The KEY_LIST struct lists sub-keys.
350 typedef struct key_list_s {
351 int key_count;
352 REG_KEY *keys[1];
353 } KEY_LIST;
355 typedef struct val_key_s {
356 char *name;
357 int has_name;
358 int data_type;
359 int data_len;
360 void *data_blk; /* Might want a separate block */
361 } VAL_KEY;
363 typedef struct val_list_s {
364 int val_count;
365 VAL_KEY *vals[1];
366 } VAL_LIST;
368 #ifndef MAXSUBAUTHS
369 #define MAXSUBAUTHS 15
370 #endif
372 typedef struct dom_sid_s {
373 unsigned char ver, auths;
374 unsigned char auth[6];
375 unsigned int sub_auths[MAXSUBAUTHS];
376 } DOM_SID;
378 typedef struct ace_struct_s {
379 unsigned char type, flags;
380 unsigned int perms; /* Perhaps a better def is in order */
381 DOM_SID *trustee;
382 } ACE;
384 typedef struct acl_struct_s {
385 unsigned short rev, refcnt;
386 unsigned short num_aces;
387 ACE *aces[1];
388 } ACL;
390 typedef struct sec_desc_s {
391 unsigned int rev, type;
392 DOM_SID *owner, *group;
393 ACL *sacl, *dacl;
394 } SEC_DESC;
396 #define SEC_DESC_NON 0
397 #define SEC_DESC_RES 1
398 #define SEC_DESC_OCU 2
400 typedef struct key_sec_desc_s {
401 struct key_sec_desc_s *prev, *next;
402 int ref_cnt;
403 int state;
404 SEC_DESC *sec_desc;
405 } KEY_SEC_DESC;
409 * An API for accessing/creating/destroying items above
413 * Iterate over the keys, depth first, calling a function for each key
414 * and indicating if it is terminal or non-terminal and if it has values.
416 * In addition, for each value in the list, call a value list function
420 * There should eventually be one to deal with security keys as well
423 typedef int (*key_print_f)(const char *path, char *key_name, char *class_name,
424 int root, int terminal, int values);
426 typedef int (*val_print_f)(const char *path, char *val_name, int val_type,
427 int data_len, void *data_blk, int terminal,
428 int first, int last);
430 typedef int (*sec_print_f)(SEC_DESC *sec_desc);
432 typedef struct regf_struct_s REGF;
434 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
435 key_print_f key_print, sec_print_f sec_print,
436 val_print_f val_print);
438 int nt_val_list_iterator(REGF *regf, VAL_LIST *val_list, int bf, char *path,
439 int terminal, val_print_f val_print)
441 int i;
443 if (!val_list) return 1;
445 if (!val_print) return 1;
447 for (i=0; i<val_list->val_count; i++) {
448 if (!val_print(path, val_list->vals[i]->name, val_list->vals[i]->data_type,
449 val_list->vals[i]->data_len, val_list->vals[i]->data_blk,
450 terminal,
451 (i == 0),
452 (i == val_list->val_count))) {
454 return 0;
459 return 1;
462 int nt_key_list_iterator(REGF *regf, KEY_LIST *key_list, int bf, char *path,
463 key_print_f key_print, sec_print_f sec_print,
464 val_print_f val_print)
466 int i;
468 if (!key_list) return 1;
470 for (i=0; i< key_list->key_count; i++) {
471 if (!nt_key_iterator(regf, key_list->keys[i], bf, path, key_print,
472 sec_print, val_print)) {
473 return 0;
476 return 1;
479 int nt_key_iterator(REGF *regf, REG_KEY *key_tree, int bf, const char *path,
480 key_print_f key_print, sec_print_f sec_print,
481 val_print_f val_print)
483 int path_len = strlen(path);
484 char *new_path;
486 if (!regf || !key_tree)
487 return -1;
489 /* List the key first, then the values, then the sub-keys */
491 if (key_print) {
493 if (!(*key_print)(path, key_tree->name,
494 key_tree->class_name,
495 (key_tree->type == REG_ROOT_KEY),
496 (key_tree->sub_keys == NULL),
497 (key_tree->values?(key_tree->values->val_count):0)))
498 return 0;
502 * If we have a security print routine, call it
504 if (sec_print) {
505 if (key_tree->security && !(*sec_print)(key_tree->security->sec_desc))
506 return 0;
509 new_path = (char *)malloc(path_len + 1 + strlen(key_tree->name) + 1);
510 if (!new_path) return 0; /* Errors? */
511 new_path[0] = '\0';
512 strcat(new_path, path);
513 strcat(new_path, "\\");
514 strcat(new_path, key_tree->name);
517 * Now, iterate through the values in the val_list
520 if (key_tree->values &&
521 !nt_val_list_iterator(regf, key_tree->values, bf, new_path,
522 (key_tree->values!=NULL),
523 val_print)) {
525 free(new_path);
526 return 0;
530 * Now, iterate through the keys in the key list
533 if (key_tree->sub_keys &&
534 !nt_key_list_iterator(regf, key_tree->sub_keys, bf, new_path, key_print,
535 sec_print, val_print)) {
536 free(new_path);
537 return 0;
540 free(new_path);
541 return 1;
544 /* Make, delete keys */
548 int nt_delete_val_list(VAL_LIST *vl)
551 return 1;
554 int nt_delete_val_key(VAL_KEY *val_key)
557 return 1;
560 int nt_delete_key_list(KEY_LIST *key_list)
563 return 1;
566 int nt_delete_sid(DOM_SID *sid)
569 if (sid) free(sid);
570 return 1;
574 int nt_delete_ace(ACE *ace)
577 if (ace) {
578 nt_delete_sid(ace->trustee);
579 free(ace);
581 return 1;
585 int nt_delete_acl(ACL *acl)
588 if (acl) {
589 int i;
591 for (i=0; i<acl->num_aces; i++)
592 nt_delete_ace(acl->aces[i]);
594 free(acl);
596 return 1;
599 int nt_delete_sec_desc(SEC_DESC *sec_desc)
602 if (sec_desc) {
604 nt_delete_sid(sec_desc->owner);
605 nt_delete_sid(sec_desc->group);
606 nt_delete_acl(sec_desc->sacl);
607 nt_delete_acl(sec_desc->dacl);
608 free(sec_desc);
611 return 1;
614 int nt_delete_key_sec_desc(KEY_SEC_DESC *key_sec_desc)
617 if (key_sec_desc) {
618 key_sec_desc->ref_cnt--;
619 if (key_sec_desc->ref_cnt<=0) {
621 * There should always be a next and prev, even if they point to us
623 key_sec_desc->next->prev = key_sec_desc->prev;
624 key_sec_desc->prev->next = key_sec_desc->next;
625 nt_delete_sec_desc(key_sec_desc->sec_desc);
628 return 1;
631 int nt_delete_reg_key(REG_KEY *key)
634 return 1;
638 * Create/delete key lists and add delete keys to/from a list, count the keys
643 * Create/delete value lists, add/delete values, count them
648 * Create/delete security descriptors, add/delete SIDS, count SIDS, etc.
649 * We reference count the security descriptors. Any new reference increments
650 * the ref count. If we modify an SD, we copy the old one, dec the ref count
651 * and make the change. We also want to be able to check for equality so
652 * we can reduce the number of SDs in use.
656 * Code to parse registry specification from command line or files
658 * Format:
659 * [cmd:]key:type:value
661 * cmd = a|d|c|add|delete|change|as|ds|cs
667 * Load and unload a registry file.
669 * Load, loads it into memory as a tree, while unload sealizes/flattens it
673 * Get the starting record for NT Registry file
676 /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */
677 typedef struct sk_map_s {
678 int sk_off;
679 KEY_SEC_DESC *key_sec_desc;
680 } SK_MAP;
683 * Where we keep all the regf stuff for one registry.
684 * This is the structure that we use to tie the in memory tree etc
685 * together. By keeping separate structs, we can operate on different
686 * registries at the same time.
687 * Currently, the SK_MAP is an array of mapping structure.
688 * Since we only need this on input and output, we fill in the structure
689 * as we go on input. On output, we know how many SK items we have, so
690 * we can allocate the structure as we need to.
691 * If you add stuff here that is dynamically allocated, add the
692 * appropriate free statements below.
695 #define REGF_REGTYPE_NONE 0
696 #define REGF_REGTYPE_NT 1
697 #define REGF_REGTYPE_W9X 2
699 #define TTTONTTIME(r, t1, t2) (r)->last_mod_time.low = (t1); \
700 (r)->last_mod_time.high = (t2);
702 #define REGF_HDR_BLKSIZ 0x1000
704 struct regf_struct_s {
705 int reg_type;
706 char *regfile_name, *outfile_name;
707 int fd;
708 struct stat sbuf;
709 char *base;
710 int modified;
711 NTTIME last_mod_time;
712 REG_KEY *root; /* Root of the tree for this file */
713 int sk_count, sk_map_size;
714 SK_MAP *sk_map;
718 * Structures for dealing with the on-disk format of the registry
721 #define IVAL(buf) ((unsigned int) \
722 (unsigned int)*((unsigned char *)(buf)+3)<<24| \
723 (unsigned int)*((unsigned char *)(buf)+2)<<16| \
724 (unsigned int)*((unsigned char *)(buf)+1)<<8| \
725 (unsigned int)*((unsigned char *)(buf)+0))
727 #define SVAL(buf) ((unsigned short) \
728 (unsigned short)*((unsigned char *)(buf)+1)<<8| \
729 (unsigned short)*((unsigned char *)(buf)+0))
731 #define CVAL(buf) ((unsigned char)*((unsigned char *)(buf)))
733 #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4)
734 #define LOCN(base, f) ((base) + OFF(f))
737 * All of the structures below actually have a four-byte lenght before them
738 * which always seems to be negative. The following macro retrieves that
739 * size as an integer
742 #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1))
744 typedef unsigned int DWORD;
745 typedef unsigned short WORD;
747 #define REG_REGF_ID 0x66676572
749 typedef struct regf_block {
750 DWORD REGF_ID; /* regf */
751 DWORD uk1;
752 DWORD uk2;
753 DWORD tim1, tim2;
754 DWORD uk3; /* 1 */
755 DWORD uk4; /* 3 */
756 DWORD uk5; /* 0 */
757 DWORD uk6; /* 1 */
758 DWORD first_key; /* offset */
759 unsigned int dblk_size;
760 DWORD uk7[116]; /* 1 */
761 DWORD chksum;
762 } REGF_HDR;
764 typedef struct hbin_sub_struct {
765 DWORD dblocksize;
766 char data[1];
767 } HBIN_SUB_HDR;
769 #define REG_HBIN_ID 0x6E696268
771 typedef struct hbin_struct {
772 DWORD HBIN_ID; /* hbin */
773 DWORD next_off;
774 DWORD prev_off;
775 DWORD uk1;
776 DWORD uk2;
777 DWORD uk3;
778 DWORD uk4;
779 DWORD blk_size;
780 HBIN_SUB_HDR hbin_sub_hdr;
781 } HBIN_HDR;
783 #define REG_NK_ID 0x6B6E
785 typedef struct nk_struct {
786 WORD NK_ID;
787 WORD type;
788 DWORD t1, t2;
789 DWORD uk1;
790 DWORD own_off;
791 DWORD subk_num;
792 DWORD uk2;
793 DWORD lf_off;
794 DWORD uk3;
795 DWORD val_cnt;
796 DWORD val_off;
797 DWORD sk_off;
798 DWORD clsnam_off;
799 DWORD unk4[4];
800 DWORD unk5;
801 WORD nam_len;
802 WORD clsnam_len;
803 char key_nam[1]; /* Actual length determined by nam_len */
804 } NK_HDR;
806 #define REG_SK_ID 0x6B73
808 typedef struct sk_struct {
809 WORD SK_ID;
810 WORD uk1;
811 DWORD prev_off;
812 DWORD next_off;
813 DWORD ref_cnt;
814 DWORD rec_size;
815 char sec_desc[1];
816 } SK_HDR;
818 typedef struct ace_struct {
819 unsigned char type;
820 unsigned char flags;
821 unsigned short length;
822 unsigned int perms;
823 DOM_SID trustee;
824 } REG_ACE;
826 typedef struct acl_struct {
827 WORD rev;
828 WORD size;
829 DWORD num_aces;
830 REG_ACE *aces; /* One or more ACEs */
831 } REG_ACL;
833 typedef struct sec_desc_rec {
834 WORD rev;
835 WORD type;
836 DWORD owner_off;
837 DWORD group_off;
838 DWORD sacl_off;
839 DWORD dacl_off;
840 } REG_SEC_DESC;
842 typedef struct hash_struct {
843 DWORD nk_off;
844 char hash[4];
845 } HASH_REC;
847 #define REG_LF_ID 0x666C
849 typedef struct lf_struct {
850 WORD LF_ID;
851 WORD key_count;
852 struct hash_struct hr[1]; /* Array of hash records, depending on key_count */
853 } LF_HDR;
855 typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */
857 #define REG_VK_ID 0x6B76
859 typedef struct vk_struct {
860 WORD VK_ID;
861 WORD nam_len;
862 DWORD dat_len; /* If top-bit set, offset contains the data */
863 DWORD dat_off;
864 DWORD dat_type;
865 WORD flag; /* =1, has name, else no name (=Default). */
866 WORD unk1;
867 char dat_name[1]; /* Name starts here ... */
868 } VK_HDR;
870 #define REG_TYPE_REGSZ 1
871 #define REG_TYPE_EXPANDSZ 2
872 #define REG_TYPE_BIN 3
873 #define REG_TYPE_DWORD 4
874 #define REG_TYPE_MULTISZ 7
876 typedef struct _val_str {
877 unsigned int val;
878 const char * str;
879 } VAL_STR;
881 const VAL_STR reg_type_names[] = {
882 { 1, "REG_SZ" },
883 { 2, "REG_EXPAND_SZ" },
884 { 3, "REG_BIN" },
885 { 4, "REG_DWORD" },
886 { 7, "REG_MULTI_SZ" },
887 { 0, NULL },
890 const char *val_to_str(unsigned int val, const VAL_STR *val_array)
892 int i = 0;
894 if (!val_array) return NULL;
896 while (val_array[i].val && val_array[i].str) {
898 if (val_array[i].val == val) return val_array[i].str;
899 i++;
903 return NULL;
908 * Convert from UniCode to Ascii ... Does not take into account other lang
909 * Restrict by ascii_max if > 0
911 int uni_to_ascii(unsigned char *uni, unsigned char *ascii, int ascii_max,
912 int uni_max)
914 int i = 0;
916 while (i < ascii_max && !(!uni[i*2] && !uni[i*2+1])) {
917 if (uni_max > 0 && (i*2) >= uni_max) break;
918 ascii[i] = uni[i*2];
919 i++;
923 ascii[i] = '\0';
925 return i;
929 * Convert a data value to a string for display
931 int data_to_ascii(unsigned char *datap, int len, int type, char *ascii, int ascii_max)
933 unsigned char *asciip;
934 int i;
936 switch (type) {
937 case REG_TYPE_REGSZ:
938 fprintf(stderr, "Len: %d\n", len);
939 return uni_to_ascii(datap, ascii, len, ascii_max);
940 break;
942 case REG_TYPE_EXPANDSZ:
943 return uni_to_ascii(datap, ascii, len, ascii_max);
944 break;
946 case REG_TYPE_BIN:
947 asciip = ascii;
948 for (i=0; (i<len)&&(i+1)*3<ascii_max; i++) {
949 int str_rem = ascii_max - ((int)asciip - (int)ascii);
950 asciip += snprintf(asciip, str_rem, "%02x", *(unsigned char *)(datap+i));
951 if (i < len && str_rem > 0)
952 *asciip = ' '; asciip++;
954 *asciip = '\0';
955 return ((int)asciip - (int)ascii);
956 break;
958 case REG_TYPE_DWORD:
959 if (*(int *)datap == 0)
960 return snprintf(ascii, ascii_max, "0");
961 else
962 return snprintf(ascii, ascii_max, "0x%x", *(int *)datap);
963 break;
965 case REG_TYPE_MULTISZ:
967 break;
969 default:
970 return 0;
971 break;
974 return len;
978 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size);
980 int nt_set_regf_input_file(REGF *regf, char *filename)
982 return ((regf->regfile_name = strdup(filename)) != NULL);
985 int nt_set_regf_output_file(REGF *regf, char *filename)
987 return ((regf->outfile_name = strdup(filename)) != NULL);
990 /* Create a regf structure and init it */
992 REGF *nt_create_regf(void)
994 REGF *tmp = (REGF *)malloc(sizeof(REGF));
995 if (!tmp) return tmp;
996 bzero(tmp, sizeof(REGF));
997 return tmp;
1000 /* Free all the bits and pieces ... Assumes regf was malloc'd */
1001 /* If you add stuff to REGF, add the relevant free bits here */
1002 int nt_free_regf(REGF *regf)
1004 if (!regf) return 0;
1006 if (regf->regfile_name) free(regf->regfile_name);
1007 if (regf->outfile_name) free(regf->outfile_name);
1009 /* Free the mmap'd area */
1011 if (regf->base) munmap(regf->base, regf->sbuf.st_size);
1012 regf->base = NULL;
1013 close(regf->fd); /* Ignore the error :-) */
1015 nt_delete_reg_key(regf->root); /* Free the tree */
1016 free(regf->sk_map);
1017 regf->sk_count = regf->sk_map_size = 0;
1019 free(regf);
1021 return 1;
1024 /* Get the header of the registry. Return a pointer to the structure
1025 * If the mmap'd area has not been allocated, then mmap the input file
1027 REGF_HDR *nt_get_regf_hdr(REGF *regf)
1029 if (!regf)
1030 return NULL; /* What about errors */
1032 if (!regf->regfile_name)
1033 return NULL; /* What about errors */
1035 if (!regf->base) { /* Try to mmap etc the file */
1037 if ((regf->fd = open(regf->regfile_name, O_RDONLY, 0000)) <0) {
1038 return NULL; /* What about errors? */
1041 if (fstat(regf->fd, &regf->sbuf) < 0) {
1042 return NULL;
1045 regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0);
1047 if ((int)regf->base == 1) {
1048 fprintf(stderr, "Could not mmap file: %s, %s\n", regf->regfile_name,
1049 strerror(errno));
1050 return NULL;
1055 * At this point, regf->base != NULL, and we should be able to read the
1056 * header
1059 assert(regf->base != NULL);
1061 return (REGF_HDR *)regf->base;
1065 * Validate a regf header
1066 * For now, do nothing, but we should check the checksum
1068 int valid_regf_hdr(REGF_HDR *regf_hdr)
1070 if (!regf_hdr) return 0;
1072 return 1;
1076 * Process an SK header ...
1077 * Every time we see a new one, add it to the map. Otherwise, just look it up.
1078 * We will do a simple linear search for the moment, since many KEYs have the
1079 * same security descriptor.
1080 * We allocate the map in increments of 10 entries.
1084 * Create a new entry in the map, and increase the size of the map if needed
1087 SK_MAP *alloc_sk_map_entry(REGF *regf, KEY_SEC_DESC *tmp, int sk_off)
1089 if (!regf->sk_map) { /* Allocate a block of 10 */
1090 regf->sk_map = (SK_MAP *)malloc(sizeof(SK_MAP) * 10);
1091 if (!regf->sk_map) {
1092 free(tmp);
1093 return NULL;
1095 regf->sk_map_size = 10;
1096 regf->sk_count = 1;
1097 (regf->sk_map)[0].sk_off = sk_off;
1098 (regf->sk_map)[0].key_sec_desc = tmp;
1100 else { /* Simply allocate a new slot, unless we have to expand the list */
1101 int ndx = regf->sk_count;
1102 if (regf->sk_count >= regf->sk_map_size) {
1103 regf->sk_map = (SK_MAP *)realloc(regf->sk_map,
1104 (regf->sk_map_size + 10)*sizeof(SK_MAP));
1105 if (!regf->sk_map) {
1106 free(tmp);
1107 return NULL;
1110 * ndx already points at the first entry of the new block
1112 regf->sk_map_size += 10;
1114 (regf->sk_map)[ndx].sk_off = sk_off;
1115 (regf->sk_map)[ndx].key_sec_desc = tmp;
1116 regf->sk_count++;
1118 return regf->sk_map;
1122 * Search for a KEY_SEC_DESC in the sk_map, but dont create one if not
1123 * found
1126 KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off)
1128 int i;
1130 if (!sk_map) return NULL;
1132 for (i = 0; i < count; i++) {
1134 if (sk_map[i].sk_off == sk_off)
1135 return sk_map[i].key_sec_desc;
1139 return NULL;
1144 * Allocate a KEY_SEC_DESC if we can't find one in the map
1147 KEY_SEC_DESC *lookup_create_sec_key(REGF *regf, SK_MAP *sk_map, int sk_off)
1149 KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off);
1151 if (tmp) {
1152 return tmp;
1154 else { /* Allocate a new one */
1155 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1156 if (!tmp) {
1157 return NULL;
1159 tmp->state = SEC_DESC_RES;
1160 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1161 return NULL;
1163 return tmp;
1168 * Allocate storage and duplicate a SID
1169 * We could allocate the SID to be only the size needed, but I am too lazy.
1171 DOM_SID *dup_sid(DOM_SID *sid)
1173 DOM_SID *tmp = (DOM_SID *)malloc(sizeof(DOM_SID));
1174 int i;
1176 if (!tmp) return NULL;
1177 tmp->ver = sid->ver;
1178 tmp->auths = sid->auths;
1179 for (i=0; i<6; i++) {
1180 tmp->auth[i] = sid->auth[i];
1182 for (i=0; i<tmp->auths&&i<MAXSUBAUTHS; i++) {
1183 tmp->sub_auths[i] = sid->sub_auths[i];
1185 return tmp;
1189 * Allocate space for an ACE and duplicate the registry encoded one passed in
1191 ACE *dup_ace(REG_ACE *ace)
1193 ACE *tmp = NULL;
1195 tmp = (ACE *)malloc(sizeof(ACE));
1197 if (!tmp) return NULL;
1199 tmp->type = CVAL(&ace->type);
1200 tmp->flags = CVAL(&ace->flags);
1201 tmp->perms = IVAL(&ace->perms);
1202 tmp->trustee = dup_sid(&ace->trustee);
1203 return tmp;
1207 * Allocate space for an ACL and duplicate the registry encoded one passed in
1209 ACL *dup_acl(REG_ACL *acl)
1211 ACL *tmp = NULL;
1212 REG_ACE* ace;
1213 int i, num_aces;
1215 num_aces = IVAL(&acl->num_aces);
1217 tmp = (ACL *)malloc(sizeof(ACL) + (num_aces - 1)*sizeof(ACE *));
1218 if (!tmp) return NULL;
1220 tmp->num_aces = num_aces;
1221 tmp->refcnt = 1;
1222 tmp->rev = SVAL(&acl->rev);
1223 ace = (REG_ACE *)&acl->aces;
1224 for (i=0; i<num_aces; i++) {
1225 tmp->aces[i] = dup_ace(ace);
1226 ace = (REG_ACE *)((char *)ace + SVAL(&ace->length));
1227 /* XXX: FIXME, should handle malloc errors */
1230 return tmp;
1233 SEC_DESC *process_sec_desc(REGF *regf, REG_SEC_DESC *sec_desc)
1235 SEC_DESC *tmp = NULL;
1237 tmp = (SEC_DESC *)malloc(sizeof(SEC_DESC));
1239 if (!tmp) {
1240 return NULL;
1243 tmp->rev = SVAL(&sec_desc->rev);
1244 tmp->type = SVAL(&sec_desc->type);
1245 tmp->owner = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->owner_off)));
1246 if (!tmp->owner) {
1247 free(tmp);
1248 return NULL;
1250 tmp->group = dup_sid((DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->group_off)));
1251 if (!tmp->group) {
1252 free(tmp);
1253 return NULL;
1256 /* Now pick up the SACL and DACL */
1258 if (sec_desc->sacl_off)
1259 tmp->sacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->sacl_off)));
1260 else
1261 tmp->sacl = NULL;
1263 if (sec_desc->dacl_off)
1264 tmp->dacl = dup_acl((REG_ACL *)((char *)sec_desc + IVAL(&sec_desc->dacl_off)));
1265 else
1266 tmp->dacl = NULL;
1268 return tmp;
1271 KEY_SEC_DESC *process_sk(REGF *regf, SK_HDR *sk_hdr, int sk_off, int size)
1273 KEY_SEC_DESC *tmp = NULL;
1274 int sk_next_off, sk_prev_off, sk_size;
1275 REG_SEC_DESC *sec_desc;
1277 if (!sk_hdr) return NULL;
1279 if (SVAL(&sk_hdr->SK_ID) != REG_SK_ID) {
1280 fprintf(stderr, "Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr,
1281 regf->regfile_name);
1282 return NULL;
1285 if (-size < (sk_size = IVAL(&sk_hdr->rec_size))) {
1286 fprintf(stderr, "Incorrect SK record size: %d vs %d. %s\n",
1287 -size, sk_size, regf->regfile_name);
1288 return NULL;
1292 * Now, we need to look up the SK Record in the map, and return it
1293 * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can
1294 * use that
1297 if (regf->sk_map &&
1298 ((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL)
1299 && (tmp->state == SEC_DESC_OCU)) {
1300 tmp->ref_cnt++;
1301 return tmp;
1304 /* Here, we have an item in the map that has been reserved, or tmp==NULL. */
1306 assert(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON));
1309 * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the
1310 * new KEY_SEC_DESC to the mapping structure, since the offset supplied is
1311 * the actual offset of structure. The same offset will be used by all
1312 * all future references to this structure
1313 * We chould put all this unpleasantness in a function.
1316 if (!tmp) {
1317 tmp = (KEY_SEC_DESC *)malloc(sizeof(KEY_SEC_DESC));
1318 if (!tmp) return NULL;
1319 bzero(tmp, sizeof(KEY_SEC_DESC));
1322 * Allocate an entry in the SK_MAP ...
1323 * We don't need to free tmp, because that is done for us if the
1324 * sm_map entry can't be expanded when we need more space in the map.
1327 if (!alloc_sk_map_entry(regf, tmp, sk_off)) {
1328 return NULL;
1332 tmp->ref_cnt++;
1333 tmp->state = SEC_DESC_OCU;
1336 * Now, process the actual sec desc and plug the values in
1339 sec_desc = (REG_SEC_DESC *)&sk_hdr->sec_desc[0];
1340 tmp->sec_desc = process_sec_desc(regf, sec_desc);
1343 * Now forward and back links. Here we allocate an entry in the sk_map
1344 * if it does not exist, and mark it reserved
1347 sk_prev_off = IVAL(&sk_hdr->prev_off);
1348 tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off);
1349 assert(tmp->prev != NULL);
1350 sk_next_off = IVAL(&sk_hdr->next_off);
1351 tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off);
1352 assert(tmp->next != NULL);
1354 return tmp;
1358 * Process a VK header and return a value
1360 VAL_KEY *process_vk(REGF *regf, VK_HDR *vk_hdr, int size)
1362 char val_name[1024];
1363 int nam_len, dat_len, flag, dat_type, dat_off, vk_id;
1364 const char *val_type;
1365 VAL_KEY *tmp = NULL;
1367 if (!vk_hdr) return NULL;
1369 if ((vk_id = SVAL(&vk_hdr->VK_ID)) != REG_VK_ID) {
1370 fprintf(stderr, "Unrecognized VK header ID: %0X, block: %0X, %s\n",
1371 vk_id, (int)vk_hdr, regf->regfile_name);
1372 return NULL;
1375 nam_len = SVAL(&vk_hdr->nam_len);
1376 val_name[nam_len] = '\0';
1377 flag = SVAL(&vk_hdr->flag);
1378 dat_type = IVAL(&vk_hdr->dat_type);
1379 dat_len = IVAL(&vk_hdr->dat_len); /* If top bit, offset contains data */
1380 dat_off = IVAL(&vk_hdr->dat_off);
1382 tmp = (VAL_KEY *)malloc(sizeof(VAL_KEY));
1383 if (!tmp) {
1384 goto error;
1386 bzero(tmp, sizeof(VAL_KEY));
1387 tmp->has_name = flag;
1388 tmp->data_type = dat_type;
1390 if (flag & 0x01) {
1391 strncpy(val_name, vk_hdr->dat_name, nam_len);
1392 tmp->name = strdup(val_name);
1393 if (!tmp->name) {
1394 goto error;
1397 else
1398 strncpy(val_name, "<No Name>", 10);
1401 * Allocate space and copy the data as a BLOB
1404 if (dat_len) {
1406 char *dtmp = (char *)malloc(dat_len&0x7FFFFFFF);
1408 if (!dtmp) {
1409 goto error;
1412 tmp->data_blk = dtmp;
1414 if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */
1415 char *dat_ptr = LOCN(regf->base, dat_off);
1416 bcopy(dat_ptr, dtmp, dat_len);
1418 else { /* The data is in the offset */
1419 dat_len = dat_len & 0x7FFFFFFF;
1420 bcopy(&dat_off, dtmp, dat_len);
1423 tmp->data_len = dat_len;
1426 val_type = val_to_str(dat_type, reg_type_names);
1429 * We need to save the data area as well
1432 if (verbose) fprintf(stdout, " %s : %s : \n", val_name, val_type);
1434 return tmp;
1436 error:
1437 /* XXX: FIXME, free the partially allocated struct */
1438 return NULL;
1443 * Process a VL Header and return a list of values
1445 VAL_LIST *process_vl(REGF *regf, VL_TYPE vl, int count, int size)
1447 int i, vk_off;
1448 VK_HDR *vk_hdr;
1449 VAL_LIST *tmp = NULL;
1451 if (!vl) return NULL;
1453 if (-size < (count+1)*sizeof(int)){
1454 fprintf(stderr, "Error in VL header format. Size less than space required. %d\n", -size);
1455 return NULL;
1458 tmp = (VAL_LIST *)malloc(sizeof(VAL_LIST) + (count - 1) * sizeof(VAL_KEY *));
1459 if (!tmp) {
1460 goto error;
1463 for (i=0; i<count; i++) {
1464 vk_off = IVAL(&vl[i]);
1465 vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off);
1466 tmp->vals[i] = process_vk(regf, vk_hdr, BLK_SIZE(vk_hdr));
1467 if (!tmp->vals[i]){
1468 goto error;
1472 tmp->val_count = count;
1474 return tmp;
1476 error:
1477 /* XXX: FIXME, free the partially allocated structure */
1478 return NULL;
1482 * Process an LF Header and return a list of sub-keys
1484 KEY_LIST *process_lf(REGF *regf, LF_HDR *lf_hdr, int size)
1486 int count, i, nk_off;
1487 unsigned int lf_id;
1488 KEY_LIST *tmp;
1490 if (!lf_hdr) return NULL;
1492 if ((lf_id = SVAL(&lf_hdr->LF_ID)) != REG_LF_ID) {
1493 fprintf(stderr, "Unrecognized LF Header format: %0X, Block: %0X, %s.\n",
1494 lf_id, (int)lf_hdr, regf->regfile_name);
1495 return NULL;
1498 assert(size < 0);
1500 count = SVAL(&lf_hdr->key_count);
1502 if (count <= 0) return NULL;
1504 /* Now, we should allocate a KEY_LIST struct and fill it in ... */
1506 tmp = (KEY_LIST *)malloc(sizeof(KEY_LIST) + (count - 1) * sizeof(REG_KEY *));
1507 if (!tmp) {
1508 goto error;
1511 tmp->key_count = count;
1513 for (i=0; i<count; i++) {
1514 NK_HDR *nk_hdr;
1516 nk_off = IVAL(&lf_hdr->hr[i].nk_off);
1517 nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off);
1518 tmp->keys[i] = nt_get_key_tree(regf, nk_hdr, BLK_SIZE(nk_hdr));
1519 if (!tmp->keys[i]) {
1520 goto error;
1524 return tmp;
1526 error:
1527 /* XXX: FIXME, free the partially allocated structure */
1528 return NULL;
1532 * This routine is passed a NK_HDR pointer and retrieves the entire tree
1533 * from there down. It return a REG_KEY *.
1535 REG_KEY *nt_get_key_tree(REGF *regf, NK_HDR *nk_hdr, int size)
1537 REG_KEY *tmp = NULL;
1538 int name_len, clsname_len, lf_off, val_off, val_count, sk_off;
1539 unsigned int nk_id;
1540 LF_HDR *lf_hdr;
1541 VL_TYPE *vl;
1542 SK_HDR *sk_hdr;
1543 char key_name[1024], cls_name[1024];
1545 if (!nk_hdr) return NULL;
1547 if ((nk_id = SVAL(&nk_hdr->NK_ID)) != REG_NK_ID) {
1548 fprintf(stderr, "Unrecognized NK Header format: %08X, Block: %0X. %s\n",
1549 nk_id, (int)nk_hdr, regf->regfile_name);
1550 return NULL;
1553 assert(size < 0);
1555 name_len = SVAL(&nk_hdr->nam_len);
1556 clsname_len = SVAL(&nk_hdr->clsnam_len);
1559 * The value of -size should be ge
1560 * (sizeof(NK_HDR) - 1 + name_len)
1561 * The -1 accounts for the fact that we included the first byte of
1562 * the name in the structure. clsname_len is the length of the thing
1563 * pointed to by clsnam_off
1566 if (-size < (sizeof(NK_HDR) - 1 + name_len)) {
1567 fprintf(stderr, "Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr);
1568 fprintf(stderr, "Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n",
1569 sizeof(NK_HDR), name_len, clsname_len);
1570 /*return NULL;*/
1573 if (verbose) fprintf(stdout, "NK HDR: Name len: %d, class name len: %d\n",
1574 name_len, clsname_len);
1576 /* Fish out the key name and process the LF list */
1578 assert(name_len < sizeof(key_name));
1580 /* Allocate the key struct now */
1581 tmp = (REG_KEY *)malloc(sizeof(REG_KEY));
1582 if (!tmp) return tmp;
1583 bzero(tmp, sizeof(REG_KEY));
1585 tmp->type = (SVAL(&nk_hdr->type)==0x2C?REG_ROOT_KEY:REG_SUB_KEY);
1587 strncpy(key_name, nk_hdr->key_nam, name_len);
1588 key_name[name_len] = '\0';
1590 if (verbose) fprintf(stdout, "Key name: %s\n", key_name);
1592 tmp->name = strdup(key_name);
1593 if (!tmp->name) {
1594 goto error;
1598 * Fish out the class name, it is in UNICODE, while the key name is
1599 * ASCII :-)
1602 if (clsname_len) { /* Just print in Ascii for now */
1603 char *clsnamep;
1604 int clsnam_off;
1606 clsnam_off = IVAL(&nk_hdr->clsnam_off);
1607 clsnamep = LOCN(regf->base, clsnam_off);
1609 bzero(cls_name, clsname_len);
1610 uni_to_ascii(clsnamep, cls_name, sizeof(cls_name), clsname_len);
1613 * I am keeping class name as an ascii string for the moment.
1614 * That means it needs to be converted on output.
1615 * XXX: FIXME
1618 tmp->class_name = strdup(cls_name);
1619 if (!tmp->class_name) {
1620 goto error;
1623 if (verbose) fprintf(stdout, " Class Name: %s\n", cls_name);
1628 * If there are any values, process them here
1631 val_count = IVAL(&nk_hdr->val_cnt);
1633 if (val_count) {
1635 val_off = IVAL(&nk_hdr->val_off);
1636 vl = (VL_TYPE *)LOCN(regf->base, val_off);
1638 tmp->values = process_vl(regf, *vl, val_count, BLK_SIZE(vl));
1639 if (!tmp->values) {
1640 goto error;
1646 * Also handle the SK header ...
1649 sk_off = IVAL(&nk_hdr->sk_off);
1650 sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off);
1652 if (sk_off != -1) {
1654 tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr));
1658 lf_off = IVAL(&nk_hdr->lf_off);
1661 * No more subkeys if lf_off == -1
1664 if (lf_off != -1) {
1666 lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off);
1668 tmp->sub_keys = process_lf(regf, lf_hdr, BLK_SIZE(lf_hdr));
1669 if (!tmp->sub_keys){
1670 goto error;
1675 return tmp;
1677 error:
1678 if (tmp) nt_delete_reg_key(tmp);
1679 return NULL;
1682 int nt_load_registry(REGF *regf)
1684 REGF_HDR *regf_hdr;
1685 unsigned int regf_id, hbin_id;
1686 HBIN_HDR *hbin_hdr;
1687 NK_HDR *first_key;
1689 /* Get the header */
1691 if ((regf_hdr = nt_get_regf_hdr(regf)) == NULL) {
1692 return -1;
1695 /* Now process that header and start to read the rest in */
1697 if ((regf_id = IVAL(&regf_hdr->REGF_ID)) != REG_REGF_ID) {
1698 fprintf(stderr, "Unrecognized NT registry header id: %0X, %s\n",
1699 regf_id, regf->regfile_name);
1700 return -1;
1704 * Validate the header ...
1706 if (!valid_regf_hdr(regf_hdr)) {
1707 fprintf(stderr, "Registry file header does not validate: %s\n",
1708 regf->regfile_name);
1709 return -1;
1712 /* Update the last mod date, and then go get the first NK record and on */
1714 TTTONTTIME(regf, IVAL(&regf_hdr->tim1), IVAL(&regf_hdr->tim2));
1717 * The hbin hdr seems to be just uninteresting garbage. Check that
1718 * it is there, but that is all.
1721 hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ);
1723 if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID)) != REG_HBIN_ID) {
1724 fprintf(stderr, "Unrecognized registry hbin hdr ID: %0X, %s\n",
1725 hbin_id, regf->regfile_name);
1726 return -1;
1730 * Get a pointer to the first key from the hreg_hdr
1733 first_key = (NK_HDR *)LOCN(regf->base, IVAL(&regf_hdr->first_key));
1736 * Now, get the registry tree by processing that NK recursively
1739 regf->root = nt_get_key_tree(regf, first_key, BLK_SIZE(first_key));
1741 assert(regf->root != NULL);
1743 return 1;
1747 * Main code from here on ...
1751 * key print function here ...
1754 int print_key(const char *path, char *name, char *class_name, int root,
1755 int terminal, int vals)
1758 if (terminal) fprintf(stdout, "%s\\%s\n", path, name);
1760 return 1;
1764 * Sec Desc print functions
1767 void print_sid(DOM_SID *sid)
1769 int i, comps = sid->auths;
1770 fprintf(stdout, "S-%u-%u", sid->ver, sid->auth[5]);
1772 for (i = 0; i < comps; i++) {
1774 fprintf(stdout, "-%u", sid->sub_auths[i]);
1777 fprintf(stdout, "\n");
1780 int print_sec(SEC_DESC *sec_desc)
1783 fprintf(stdout, " SECURITY\n");
1784 fprintf(stdout, " Owner: ");
1785 print_sid(sec_desc->owner);
1786 fprintf(stdout, " Group: ");
1787 print_sid(sec_desc->group);
1788 return 1;
1792 * Value print function here ...
1794 int print_val(const char *path, char *val_name, int val_type, int data_len,
1795 void *data_blk, int terminal, int first, int last)
1797 char data_asc[1024];
1799 bzero(data_asc, sizeof(data_asc));
1800 if (!terminal && first)
1801 fprintf(stdout, "%s\n", path);
1802 data_to_ascii((unsigned char *)data_blk, data_len, val_type, data_asc,
1803 sizeof(data_asc) - 1);
1804 fprintf(stdout, " %s : %s : %s\n", (val_name?val_name:"<No Name>"),
1805 val_to_str(val_type, reg_type_names), data_asc);
1806 return 1;
1809 void usage(void)
1811 fprintf(stderr, "Usage: editreg [-v] [-k] <registryfile>\n");
1812 fprintf(stderr, "Version: 0.1\n\n");
1813 fprintf(stderr, "\n\t-v\t sets verbose mode");
1816 int main(int argc, char *argv[])
1818 REGF *regf;
1819 extern char *optarg;
1820 extern int optind;
1821 int opt;
1823 if (argc < 2) {
1824 usage();
1825 exit(1);
1829 * Now, process the arguments
1832 while ((opt = getopt(argc, argv, "vk")) != EOF) {
1833 switch (opt) {
1834 case 'v':
1835 verbose++;
1836 break;
1838 case 'k':
1839 break;
1841 default:
1842 usage();
1843 exit(1);
1844 break;
1848 if ((regf = nt_create_regf()) == NULL) {
1849 fprintf(stderr, "Could not create registry object: %s\n", strerror(errno));
1850 exit(2);
1853 if (!nt_set_regf_input_file(regf, argv[optind])) {
1854 fprintf(stderr, "Could not set name of registry file: %s, %s\n",
1855 argv[1], strerror(errno));
1856 exit(3);
1859 /* Now, open it, and bring it into memory :-) */
1861 if (nt_load_registry(regf) < 0) {
1862 fprintf(stderr, "Could not load registry: %s\n", argv[1]);
1863 exit(4);
1867 * At this point, we should have a registry in memory and should be able
1868 * to iterate over it.
1871 nt_key_iterator(regf, regf->root, 0, "", print_key, print_sec, print_val);
1872 return 0;