preparing for release of alpha.2.5
[Samba.git] / source / lib / md5.c
blobae2bb9f29ce2bddb2afb0d7eefcf17231b1d366a
1 /*
2 Unix SMB/Netbios implementation.
3 Version 2.0.
5 This code comes directly from the ssh-1.2.27 sources.
7 */
9 /* This code has been heavily hacked by Tatu Ylonen <ylo@cs.hut.fi> to
10 make it compile on machines like Cray that don't have a 32 bit integer
11 type. */
13 * This code implements the MD5 message-digest algorithm.
14 * The algorithm is due to Ron Rivest. This code was
15 * written by Colin Plumb in 1993, no copyright is claimed.
16 * This code is in the public domain; do with it what you wish.
18 * Equivalent code is available from RSA Data Security, Inc.
19 * This code has been tested against that, and is equivalent,
20 * except that you don't need to include two pages of legalese
21 * with every copy.
23 * To compute the message digest of a chunk of bytes, declare an
24 * MD5Context structure, pass it to MD5Init, call MD5Update as
25 * needed on buffers full of bytes, and then call MD5Final, which
26 * will fill a supplied 16-byte array with the digest.
29 #include "includes.h"
31 #ifndef _GETPUT_H
34 getput.h
36 Author: Tatu Ylonen <ylo@cs.hut.fi>
38 Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
39 All rights reserved
41 Created: Wed Jun 28 22:36:30 1995 ylo
43 Macros for storing and retrieving data in msb first and lsb first order.
47 /*------------ macros for storing/extracting msb first words -------------*/
49 #define GET_32BIT(cp) (((uint32)(uchar)(cp)[0] << 24) | \
50 ((uint32)(uchar)(cp)[1] << 16) | \
51 ((uint32)(uchar)(cp)[2] << 8) | \
52 ((uint32)(uchar)(cp)[3]))
54 #define GET_16BIT(cp) (((uint32)(uchar)(cp)[0] << 8) | \
55 ((uint32)(uchar)(cp)[1]))
57 #define PUT_32BIT(cp, value) do { \
58 (cp)[0] = (value) >> 24; \
59 (cp)[1] = (value) >> 16; \
60 (cp)[2] = (value) >> 8; \
61 (cp)[3] = (value); } while (0)
63 #define PUT_16BIT(cp, value) do { \
64 (cp)[0] = (value) >> 8; \
65 (cp)[1] = (value); } while (0)
67 /*------------ macros for storing/extracting lsb first words -------------*/
69 #define GET_32BIT_LSB_FIRST(cp) \
70 (((uint32)(uchar)(cp)[0]) | \
71 ((uint32)(uchar)(cp)[1] << 8) | \
72 ((uint32)(uchar)(cp)[2] << 16) | \
73 ((uint32)(uchar)(cp)[3] << 24))
75 #define GET_16BIT_LSB_FIRST(cp) \
76 (((uint32)(uchar)(cp)[0]) | \
77 ((uint32)(uchar)(cp)[1] << 8))
79 #define PUT_32BIT_LSB_FIRST(cp, value) do { \
80 (cp)[0] = (value); \
81 (cp)[1] = (value) >> 8; \
82 (cp)[2] = (value) >> 16; \
83 (cp)[3] = (value) >> 24; } while (0)
85 #define PUT_16BIT_LSB_FIRST(cp, value) do { \
86 (cp)[0] = (value); \
87 (cp)[1] = (value) >> 8; } while (0)
89 #endif /* _GETPUT_H */
92 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
93 * initialization constants.
95 void MD5Init(struct MD5Context *ctx)
97 ctx->buf[0] = 0x67452301;
98 ctx->buf[1] = 0xefcdab89;
99 ctx->buf[2] = 0x98badcfe;
100 ctx->buf[3] = 0x10325476;
102 ctx->bits[0] = 0;
103 ctx->bits[1] = 0;
107 * Update context to reflect the concatenation of another buffer full
108 * of bytes.
110 void MD5Update(struct MD5Context *ctx, uchar const *buf, unsigned len)
112 uint32 t;
114 /* Update bitcount */
116 t = ctx->bits[0];
117 if ((ctx->bits[0] = (t + ((uint32)len << 3)) & 0xffffffff) < t)
118 ctx->bits[1]++; /* Carry from low to high */
119 ctx->bits[1] += len >> 29;
121 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
123 /* Handle any leading odd-sized chunks */
125 if (t) {
126 uchar *p = ctx->in + t;
128 t = 64 - t;
129 if (len < t) {
130 memcpy(p, buf, len);
131 return;
133 memcpy(p, buf, t);
134 MD5Transform(ctx->buf, ctx->in);
135 buf += t;
136 len -= t;
138 /* Process data in 64-byte chunks */
140 while (len >= 64) {
141 memcpy(ctx->in, buf, 64);
142 MD5Transform(ctx->buf, ctx->in);
143 buf += 64;
144 len -= 64;
147 /* Handle any remaining bytes of data. */
149 memcpy(ctx->in, buf, len);
153 * Final wrapup - pad to 64-byte boundary with the bit pattern
154 * 1 0* (64-bit count of bits processed, MSB-first)
156 void MD5Final(uchar digest[16], struct MD5Context *ctx)
158 unsigned count;
159 uchar *p;
161 /* Compute number of bytes mod 64 */
162 count = (ctx->bits[0] >> 3) & 0x3F;
164 /* Set the first char of padding to 0x80. This is safe since there is
165 always at least one byte free */
166 p = ctx->in + count;
167 *p++ = 0x80;
169 /* Bytes of padding needed to make 64 bytes */
170 count = 64 - 1 - count;
172 /* Pad out to 56 mod 64 */
173 if (count < 8) {
174 /* Two lots of padding: Pad the first block to 64 bytes */
175 memset(p, 0, count);
176 MD5Transform(ctx->buf, ctx->in);
178 /* Now fill the next block with 56 bytes */
179 memset(ctx->in, 0, 56);
180 } else {
181 /* Pad block to 56 bytes */
182 memset(p, 0, count - 8);
185 /* Append length in bits and transform */
186 PUT_32BIT_LSB_FIRST(ctx->in + 56, ctx->bits[0]);
187 PUT_32BIT_LSB_FIRST(ctx->in + 60, ctx->bits[1]);
189 MD5Transform(ctx->buf, ctx->in);
190 PUT_32BIT_LSB_FIRST(digest, ctx->buf[0]);
191 PUT_32BIT_LSB_FIRST(digest + 4, ctx->buf[1]);
192 PUT_32BIT_LSB_FIRST(digest + 8, ctx->buf[2]);
193 PUT_32BIT_LSB_FIRST(digest + 12, ctx->buf[3]);
194 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
197 #ifndef ASM_MD5
199 /* The four core functions - F1 is optimized somewhat */
201 /* #define F1(x, y, z) (x & y | ~x & z) */
202 #define F1(x, y, z) (z ^ (x & (y ^ z)))
203 #define F2(x, y, z) F1(z, x, y)
204 #define F3(x, y, z) (x ^ y ^ z)
205 #define F4(x, y, z) (y ^ (x | ~z))
207 /* This is the central step in the MD5 algorithm. */
208 #define MD5STEP(f, w, x, y, z, data, s) \
209 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
212 * The core of the MD5 algorithm, this alters an existing MD5 hash to
213 * reflect the addition of 16 longwords of new data. MD5Update blocks
214 * the data and converts bytes into longwords for this routine.
216 void MD5Transform(uint32 buf[4], const uchar inext[64])
218 register uint32 a, b, c, d, i;
219 uint32 in[16];
221 for (i = 0; i < 16; i++)
222 in[i] = GET_32BIT_LSB_FIRST(inext + 4 * i);
224 a = buf[0];
225 b = buf[1];
226 c = buf[2];
227 d = buf[3];
229 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
230 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
231 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
232 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
233 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
234 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
235 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
236 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
237 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
238 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
239 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
240 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
241 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
242 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
243 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
244 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
246 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
247 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
248 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
249 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
250 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
251 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
252 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
253 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
254 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
255 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
256 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
257 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
258 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
259 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
260 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
261 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
263 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
264 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
265 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
266 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
267 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
268 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
269 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
270 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
271 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
272 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
273 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
274 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
275 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
276 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
277 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
278 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
280 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
281 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
282 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
283 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
284 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
285 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
286 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
287 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
288 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
289 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
290 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
291 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
292 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
293 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
294 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
295 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
297 buf[0] += a;
298 buf[1] += b;
299 buf[2] += c;
300 buf[3] += d;
303 #endif