9 The most current version of this document is available at
10 http://samba.org/ftp/unpacked/talloc/talloc_guide.txt
12 If you are used to the "old" talloc from Samba3 before 3.0.20 then please read
13 this carefully, as talloc has changed a lot. With 3.0.20 (or 3.0.14?) the
14 Samba4 talloc has been ported back to Samba3, so this guide applies to both.
16 The new talloc is a hierarchical, reference counted memory pool system
17 with destructors. Quite a mouthful really, but not too bad once you
20 Perhaps the biggest change from Samba3 is that there is no distinction
21 between a "talloc context" and a "talloc pointer". Any pointer
22 returned from talloc() is itself a valid talloc context. This means
25 struct foo *X = talloc(mem_ctx, struct foo);
26 X->name = talloc_strdup(X, "foo");
28 and the pointer X->name would be a "child" of the talloc context "X"
29 which is itself a child of mem_ctx. So if you do talloc_free(mem_ctx)
30 then it is all destroyed, whereas if you do talloc_free(X) then just X
31 and X->name are destroyed, and if you do talloc_free(X->name) then
32 just the name element of X is destroyed.
34 If you think about this, then what this effectively gives you is an
35 n-ary tree, where you can free any part of the tree with
38 If you find this confusing, then I suggest you run the testsuite to
39 watch talloc in action. You may also like to add your own tests to
40 testsuite.c to clarify how some particular situation is handled.
46 All the additional features of talloc() over malloc() do come at a
47 price. We have a simple performance test in Samba4 that measures
48 talloc() versus malloc() performance, and it seems that talloc() is
49 about 4% slower than malloc() on my x86 Debian Linux box. For Samba,
50 the great reduction in code complexity that we get by using talloc
51 makes this worthwhile, especially as the total overhead of
52 talloc/malloc in Samba is already quite small.
58 The following is a complete guide to the talloc API. Read it all at
64 talloc itself does not deal with threads. It is thread-safe (assuming
65 the underlying "malloc" is), as long as each thread uses different
67 If two threads uses the same context then they need to synchronize in
68 order to be safe. In particular:
69 - when using talloc_enable_leak_report(), giving directly NULL as a
70 parent context implicitly refers to a hidden "null context" global
71 variable, so this should not be used in a multi-threaded environment
72 without proper synchronization ;
73 - the context returned by talloc_autofree_context() is also global so
74 shouldn't be used by several threads simultaneously without
77 talloc and shared objects
78 -------------------------
80 talloc can be used in shared objects. Special care needs to be taken
81 to never use talloc_autofree_context() in code that might be loaded
82 with dlopen() and unloaded with dlclose(), as talloc_autofree_context()
83 internally uses atexit(3). Some platforms like modern Linux handles
84 this fine, but for example FreeBSD does not deal well with dlopen()
85 and atexit() used simultaneously: dlclose() does not clean up the list
86 of atexit-handlers, so when the program exits the code that was
87 registered from within talloc_autofree_context() is gone, the program
91 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
92 (type *)talloc(const void *context, type);
94 The talloc() macro is the core of the talloc library. It takes a
95 memory context and a type, and returns a pointer to a new area of
96 memory of the given type.
98 The returned pointer is itself a talloc context, so you can use it as
99 the context argument to more calls to talloc if you wish.
101 The returned pointer is a "child" of the supplied context. This means
102 that if you talloc_free() the context then the new child disappears as
103 well. Alternatively you can free just the child.
105 The context argument to talloc() can be NULL, in which case a new top
106 level context is created.
109 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
110 void *talloc_size(const void *context, size_t size);
112 The function talloc_size() should be used when you don't have a
113 convenient type to pass to talloc(). Unlike talloc(), it is not type
114 safe (as it returns a void *), so you are on your own for type checking.
116 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
117 (typeof(ptr)) talloc_ptrtype(const void *ctx, ptr);
119 The talloc_ptrtype() macro should be used when you have a pointer and
120 want to allocate memory to point at with this pointer. When compiling
121 with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
122 and talloc_get_name() will return the current location in the source file.
125 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
126 int talloc_free(void *ptr);
128 The talloc_free() function frees a piece of talloc memory, and all its
129 children. You can call talloc_free() on any pointer returned by
132 The return value of talloc_free() indicates success or failure, with 0
133 returned for success and -1 for failure. A possible failure condition
134 is if the pointer had a destructor attached to it and the destructor
135 returned -1. See talloc_set_destructor() for details on
136 destructors. Likewise, if "ptr" is NULL, then the function will make
137 no modifications and returns -1.
139 If this pointer has an additional parent when talloc_free() is called
140 then the memory is not actually released, but instead the most
141 recently established parent is destroyed. See talloc_reference() for
142 details on establishing additional parents.
144 For more control on which parent is removed, see talloc_unlink()
146 talloc_free() operates recursively on its children.
148 From the 2.0 version of talloc, as a special case, talloc_free() is
149 refused on pointers that have more than one parent, as talloc would
150 have no way of knowing which parent should be removed. To free a
151 pointer that has more than one parent please use talloc_unlink().
153 To help you find problems in your code caused by this behaviour, if
154 you do try and free a pointer with more than one parent then the
155 talloc logging function will be called to give output like this:
157 ERROR: talloc_free with references at some_dir/source/foo.c:123
158 reference at some_dir/source/other.c:325
159 reference at some_dir/source/third.c:121
161 Please see the documentation for talloc_set_log_fn() and
162 talloc_set_log_stderr() for more information on talloc logging
165 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
166 int talloc_free_children(void *ptr);
168 The talloc_free_children() walks along the list of all children of a
169 talloc context and talloc_free()s only the children, not the context
173 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
174 void *talloc_reference(const void *context, const void *ptr);
176 The talloc_reference() function makes "context" an additional parent
179 The return value of talloc_reference() is always the original pointer
180 "ptr", unless talloc ran out of memory in creating the reference in
181 which case it will return NULL (each additional reference consumes
182 around 48 bytes of memory on intel x86 platforms).
184 If "ptr" is NULL, then the function is a no-op, and simply returns NULL.
186 After creating a reference you can free it in one of the following
189 - you can talloc_free() any parent of the original pointer. That
190 will reduce the number of parents of this pointer by 1, and will
191 cause this pointer to be freed if it runs out of parents.
193 - you can talloc_free() the pointer itself. That will destroy the
194 most recently established parent to the pointer and leave the
195 pointer as a child of its current parent.
197 For more control on which parent to remove, see talloc_unlink()
200 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
201 int talloc_unlink(const void *context, const void *ptr);
203 The talloc_unlink() function removes a specific parent from ptr. The
204 context passed must either be a context used in talloc_reference()
205 with this pointer, or must be a direct parent of ptr.
207 Note that if the parent has already been removed using talloc_free()
208 then this function will fail and will return -1. Likewise, if "ptr"
209 is NULL, then the function will make no modifications and return -1.
211 Usually you can just use talloc_free() instead of talloc_unlink(), but
212 sometimes it is useful to have the additional control on which parent
216 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
217 void talloc_set_destructor(const void *ptr, int (*destructor)(void *));
219 The function talloc_set_destructor() sets the "destructor" for the
220 pointer "ptr". A destructor is a function that is called when the
221 memory used by a pointer is about to be released. The destructor
222 receives the pointer as an argument, and should return 0 for success
225 The destructor can do anything it wants to, including freeing other
226 pieces of memory. A common use for destructors is to clean up
227 operating system resources (such as open file descriptors) contained
228 in the structure the destructor is placed on.
230 You can only place one destructor on a pointer. If you need more than
231 one destructor then you can create a zero-length child of the pointer
232 and place an additional destructor on that.
234 To remove a destructor call talloc_set_destructor() with NULL for the
237 If your destructor attempts to talloc_free() the pointer that it is
238 the destructor for then talloc_free() will return -1 and the free will
239 be ignored. This would be a pointless operation anyway, as the
240 destructor is only called when the memory is just about to go away.
243 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
244 int talloc_increase_ref_count(const void *ptr);
246 The talloc_increase_ref_count(ptr) function is exactly equivalent to:
248 talloc_reference(NULL, ptr);
250 You can use either syntax, depending on which you think is clearer in
253 It returns 0 on success and -1 on failure.
255 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
256 size_t talloc_reference_count(const void *ptr);
258 Return the number of references to the pointer.
260 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
261 void talloc_set_name(const void *ptr, const char *fmt, ...);
263 Each talloc pointer has a "name". The name is used principally for
264 debugging purposes, although it is also possible to set and get the
265 name on a pointer in as a way of "marking" pointers in your code.
267 The main use for names on pointer is for "talloc reports". See
268 talloc_report() and talloc_report_full() for details. Also see
269 talloc_enable_leak_report() and talloc_enable_leak_report_full().
271 The talloc_set_name() function allocates memory as a child of the
272 pointer. It is logically equivalent to:
273 talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));
275 Note that multiple calls to talloc_set_name() will allocate more
276 memory without releasing the name. All of the memory is released when
277 the ptr is freed using talloc_free().
280 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
281 void talloc_set_name_const(const void *ptr, const char *name);
283 The function talloc_set_name_const() is just like talloc_set_name(),
284 but it takes a string constant, and is much faster. It is extensively
285 used by the "auto naming" macros, such as talloc_p().
287 This function does not allocate any memory. It just copies the
288 supplied pointer into the internal representation of the talloc
289 ptr. This means you must not pass a name pointer to memory that will
290 disappear before the ptr is freed with talloc_free().
293 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
294 void *talloc_named(const void *context, size_t size, const char *fmt, ...);
296 The talloc_named() function creates a named talloc pointer. It is
299 ptr = talloc_size(context, size);
300 talloc_set_name(ptr, fmt, ....);
303 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
304 void *talloc_named_const(const void *context, size_t size, const char *name);
306 This is equivalent to::
308 ptr = talloc_size(context, size);
309 talloc_set_name_const(ptr, name);
312 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
313 const char *talloc_get_name(const void *ptr);
315 This returns the current name for the given talloc pointer. See
316 talloc_set_name() for details.
319 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
320 void *talloc_init(const char *fmt, ...);
322 This function creates a zero length named talloc context as a top
323 level context. It is equivalent to::
325 talloc_named(NULL, 0, fmt, ...);
328 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
329 void *talloc_new(void *ctx);
331 This is a utility macro that creates a new memory context hanging
332 off an exiting context, automatically naming it "talloc_new: __location__"
333 where __location__ is the source line it is called from. It is
334 particularly useful for creating a new temporary working context.
337 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
338 (type *)talloc_realloc(const void *context, void *ptr, type, count);
340 The talloc_realloc() macro changes the size of a talloc
341 pointer. The "count" argument is the number of elements of type "type"
342 that you want the resulting pointer to hold.
344 talloc_realloc() has the following equivalences::
346 talloc_realloc(context, NULL, type, 1) ==> talloc(context, type);
347 talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N);
348 talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr);
350 The "context" argument is only used if "ptr" is NULL, otherwise it is
353 talloc_realloc() returns the new pointer, or NULL on failure. The call
354 will fail either due to a lack of memory, or because the pointer has
355 more than one parent (see talloc_reference()).
358 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
359 void *talloc_realloc_size(const void *context, void *ptr, size_t size);
361 the talloc_realloc_size() function is useful when the type is not
362 known so the typesafe talloc_realloc() cannot be used.
365 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
366 void *talloc_steal(const void *new_ctx, const void *ptr);
368 The talloc_steal() function changes the parent context of a talloc
369 pointer. It is typically used when the context that the pointer is
370 currently a child of is going to be freed and you wish to keep the
371 memory for a longer time.
373 The talloc_steal() function returns the pointer that you pass it. It
374 does not have any failure modes.
376 NOTE: It is possible to produce loops in the parent/child relationship
377 if you are not careful with talloc_steal(). No guarantees are provided
378 as to your sanity or the safety of your data if you do this.
380 talloc_steal (new_ctx, NULL) will return NULL with no sideeffects.
382 Note that if you try and call talloc_steal() on a pointer that has
383 more than one parent then the result is ambiguous. Talloc will choose
384 to remove the parent that is currently indicated by talloc_parent()
385 and replace it with the chosen parent. You will also get a message
386 like this via the talloc logging functions:
388 WARNING: talloc_steal with references at some_dir/source/foo.c:123
389 reference at some_dir/source/other.c:325
390 reference at some_dir/source/third.c:121
392 To unambiguously change the parent of a pointer please see the
393 function talloc_reparent(). See the talloc_set_log_fn() documentation
394 for more information on talloc logging.
396 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
397 void *talloc_reparent(const void *old_parent, const void *new_parent, const void *ptr);
399 The talloc_reparent() function changes the parent context of a talloc
400 pointer. It is typically used when the context that the pointer is
401 currently a child of is going to be freed and you wish to keep the
402 memory for a longer time.
404 The talloc_reparent() function returns the pointer that you pass it. It
405 does not have any failure modes.
407 The difference between talloc_reparent() and talloc_steal() is that
408 talloc_reparent() can specify which parent you wish to change. This is
409 useful when a pointer has multiple parents via references.
411 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
412 void *talloc_parent(const void *ptr);
414 The talloc_parent() function returns the current talloc parent. This
415 is usually the pointer under which this memory was originally created,
416 but it may have changed due to a talloc_steal() or talloc_reparent()
418 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
419 size_t talloc_total_size(const void *ptr);
421 The talloc_total_size() function returns the total size in bytes used
422 by this pointer and all child pointers. Mostly useful for debugging.
424 Passing NULL is allowed, but it will only give a meaningful result if
425 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
429 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
430 size_t talloc_total_blocks(const void *ptr);
432 The talloc_total_blocks() function returns the total memory block
433 count used by this pointer and all child pointers. Mostly useful for
436 Passing NULL is allowed, but it will only give a meaningful result if
437 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
440 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
441 void talloc_report_depth_cb(const void *ptr, int depth, int max_depth,
442 void (*callback)(const void *ptr,
443 int depth, int max_depth,
448 This provides a more flexible reports than talloc_report(). It
449 will recursively call the callback for the entire tree of memory
450 referenced by the pointer. References in the tree are passed with
451 is_ref = 1 and the pointer that is referenced.
453 You can pass NULL for the pointer, in which case a report is
454 printed for the top level memory context, but only if
455 talloc_enable_leak_report() or talloc_enable_leak_report_full()
458 The recursion is stopped when depth >= max_depth.
459 max_depth = -1 means only stop at leaf nodes.
462 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
463 void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f);
465 This provides a more flexible reports than talloc_report(). It
466 will let you specify the depth and max_depth.
469 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
470 void talloc_report(const void *ptr, FILE *f);
472 The talloc_report() function prints a summary report of all memory
473 used by ptr. One line of report is printed for each immediate child of
474 ptr, showing the total memory and number of blocks used by that child.
476 You can pass NULL for the pointer, in which case a report is printed
477 for the top level memory context, but only if
478 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
482 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
483 void talloc_report_full(const void *ptr, FILE *f);
485 This provides a more detailed report than talloc_report(). It will
486 recursively print the ensire tree of memory referenced by the
487 pointer. References in the tree are shown by giving the name of the
488 pointer that is referenced.
490 You can pass NULL for the pointer, in which case a report is printed
491 for the top level memory context, but only if
492 talloc_enable_leak_report() or talloc_enable_leak_report_full() has
496 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
497 void talloc_enable_leak_report(void);
499 This enables calling of talloc_report(NULL, stderr) when the program
500 exits. In Samba4 this is enabled by using the --leak-report command
503 For it to be useful, this function must be called before any other
504 talloc function as it establishes a "null context" that acts as the
505 top of the tree. If you don't call this function first then passing
506 NULL to talloc_report() or talloc_report_full() won't give you the
509 Here is a typical talloc report:
511 talloc report on 'null_context' (total 267 bytes in 15 blocks)
512 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
513 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
514 iconv(UTF8,CP850) contains 42 bytes in 2 blocks
515 libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
516 iconv(CP850,UTF8) contains 42 bytes in 2 blocks
517 iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
518 iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
521 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
522 void talloc_enable_leak_report_full(void);
524 This enables calling of talloc_report_full(NULL, stderr) when the
525 program exits. In Samba4 this is enabled by using the
526 --leak-report-full command line option.
528 For it to be useful, this function must be called before any other
529 talloc function as it establishes a "null context" that acts as the
530 top of the tree. If you don't call this function first then passing
531 NULL to talloc_report() or talloc_report_full() won't give you the
534 Here is a typical full report:
536 full talloc report on 'root' (total 18 bytes in 8 blocks)
537 p1 contains 18 bytes in 7 blocks (ref 0)
538 r1 contains 13 bytes in 2 blocks (ref 0)
540 p2 contains 1 bytes in 1 blocks (ref 1)
541 x3 contains 1 bytes in 1 blocks (ref 0)
542 x2 contains 1 bytes in 1 blocks (ref 0)
543 x1 contains 1 bytes in 1 blocks (ref 0)
546 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
547 void talloc_enable_null_tracking(void);
549 This enables tracking of the NULL memory context without enabling leak
550 reporting on exit. Useful for when you want to do your own leak
551 reporting call via talloc_report_null_full();
553 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
554 void talloc_disable_null_tracking(void);
556 This disables tracking of the NULL memory context.
558 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
559 (type *)talloc_zero(const void *ctx, type);
561 The talloc_zero() macro is equivalent to::
563 ptr = talloc(ctx, type);
564 if (ptr) memset(ptr, 0, sizeof(type));
567 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
568 void *talloc_zero_size(const void *ctx, size_t size)
570 The talloc_zero_size() function is useful when you don't have a known type
573 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
574 void *talloc_memdup(const void *ctx, const void *p, size_t size);
576 The talloc_memdup() function is equivalent to::
578 ptr = talloc_size(ctx, size);
579 if (ptr) memcpy(ptr, p, size);
582 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
583 char *talloc_strdup(const void *ctx, const char *p);
585 The talloc_strdup() function is equivalent to::
587 ptr = talloc_size(ctx, strlen(p)+1);
588 if (ptr) memcpy(ptr, p, strlen(p)+1);
590 This functions sets the name of the new pointer to the passed
591 string. This is equivalent to::
593 talloc_set_name_const(ptr, ptr)
595 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
596 char *talloc_strndup(const void *t, const char *p, size_t n);
598 The talloc_strndup() function is the talloc equivalent of the C
599 library function strndup()
601 This functions sets the name of the new pointer to the passed
602 string. This is equivalent to:
603 talloc_set_name_const(ptr, ptr)
605 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
606 char *talloc_append_string(const void *t, char *orig, const char *append);
608 The talloc_append_string() function appends the given formatted
609 string to the given string.
611 This function sets the name of the new pointer to the new
612 string. This is equivalent to::
614 talloc_set_name_const(ptr, ptr)
616 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
617 char *talloc_vasprintf(const void *t, const char *fmt, va_list ap);
619 The talloc_vasprintf() function is the talloc equivalent of the C
620 library function vasprintf()
622 This functions sets the name of the new pointer to the new
623 string. This is equivalent to::
625 talloc_set_name_const(ptr, ptr)
628 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
629 char *talloc_asprintf(const void *t, const char *fmt, ...);
631 The talloc_asprintf() function is the talloc equivalent of the C
632 library function asprintf()
634 This functions sets the name of the new pointer to the new
635 string. This is equivalent to::
637 talloc_set_name_const(ptr, ptr)
640 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
641 char *talloc_asprintf_append(char *s, const char *fmt, ...);
643 The talloc_asprintf_append() function appends the given formatted
644 string to the given string.
645 Use this varient when the string in the current talloc buffer may
646 have been truncated in length.
648 This functions sets the name of the new pointer to the new
649 string. This is equivalent to::
651 talloc_set_name_const(ptr, ptr)
654 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
655 char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...);
657 The talloc_asprintf_append() function appends the given formatted
658 string to the end of the currently allocated talloc buffer.
659 Use this varient when the string in the current talloc buffer has
662 This functions sets the name of the new pointer to the new
663 string. This is equivalent to::
665 talloc_set_name_const(ptr, ptr)
668 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
669 ((type *)talloc_array(const void *ctx, type, unsigned int count);
671 The talloc_array() macro is equivalent to::
673 (type *)talloc_size(ctx, sizeof(type) * count);
675 except that it provides integer overflow protection for the multiply,
676 returning NULL if the multiply overflows.
679 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
680 void *talloc_array_size(const void *ctx, size_t size, unsigned int count);
682 The talloc_array_size() function is useful when the type is not
683 known. It operates in the same way as talloc_array(), but takes a size
686 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
687 (typeof(ptr)) talloc_array_ptrtype(const void *ctx, ptr, unsigned int count);
689 The talloc_ptrtype() macro should be used when you have a pointer to an array
690 and want to allocate memory of an array to point at with this pointer. When compiling
691 with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_array_size()
692 and talloc_get_name() will return the current location in the source file.
695 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
696 void *talloc_realloc_fn(const void *ctx, void *ptr, size_t size);
698 This is a non-macro version of talloc_realloc(), which is useful
699 as libraries sometimes want a ralloc function pointer. A realloc()
700 implementation encapsulates the functionality of malloc(), free() and
701 realloc() in one call, which is why it is useful to be able to pass
702 around a single function pointer.
705 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
706 void *talloc_autofree_context(void);
708 This is a handy utility function that returns a talloc context
709 which will be automatically freed on program exit. This can be used
710 to reduce the noise in memory leak reports.
713 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
714 void *talloc_check_name(const void *ptr, const char *name);
716 This function checks if a pointer has the specified name. If it does
717 then the pointer is returned. It it doesn't then NULL is returned.
720 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
721 (type *)talloc_get_type(const void *ptr, type);
723 This macro allows you to do type checking on talloc pointers. It is
724 particularly useful for void* private pointers. It is equivalent to
727 (type *)talloc_check_name(ptr, #type)
730 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
731 talloc_set_type(const void *ptr, type);
733 This macro allows you to force the name of a pointer to be a
734 particular type. This can be used in conjunction with
735 talloc_get_type() to do type checking on void* pointers.
737 It is equivalent to this::
739 talloc_set_name_const(ptr, #type)
741 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
742 talloc_get_size(const void *ctx);
744 This function lets you know the amount of memory alloced so far by
745 this context. It does NOT account for subcontext memory.
746 This can be used to calculate the size of an array.
748 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
749 void *talloc_find_parent_byname(const void *ctx, const char *name);
751 Find a parent memory context of the current context that has the given
752 name. This can be very useful in complex programs where it may be
753 difficult to pass all information down to the level you need, but you
754 know the structure you want is a parent of another context.
756 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
757 (type *)talloc_find_parent_bytype(ctx, type);
759 Like talloc_find_parent_byname() but takes a type, making it typesafe.
761 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
762 void talloc_set_log_fn(void (*log_fn)(const char *message));
764 This function sets a logging function that talloc will use for
765 warnings and errors. By default talloc will not print any warnings or
768 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
769 void talloc_set_log_stderr(void)
771 This sets the talloc log function to write log messages to stderr