s3:lib: Make sure that have_rsrc is initialized
[Samba.git] / libcli / security / security_descriptor.c
blob28c68215b8a56de09e74d8aa1f9c105964d54f53
1 /*
2 Unix SMB/CIFS implementation.
4 security descriptror utility functions
6 Copyright (C) Andrew Tridgell 2004
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include "includes.h"
23 #include "libcli/security/security.h"
26 return a blank security descriptor (no owners, dacl or sacl)
28 struct security_descriptor *security_descriptor_initialise(TALLOC_CTX *mem_ctx)
30 struct security_descriptor *sd;
32 sd = talloc(mem_ctx, struct security_descriptor);
33 if (!sd) {
34 return NULL;
37 sd->revision = SD_REVISION;
38 /* we mark as self relative, even though it isn't while it remains
39 a pointer in memory because this simplifies the ndr code later.
40 All SDs that we store/emit are in fact SELF_RELATIVE
42 sd->type = SEC_DESC_SELF_RELATIVE;
44 sd->owner_sid = NULL;
45 sd->group_sid = NULL;
46 sd->sacl = NULL;
47 sd->dacl = NULL;
49 return sd;
52 struct security_acl *security_acl_dup(TALLOC_CTX *mem_ctx,
53 const struct security_acl *oacl)
55 struct security_acl *nacl;
57 if (oacl == NULL) {
58 return NULL;
61 if (oacl->aces == NULL && oacl->num_aces > 0) {
62 return NULL;
65 nacl = talloc (mem_ctx, struct security_acl);
66 if (nacl == NULL) {
67 return NULL;
70 *nacl = (struct security_acl) {
71 .revision = oacl->revision,
72 .size = oacl->size,
73 .num_aces = oacl->num_aces,
75 if (nacl->num_aces == 0) {
76 return nacl;
79 nacl->aces = (struct security_ace *)talloc_memdup (nacl, oacl->aces, sizeof(struct security_ace) * oacl->num_aces);
80 if (nacl->aces == NULL) {
81 goto failed;
84 return nacl;
86 failed:
87 talloc_free (nacl);
88 return NULL;
92 struct security_acl *security_acl_concatenate(TALLOC_CTX *mem_ctx,
93 const struct security_acl *acl1,
94 const struct security_acl *acl2)
96 struct security_acl *nacl;
97 uint32_t i;
99 if (!acl1 && !acl2)
100 return NULL;
102 if (!acl1){
103 nacl = security_acl_dup(mem_ctx, acl2);
104 return nacl;
107 if (!acl2){
108 nacl = security_acl_dup(mem_ctx, acl1);
109 return nacl;
112 nacl = talloc (mem_ctx, struct security_acl);
113 if (nacl == NULL) {
114 return NULL;
117 nacl->revision = acl1->revision;
118 nacl->size = acl1->size + acl2->size;
119 nacl->num_aces = acl1->num_aces + acl2->num_aces;
121 if (nacl->num_aces == 0)
122 return nacl;
124 nacl->aces = (struct security_ace *)talloc_array (mem_ctx, struct security_ace, acl1->num_aces+acl2->num_aces);
125 if ((nacl->aces == NULL) && (nacl->num_aces > 0)) {
126 goto failed;
129 for (i = 0; i < acl1->num_aces; i++)
130 nacl->aces[i] = acl1->aces[i];
131 for (i = 0; i < acl2->num_aces; i++)
132 nacl->aces[i + acl1->num_aces] = acl2->aces[i];
134 return nacl;
136 failed:
137 talloc_free (nacl);
138 return NULL;
143 talloc and copy a security descriptor
145 struct security_descriptor *security_descriptor_copy(TALLOC_CTX *mem_ctx,
146 const struct security_descriptor *osd)
148 struct security_descriptor *nsd;
150 nsd = talloc_zero(mem_ctx, struct security_descriptor);
151 if (!nsd) {
152 return NULL;
155 if (osd->owner_sid) {
156 nsd->owner_sid = dom_sid_dup(nsd, osd->owner_sid);
157 if (nsd->owner_sid == NULL) {
158 goto failed;
162 if (osd->group_sid) {
163 nsd->group_sid = dom_sid_dup(nsd, osd->group_sid);
164 if (nsd->group_sid == NULL) {
165 goto failed;
169 if (osd->sacl) {
170 nsd->sacl = security_acl_dup(nsd, osd->sacl);
171 if (nsd->sacl == NULL) {
172 goto failed;
176 if (osd->dacl) {
177 nsd->dacl = security_acl_dup(nsd, osd->dacl);
178 if (nsd->dacl == NULL) {
179 goto failed;
183 nsd->revision = osd->revision;
184 nsd->type = osd->type;
186 return nsd;
188 failed:
189 talloc_free(nsd);
191 return NULL;
194 NTSTATUS security_descriptor_for_client(TALLOC_CTX *mem_ctx,
195 const struct security_descriptor *ssd,
196 uint32_t sec_info,
197 uint32_t access_granted,
198 struct security_descriptor **_csd)
200 struct security_descriptor *csd = NULL;
201 uint32_t access_required = 0;
203 *_csd = NULL;
205 if (sec_info & (SECINFO_OWNER|SECINFO_GROUP)) {
206 access_required |= SEC_STD_READ_CONTROL;
208 if (sec_info & SECINFO_DACL) {
209 access_required |= SEC_STD_READ_CONTROL;
211 if (sec_info & SECINFO_SACL) {
212 access_required |= SEC_FLAG_SYSTEM_SECURITY;
215 if (access_required & (~access_granted)) {
216 return NT_STATUS_ACCESS_DENIED;
220 * make a copy...
222 csd = security_descriptor_copy(mem_ctx, ssd);
223 if (csd == NULL) {
224 return NT_STATUS_NO_MEMORY;
228 * ... and remove everthing not wanted
231 if (!(sec_info & SECINFO_OWNER)) {
232 TALLOC_FREE(csd->owner_sid);
233 csd->type &= ~SEC_DESC_OWNER_DEFAULTED;
235 if (!(sec_info & SECINFO_GROUP)) {
236 TALLOC_FREE(csd->group_sid);
237 csd->type &= ~SEC_DESC_GROUP_DEFAULTED;
239 if (!(sec_info & SECINFO_DACL)) {
240 TALLOC_FREE(csd->dacl);
241 csd->type &= ~(
242 SEC_DESC_DACL_PRESENT |
243 SEC_DESC_DACL_DEFAULTED|
244 SEC_DESC_DACL_AUTO_INHERIT_REQ |
245 SEC_DESC_DACL_AUTO_INHERITED |
246 SEC_DESC_DACL_PROTECTED |
247 SEC_DESC_DACL_TRUSTED);
249 if (!(sec_info & SECINFO_SACL)) {
250 TALLOC_FREE(csd->sacl);
251 csd->type &= ~(
252 SEC_DESC_SACL_PRESENT |
253 SEC_DESC_SACL_DEFAULTED |
254 SEC_DESC_SACL_AUTO_INHERIT_REQ |
255 SEC_DESC_SACL_AUTO_INHERITED |
256 SEC_DESC_SACL_PROTECTED |
257 SEC_DESC_SERVER_SECURITY);
260 *_csd = csd;
261 return NT_STATUS_OK;
265 add an ACE to an ACL of a security_descriptor
268 static NTSTATUS security_descriptor_acl_add(struct security_descriptor *sd,
269 bool add_to_sacl,
270 const struct security_ace *ace)
272 struct security_acl *acl = NULL;
274 if (add_to_sacl) {
275 acl = sd->sacl;
276 } else {
277 acl = sd->dacl;
280 if (acl == NULL) {
281 acl = talloc(sd, struct security_acl);
282 if (acl == NULL) {
283 return NT_STATUS_NO_MEMORY;
285 acl->revision = SECURITY_ACL_REVISION_NT4;
286 acl->size = 0;
287 acl->num_aces = 0;
288 acl->aces = NULL;
291 acl->aces = talloc_realloc(acl, acl->aces,
292 struct security_ace, acl->num_aces+1);
293 if (acl->aces == NULL) {
294 return NT_STATUS_NO_MEMORY;
297 acl->aces[acl->num_aces] = *ace;
299 switch (acl->aces[acl->num_aces].type) {
300 case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
301 case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
302 case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
303 case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
304 acl->revision = SECURITY_ACL_REVISION_ADS;
305 break;
306 default:
307 break;
310 acl->num_aces++;
312 if (add_to_sacl) {
313 sd->sacl = acl;
314 sd->type |= SEC_DESC_SACL_PRESENT;
315 } else {
316 sd->dacl = acl;
317 sd->type |= SEC_DESC_DACL_PRESENT;
320 return NT_STATUS_OK;
324 add an ACE to the SACL of a security_descriptor
327 NTSTATUS security_descriptor_sacl_add(struct security_descriptor *sd,
328 const struct security_ace *ace)
330 return security_descriptor_acl_add(sd, true, ace);
334 add an ACE to the DACL of a security_descriptor
337 NTSTATUS security_descriptor_dacl_add(struct security_descriptor *sd,
338 const struct security_ace *ace)
340 return security_descriptor_acl_add(sd, false, ace);
344 delete the ACE corresponding to the given trustee in an ACL of a
345 security_descriptor
348 static NTSTATUS security_descriptor_acl_del(struct security_descriptor *sd,
349 bool sacl_del,
350 const struct dom_sid *trustee)
352 uint32_t i;
353 bool found = false;
354 struct security_acl *acl = NULL;
356 if (sacl_del) {
357 acl = sd->sacl;
358 } else {
359 acl = sd->dacl;
362 if (acl == NULL) {
363 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
366 /* there can be multiple ace's for one trustee */
367 for (i=0;i<acl->num_aces;i++) {
368 if (dom_sid_equal(trustee, &acl->aces[i].trustee)) {
369 ARRAY_DEL_ELEMENT(acl->aces, i, acl->num_aces);
370 acl->num_aces--;
371 if (acl->num_aces == 0) {
372 acl->aces = NULL;
374 found = true;
378 if (!found) {
379 return NT_STATUS_OBJECT_NAME_NOT_FOUND;
382 acl->revision = SECURITY_ACL_REVISION_NT4;
384 for (i=0;i<acl->num_aces;i++) {
385 switch (acl->aces[i].type) {
386 case SEC_ACE_TYPE_ACCESS_ALLOWED_OBJECT:
387 case SEC_ACE_TYPE_ACCESS_DENIED_OBJECT:
388 case SEC_ACE_TYPE_SYSTEM_AUDIT_OBJECT:
389 case SEC_ACE_TYPE_SYSTEM_ALARM_OBJECT:
390 acl->revision = SECURITY_ACL_REVISION_ADS;
391 return NT_STATUS_OK;
392 default:
393 break; /* only for the switch statement */
397 return NT_STATUS_OK;
401 delete the ACE corresponding to the given trustee in the DACL of a
402 security_descriptor
405 NTSTATUS security_descriptor_dacl_del(struct security_descriptor *sd,
406 const struct dom_sid *trustee)
408 return security_descriptor_acl_del(sd, false, trustee);
412 delete the ACE corresponding to the given trustee in the SACL of a
413 security_descriptor
416 NTSTATUS security_descriptor_sacl_del(struct security_descriptor *sd,
417 const struct dom_sid *trustee)
419 return security_descriptor_acl_del(sd, true, trustee);
423 compare two security ace structures
425 bool security_ace_equal(const struct security_ace *ace1,
426 const struct security_ace *ace2)
428 if (ace1 == ace2) {
429 return true;
431 if ((ace1 == NULL) || (ace2 == NULL)) {
432 return false;
434 if (ace1->type != ace2->type) {
435 return false;
437 if (ace1->flags != ace2->flags) {
438 return false;
440 if (ace1->access_mask != ace2->access_mask) {
441 return false;
443 if (!dom_sid_equal(&ace1->trustee, &ace2->trustee)) {
444 return false;
447 return true;
452 compare two security acl structures
454 bool security_acl_equal(const struct security_acl *acl1,
455 const struct security_acl *acl2)
457 uint32_t i;
459 if (acl1 == acl2) return true;
460 if (!acl1 || !acl2) return false;
461 if (acl1->revision != acl2->revision) return false;
462 if (acl1->num_aces != acl2->num_aces) return false;
464 for (i=0;i<acl1->num_aces;i++) {
465 if (!security_ace_equal(&acl1->aces[i], &acl2->aces[i])) return false;
467 return true;
471 compare two security descriptors.
473 bool security_descriptor_equal(const struct security_descriptor *sd1,
474 const struct security_descriptor *sd2)
476 if (sd1 == sd2) return true;
477 if (!sd1 || !sd2) return false;
478 if (sd1->revision != sd2->revision) return false;
479 if (sd1->type != sd2->type) return false;
481 if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
482 if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
483 if (!security_acl_equal(sd1->sacl, sd2->sacl)) return false;
484 if (!security_acl_equal(sd1->dacl, sd2->dacl)) return false;
486 return true;
490 compare two security descriptors, but allow certain (missing) parts
491 to be masked out of the comparison
493 bool security_descriptor_mask_equal(const struct security_descriptor *sd1,
494 const struct security_descriptor *sd2,
495 uint32_t mask)
497 if (sd1 == sd2) return true;
498 if (!sd1 || !sd2) return false;
499 if (sd1->revision != sd2->revision) return false;
500 if ((sd1->type & mask) != (sd2->type & mask)) return false;
502 if (!dom_sid_equal(sd1->owner_sid, sd2->owner_sid)) return false;
503 if (!dom_sid_equal(sd1->group_sid, sd2->group_sid)) return false;
504 if ((mask & SEC_DESC_DACL_PRESENT) && !security_acl_equal(sd1->dacl, sd2->dacl)) return false;
505 if ((mask & SEC_DESC_SACL_PRESENT) && !security_acl_equal(sd1->sacl, sd2->sacl)) return false;
507 return true;
511 static struct security_descriptor *security_descriptor_appendv(struct security_descriptor *sd,
512 bool add_ace_to_sacl,
513 va_list ap)
515 const char *sidstr;
517 while ((sidstr = va_arg(ap, const char *))) {
518 struct dom_sid *sid;
519 struct security_ace *ace = talloc_zero(sd, struct security_ace);
520 NTSTATUS status;
522 if (ace == NULL) {
523 talloc_free(sd);
524 return NULL;
526 ace->type = va_arg(ap, unsigned int);
527 ace->access_mask = va_arg(ap, unsigned int);
528 ace->flags = va_arg(ap, unsigned int);
529 sid = dom_sid_parse_talloc(ace, sidstr);
530 if (sid == NULL) {
531 talloc_free(sd);
532 return NULL;
534 ace->trustee = *sid;
535 if (add_ace_to_sacl) {
536 status = security_descriptor_sacl_add(sd, ace);
537 } else {
538 status = security_descriptor_dacl_add(sd, ace);
540 /* TODO: check: would talloc_free(ace) here be correct? */
541 if (!NT_STATUS_IS_OK(status)) {
542 talloc_free(sd);
543 return NULL;
547 return sd;
550 struct security_descriptor *security_descriptor_append(struct security_descriptor *sd,
551 ...)
553 va_list ap;
555 va_start(ap, sd);
556 sd = security_descriptor_appendv(sd, false, ap);
557 va_end(ap);
559 return sd;
562 static struct security_descriptor *security_descriptor_createv(TALLOC_CTX *mem_ctx,
563 uint16_t sd_type,
564 const char *owner_sid,
565 const char *group_sid,
566 bool add_ace_to_sacl,
567 va_list ap)
569 struct security_descriptor *sd;
571 sd = security_descriptor_initialise(mem_ctx);
572 if (sd == NULL) {
573 return NULL;
576 sd->type |= sd_type;
578 if (owner_sid) {
579 sd->owner_sid = dom_sid_parse_talloc(sd, owner_sid);
580 if (sd->owner_sid == NULL) {
581 talloc_free(sd);
582 return NULL;
585 if (group_sid) {
586 sd->group_sid = dom_sid_parse_talloc(sd, group_sid);
587 if (sd->group_sid == NULL) {
588 talloc_free(sd);
589 return NULL;
593 return security_descriptor_appendv(sd, add_ace_to_sacl, ap);
597 create a security descriptor using string SIDs. This is used by the
598 torture code to allow the easy creation of complex ACLs
599 This is a varargs function. The list of DACL ACEs ends with a NULL sid.
601 Each ACE contains a set of 4 parameters:
602 SID, ACCESS_TYPE, MASK, FLAGS
604 a typical call would be:
606 sd = security_descriptor_dacl_create(mem_ctx,
607 sd_type_flags,
608 mysid,
609 mygroup,
610 SID_NT_AUTHENTICATED_USERS,
611 SEC_ACE_TYPE_ACCESS_ALLOWED,
612 SEC_FILE_ALL,
613 SEC_ACE_FLAG_OBJECT_INHERIT,
614 NULL);
615 that would create a sd with one DACL ACE
618 struct security_descriptor *security_descriptor_dacl_create(TALLOC_CTX *mem_ctx,
619 uint16_t sd_type,
620 const char *owner_sid,
621 const char *group_sid,
622 ...)
624 struct security_descriptor *sd = NULL;
625 va_list ap;
626 va_start(ap, group_sid);
627 sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
628 group_sid, false, ap);
629 va_end(ap);
631 return sd;
634 struct security_descriptor *security_descriptor_sacl_create(TALLOC_CTX *mem_ctx,
635 uint16_t sd_type,
636 const char *owner_sid,
637 const char *group_sid,
638 ...)
640 struct security_descriptor *sd = NULL;
641 va_list ap;
642 va_start(ap, group_sid);
643 sd = security_descriptor_createv(mem_ctx, sd_type, owner_sid,
644 group_sid, true, ap);
645 va_end(ap);
647 return sd;
650 struct security_ace *security_ace_create(TALLOC_CTX *mem_ctx,
651 const char *sid_str,
652 enum security_ace_type type,
653 uint32_t access_mask,
654 uint8_t flags)
657 struct security_ace *ace;
658 bool ok;
660 ace = talloc_zero(mem_ctx, struct security_ace);
661 if (ace == NULL) {
662 return NULL;
665 ok = dom_sid_parse(sid_str, &ace->trustee);
666 if (!ok) {
667 talloc_free(ace);
668 return NULL;
670 ace->type = type;
671 ace->access_mask = access_mask;
672 ace->flags = flags;
674 return ace;
677 /*******************************************************************
678 Check for MS NFS ACEs in a sd
679 *******************************************************************/
680 bool security_descriptor_with_ms_nfs(const struct security_descriptor *psd)
682 uint32_t i;
684 if (psd->dacl == NULL) {
685 return false;
688 for (i = 0; i < psd->dacl->num_aces; i++) {
689 if (dom_sid_compare_domain(
690 &global_sid_Unix_NFS,
691 &psd->dacl->aces[i].trustee) == 0) {
692 return true;
696 return false;