2 SDL - Simple DirectMedia Layer
3 Copyright (C) 1997-2006 Sam Lantinga
5 This library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 This library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with this library; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "SDL_config.h"
25 * RLE encoding for software colorkey and alpha-channel acceleration
27 * Original version by Sam Lantinga
29 * Mattias EngdegÄrd (Yorick): Rewrite. New encoding format, encoder and
30 * decoder. Added per-surface alpha blitter. Added per-pixel alpha
31 * format, encoder and blitter.
33 * Many thanks to Xark and johns for hints, benchmarks and useful comments
34 * leading to this code.
36 * Welcome to Macro Mayhem.
40 * The encoding translates the image data to a stream of segments of the form
44 * where <skip> is the number of transparent pixels to skip,
45 * <run> is the number of opaque pixels to blit,
46 * and <data> are the pixels themselves.
48 * This basic structure is used both for colorkeyed surfaces, used for simple
49 * binary transparency and for per-surface alpha blending, and for surfaces
50 * with per-pixel alpha. The details differ, however:
52 * Encoding of colorkeyed surfaces:
54 * Encoded pixels always have the same format as the target surface.
55 * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth
56 * where they are 16 bit. This makes the pixel data aligned at all times.
57 * Segments never wrap around from one scan line to the next.
59 * The end of the sequence is marked by a zero <skip>,<run> pair at the *
60 * beginning of a line.
62 * Encoding of surfaces with per-pixel alpha:
64 * The sequence begins with a struct RLEDestFormat describing the target
65 * pixel format, to provide reliable un-encoding.
67 * Each scan line is encoded twice: First all completely opaque pixels,
68 * encoded in the target format as described above, and then all
69 * partially transparent (translucent) pixels (where 1 <= alpha <= 254),
70 * in the following 32-bit format:
72 * For 32-bit targets, each pixel has the target RGB format but with
73 * the alpha value occupying the highest 8 bits. The <skip> and <run>
76 * For 16-bit targets, each pixel has the target RGB format, but with
77 * the middle component (usually green) shifted 16 steps to the left,
78 * and the hole filled with the 5 most significant bits of the alpha value.
79 * i.e. if the target has the format rrrrrggggggbbbbb,
80 * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb.
81 * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit
82 * for the translucent lines. Two padding bytes may be inserted
83 * before each translucent line to keep them 32-bit aligned.
85 * The end of the sequence is marked by a zero <skip>,<run> pair at the
86 * beginning of an opaque line.
89 #include "SDL_video.h"
90 #include "SDL_sysvideo.h"
92 #include "SDL_RLEaccel_c.h"
94 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && SDL_ASSEMBLY_ROUTINES
100 #include "SDL_cpuinfo.h"
104 #define MAX(a, b) ((a) > (b) ? (a) : (b))
107 #define MIN(a, b) ((a) < (b) ? (a) : (b))
110 #define PIXEL_COPY(to, from, len, bpp) \
113 SDL_memcpy4(to, from, (size_t)(len)); \
115 SDL_memcpy(to, from, (size_t)(len) * (bpp)); \
120 * Various colorkey blit methods, for opaque and per-surface alpha
123 #define OPAQUE_BLIT(to, from, length, bpp, alpha) \
124 PIXEL_COPY(to, from, length, bpp)
128 #define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \
130 Uint32 *srcp = (Uint32 *)(from); \
131 Uint32 *dstp = (Uint32 *)(to); \
132 int i = 0x00FF00FF; \
133 movd_m2r(*(&i), mm3); \
134 punpckldq_r2r(mm3, mm3); \
136 movd_m2r(*(&i), mm7); \
137 punpckldq_r2r(mm7, mm7); \
138 i = alpha | alpha << 16; \
139 movd_m2r(*(&i), mm4); \
140 punpckldq_r2r(mm4, mm4); \
141 pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \
142 pxor_r2r(mm7, mm5); /* make clear alpha mask */ \
145 movd_m2r((*srcp), mm1); /* src -> mm1 */ \
146 punpcklbw_r2r(mm1, mm1); \
147 pand_r2r(mm3, mm1); \
148 movd_m2r((*dstp), mm2); /* dst -> mm2 */ \
149 punpcklbw_r2r(mm2, mm2); \
150 pand_r2r(mm3, mm2); \
151 psubw_r2r(mm2, mm1); \
152 pmullw_r2r(mm4, mm1); \
154 paddw_r2r(mm1, mm2); \
155 pand_r2r(mm3, mm2); \
156 packuswb_r2r(mm2, mm2); \
157 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
158 movd_r2m(mm2, *dstp); \
163 for(; i > 0; --i) { \
164 movq_m2r((*srcp), mm0); \
165 movq_r2r(mm0, mm1); \
166 punpcklbw_r2r(mm0, mm0); \
167 movq_m2r((*dstp), mm2); \
168 punpckhbw_r2r(mm1, mm1); \
169 movq_r2r(mm2, mm6); \
170 pand_r2r(mm3, mm0); \
171 punpcklbw_r2r(mm2, mm2); \
172 pand_r2r(mm3, mm1); \
173 punpckhbw_r2r(mm6, mm6); \
174 pand_r2r(mm3, mm2); \
175 psubw_r2r(mm2, mm0); \
176 pmullw_r2r(mm4, mm0); \
177 pand_r2r(mm3, mm6); \
178 psubw_r2r(mm6, mm1); \
179 pmullw_r2r(mm4, mm1); \
181 paddw_r2r(mm0, mm2); \
183 paddw_r2r(mm1, mm6); \
184 pand_r2r(mm3, mm2); \
185 pand_r2r(mm3, mm6); \
186 packuswb_r2r(mm2, mm2); \
187 packuswb_r2r(mm6, mm6); \
188 psrlq_i2r(32, mm2); \
189 psllq_i2r(32, mm6); \
191 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
192 movq_r2m(mm2, *dstp); \
200 #define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \
203 Uint16 *srcp = (Uint16 *)(from); \
204 Uint16 *dstp = (Uint16 *)(to); \
205 Uint32 ALPHA = 0xF800; \
206 movd_m2r(*(&ALPHA), mm1); \
207 punpcklwd_r2r(mm1, mm1); \
208 punpcklwd_r2r(mm1, mm1); \
210 movd_m2r(*(&ALPHA), mm4); \
211 punpcklwd_r2r(mm4, mm4); \
212 punpcklwd_r2r(mm4, mm4); \
214 movd_m2r(*(&ALPHA), mm7); \
215 punpcklwd_r2r(mm7, mm7); \
216 punpcklwd_r2r(mm7, mm7); \
218 i = (Uint32)alpha | (Uint32)alpha << 16; \
219 movd_m2r(*(&i), mm0); \
220 punpckldq_r2r(mm0, mm0); \
221 ALPHA = alpha >> 3; \
222 i = ((int)(length) & 3); \
223 for(; i > 0; --i) { \
224 Uint32 s = *srcp++; \
226 s = (s | s << 16) & 0x07e0f81f; \
227 d = (d | d << 16) & 0x07e0f81f; \
228 d += (s - d) * ALPHA >> 5; \
230 *dstp++ = d | d >> 16; \
233 i = (int)(length) - n; \
234 for(; i > 0; --i) { \
235 movq_m2r((*dstp), mm3); \
236 movq_m2r((*srcp), mm2); \
237 movq_r2r(mm2, mm5); \
238 pand_r2r(mm1 , mm5); \
239 psrlq_i2r(11, mm5); \
240 movq_r2r(mm3, mm6); \
241 pand_r2r(mm1 , mm6); \
242 psrlq_i2r(11, mm6); \
243 psubw_r2r(mm6, mm5); \
244 pmullw_r2r(mm0, mm5); \
246 paddw_r2r(mm5, mm6); \
247 psllq_i2r(11, mm6); \
248 pand_r2r(mm1, mm6); \
249 movq_r2r(mm4, mm5); \
251 pand_r2r(mm5, mm3); \
253 movq_r2r(mm2, mm5); \
254 pand_r2r(mm4 , mm5); \
256 movq_r2r(mm3, mm6); \
257 pand_r2r(mm4 , mm6); \
259 psubw_r2r(mm6, mm5); \
260 pmullw_r2r(mm0, mm5); \
262 paddw_r2r(mm5, mm6); \
264 pand_r2r(mm4, mm6); \
265 movq_r2r(mm1, mm5); \
267 pand_r2r(mm5, mm3); \
269 movq_r2r(mm2, mm5); \
270 pand_r2r(mm7 , mm5); \
271 movq_r2r(mm3, mm6); \
272 pand_r2r(mm7 , mm6); \
273 psubw_r2r(mm6, mm5); \
274 pmullw_r2r(mm0, mm5); \
276 paddw_r2r(mm5, mm6); \
277 pand_r2r(mm7, mm6); \
278 movq_r2r(mm1, mm5); \
280 pand_r2r(mm5, mm3); \
282 movq_r2m(mm3, *dstp); \
290 #define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \
293 Uint16 *srcp = (Uint16 *)(from); \
294 Uint16 *dstp = (Uint16 *)(to); \
295 Uint32 ALPHA = 0x7C00; \
296 movd_m2r(*(&ALPHA), mm1); \
297 punpcklwd_r2r(mm1, mm1); \
298 punpcklwd_r2r(mm1, mm1); \
300 movd_m2r(*(&ALPHA), mm4); \
301 punpcklwd_r2r(mm4, mm4); \
302 punpcklwd_r2r(mm4, mm4); \
304 movd_m2r(*(&ALPHA), mm7); \
305 punpcklwd_r2r(mm7, mm7); \
306 punpcklwd_r2r(mm7, mm7); \
308 i = (Uint32)alpha | (Uint32)alpha << 16; \
309 movd_m2r(*(&i), mm0); \
310 punpckldq_r2r(mm0, mm0); \
311 i = ((int)(length) & 3); \
312 ALPHA = alpha >> 3; \
313 for(; i > 0; --i) { \
314 Uint32 s = *srcp++; \
316 s = (s | s << 16) & 0x03e07c1f; \
317 d = (d | d << 16) & 0x03e07c1f; \
318 d += (s - d) * ALPHA >> 5; \
320 *dstp++ = d | d >> 16; \
323 i = (int)(length) - n; \
324 for(; i > 0; --i) { \
325 movq_m2r((*dstp), mm3); \
326 movq_m2r((*srcp), mm2); \
327 movq_r2r(mm2, mm5); \
328 pand_r2r(mm1 , mm5); \
329 psrlq_i2r(10, mm5); \
330 movq_r2r(mm3, mm6); \
331 pand_r2r(mm1 , mm6); \
332 psrlq_i2r(10, mm6); \
333 psubw_r2r(mm6, mm5); \
334 pmullw_r2r(mm0, mm5); \
336 paddw_r2r(mm5, mm6); \
337 psllq_i2r(10, mm6); \
338 pand_r2r(mm1, mm6); \
339 movq_r2r(mm4, mm5); \
341 pand_r2r(mm5, mm3); \
343 movq_r2r(mm2, mm5); \
344 pand_r2r(mm4 , mm5); \
346 movq_r2r(mm3, mm6); \
347 pand_r2r(mm4 , mm6); \
349 psubw_r2r(mm6, mm5); \
350 pmullw_r2r(mm0, mm5); \
352 paddw_r2r(mm5, mm6); \
354 pand_r2r(mm4, mm6); \
355 movq_r2r(mm1, mm5); \
357 pand_r2r(mm5, mm3); \
359 movq_r2r(mm2, mm5); \
360 pand_r2r(mm7 , mm5); \
361 movq_r2r(mm3, mm6); \
362 pand_r2r(mm7 , mm6); \
363 psubw_r2r(mm6, mm5); \
364 pmullw_r2r(mm0, mm5); \
366 paddw_r2r(mm5, mm6); \
367 pand_r2r(mm7, mm6); \
368 movq_r2r(mm1, mm5); \
370 pand_r2r(mm5, mm3); \
372 movq_r2m(mm3, *dstp); \
383 * For 32bpp pixels on the form 0x00rrggbb:
384 * If we treat the middle component separately, we can process the two
385 * remaining in parallel. This is safe to do because of the gap to the left
386 * of each component, so the bits from the multiplication don't collide.
387 * This can be used for any RGB permutation of course.
389 #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \
392 Uint32 *src = (Uint32 *)(from); \
393 Uint32 *dst = (Uint32 *)(to); \
394 for(i = 0; i < (int)(length); i++) { \
397 Uint32 s1 = s & 0xff00ff; \
398 Uint32 d1 = d & 0xff00ff; \
399 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
402 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
408 * For 16bpp pixels we can go a step further: put the middle component
409 * in the high 16 bits of a 32 bit word, and process all three RGB
410 * components at the same time. Since the smallest gap is here just
411 * 5 bits, we have to scale alpha down to 5 bits as well.
413 #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \
416 Uint16 *src = (Uint16 *)(from); \
417 Uint16 *dst = (Uint16 *)(to); \
418 Uint32 ALPHA = alpha >> 3; \
419 for(i = 0; i < (int)(length); i++) { \
422 s = (s | s << 16) & 0x07e0f81f; \
423 d = (d | d << 16) & 0x07e0f81f; \
424 d += (s - d) * ALPHA >> 5; \
426 *dst++ = (Uint16)(d | d >> 16); \
430 #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \
433 Uint16 *src = (Uint16 *)(from); \
434 Uint16 *dst = (Uint16 *)(to); \
435 Uint32 ALPHA = alpha >> 3; \
436 for(i = 0; i < (int)(length); i++) { \
439 s = (s | s << 16) & 0x03e07c1f; \
440 d = (d | d << 16) & 0x03e07c1f; \
441 d += (s - d) * ALPHA >> 5; \
443 *dst++ = (Uint16)(d | d >> 16); \
448 * The general slow catch-all function, for remaining depths and formats
450 #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \
455 for(i = 0; i < (int)(length); i++) { \
457 unsigned rs, gs, bs, rd, gd, bd; \
460 s = *(Uint16 *)src; \
461 d = *(Uint16 *)dst; \
464 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
465 s = (src[0] << 16) | (src[1] << 8) | src[2]; \
466 d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \
468 s = (src[2] << 16) | (src[1] << 8) | src[0]; \
469 d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \
473 s = *(Uint32 *)src; \
474 d = *(Uint32 *)dst; \
477 RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \
478 RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \
479 rd += (rs - rd) * alpha >> 8; \
480 gd += (gs - gd) * alpha >> 8; \
481 bd += (bs - bd) * alpha >> 8; \
482 PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \
485 *(Uint16 *)dst = (Uint16)d; \
488 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
489 dst[0] = (Uint8)(d >> 16); \
490 dst[1] = (Uint8)(d >> 8); \
491 dst[2] = (Uint8)(d); \
494 dst[1] = (Uint8)(d >> 8); \
495 dst[2] = (Uint8)(d >> 16); \
499 *(Uint32 *)dst = d; \
509 #define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \
511 Uint32 *srcp = (Uint32 *)(from); \
512 Uint32 *dstp = (Uint32 *)(to); \
513 int i = 0x00fefefe; \
514 movd_m2r(*(&i), mm4); \
515 punpckldq_r2r(mm4, mm4); \
517 movd_m2r(*(&i), mm3); \
518 punpckldq_r2r(mm3, mm3); \
521 Uint32 s = *srcp++; \
523 *dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
524 + (s & d & 0x00010101); \
527 for(; i > 0; --i) { \
528 movq_m2r((*dstp), mm2); /* dst -> mm2 */ \
529 movq_r2r(mm2, mm6); /* dst -> mm6 */ \
530 movq_m2r((*srcp), mm1); /* src -> mm1 */ \
531 movq_r2r(mm1, mm5); /* src -> mm5 */ \
532 pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \
533 pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \
534 paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \
536 pand_r2r(mm1, mm2); /* s & d -> mm2 */ \
537 pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \
538 paddd_r2r(mm5, mm2); \
539 movq_r2m(mm2, (*dstp)); \
550 * Special case: 50% alpha (alpha=128)
551 * This is treated specially because it can be optimized very well, and
552 * since it is good for many cases of semi-translucency.
553 * The theory is to do all three components at the same time:
554 * First zero the lowest bit of each component, which gives us room to
555 * add them. Then shift right and add the sum of the lowest bits.
557 #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \
560 Uint32 *src = (Uint32 *)(from); \
561 Uint32 *dst = (Uint32 *)(to); \
562 for(i = 0; i < (int)(length); i++) { \
565 *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
566 + (s & d & 0x00010101); \
571 * For 16bpp, we can actually blend two pixels in parallel, if we take
572 * care to shift before we add, not after.
575 /* helper: blend a single 16 bit pixel at 50% */
576 #define BLEND16_50(dst, src, mask) \
580 *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \
581 (s & d & (~mask & 0xffff))); \
584 /* basic 16bpp blender. mask is the pixels to keep when adding. */
585 #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \
587 unsigned n = (length); \
588 Uint16 *src = (Uint16 *)(from); \
589 Uint16 *dst = (Uint16 *)(to); \
590 if(((uintptr_t)src ^ (uintptr_t)dst) & 3) { \
591 /* source and destination not in phase, blit one by one */ \
593 BLEND16_50(dst, src, mask); \
595 if((uintptr_t)src & 3) { \
596 /* first odd pixel */ \
597 BLEND16_50(dst, src, mask); \
600 for(; n > 1; n -= 2) { \
601 Uint32 s = *(Uint32 *)src; \
602 Uint32 d = *(Uint32 *)dst; \
603 *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \
604 + ((d & (mask | mask << 16)) >> 1) \
605 + (s & d & (~(mask | mask << 16))); \
610 BLEND16_50(dst, src, mask); /* last odd pixel */ \
614 #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \
615 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de)
617 #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \
618 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
622 #define CHOOSE_BLIT(blitter, alpha, fmt) \
625 switch(fmt->BytesPerPixel) { \
626 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
627 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
628 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
629 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
632 switch(fmt->BytesPerPixel) { \
634 /* No 8bpp alpha blitting */ \
638 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
640 if(fmt->Gmask == 0x07e0 \
641 || fmt->Rmask == 0x07e0 \
642 || fmt->Bmask == 0x07e0) { \
644 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
647 blitter(2, Uint8, ALPHA_BLIT16_565MMX); \
649 blitter(2, Uint8, ALPHA_BLIT16_565); \
656 if(fmt->Gmask == 0x03e0 \
657 || fmt->Rmask == 0x03e0 \
658 || fmt->Bmask == 0x03e0) { \
660 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
663 blitter(2, Uint8, ALPHA_BLIT16_555MMX); \
665 blitter(2, Uint8, ALPHA_BLIT16_555); \
673 blitter(2, Uint8, ALPHA_BLIT_ANY); \
678 blitter(3, Uint8, ALPHA_BLIT_ANY); \
682 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
683 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
684 || fmt->Bmask == 0xff00)) { \
688 blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\
690 blitter(4, Uint16, ALPHA_BLIT32_888_50);\
695 blitter(4, Uint16, ALPHA_BLIT32_888MMX);\
697 blitter(4, Uint16, ALPHA_BLIT32_888); \
700 blitter(4, Uint16, ALPHA_BLIT_ANY); \
708 #define CHOOSE_BLIT(blitter, alpha, fmt) \
711 switch(fmt->BytesPerPixel) { \
712 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
713 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
714 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
715 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
718 switch(fmt->BytesPerPixel) { \
720 /* No 8bpp alpha blitting */ \
724 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
726 if(fmt->Gmask == 0x07e0 \
727 || fmt->Rmask == 0x07e0 \
728 || fmt->Bmask == 0x07e0) { \
730 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
732 blitter(2, Uint8, ALPHA_BLIT16_565); \
739 if(fmt->Gmask == 0x03e0 \
740 || fmt->Rmask == 0x03e0 \
741 || fmt->Bmask == 0x03e0) { \
743 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
745 blitter(2, Uint8, ALPHA_BLIT16_555); \
753 blitter(2, Uint8, ALPHA_BLIT_ANY); \
758 blitter(3, Uint8, ALPHA_BLIT_ANY); \
762 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
763 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
764 || fmt->Bmask == 0xff00)) { \
766 blitter(4, Uint16, ALPHA_BLIT32_888_50); \
768 blitter(4, Uint16, ALPHA_BLIT32_888); \
770 blitter(4, Uint16, ALPHA_BLIT_ANY); \
779 * This takes care of the case when the surface is clipped on the left and/or
780 * right. Top clipping has already been taken care of.
782 static void RLEClipBlit(int w
, Uint8
*srcbuf
, SDL_Surface
*dst
,
783 Uint8
*dstbuf
, SDL_Rect
*srcrect
, unsigned alpha
)
785 SDL_PixelFormat
*fmt
= dst
->format
;
787 #define RLECLIPBLIT(bpp, Type, do_blit) \
789 int linecount = srcrect->h; \
791 int left = srcrect->x; \
792 int right = left + srcrect->w; \
793 dstbuf -= left * bpp; \
796 ofs += *(Type *)srcbuf; \
797 run = ((Type *)srcbuf)[1]; \
798 srcbuf += 2 * sizeof(Type); \
800 /* clip to left and right borders */ \
805 if(left - ofs > 0) { \
806 start = left - ofs; \
809 goto nocopy ## bpp ## do_blit; \
811 startcol = ofs + start; \
812 if(len > right - startcol) \
813 len = right - startcol; \
814 do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \
817 nocopy ## bpp ## do_blit: \
818 srcbuf += run * bpp; \
824 dstbuf += dst->pitch; \
831 CHOOSE_BLIT(RLECLIPBLIT
, alpha
, fmt
);
838 /* blit a colorkeyed RLE surface */
839 int SDL_RLEBlit(SDL_Surface
*src
, SDL_Rect
*srcrect
,
840 SDL_Surface
*dst
, SDL_Rect
*dstrect
)
848 /* Lock the destination if necessary */
849 if ( SDL_MUSTLOCK(dst
) ) {
850 if ( SDL_LockSurface(dst
) < 0 ) {
855 /* Set up the source and destination pointers */
858 dstbuf
= (Uint8
*)dst
->pixels
859 + y
* dst
->pitch
+ x
* src
->format
->BytesPerPixel
;
860 srcbuf
= (Uint8
*)src
->map
->sw_data
->aux_data
;
863 /* skip lines at the top if neccessary */
864 int vskip
= srcrect
->y
;
868 #define RLESKIP(bpp, Type) \
871 ofs += *(Type *)srcbuf; \
872 run = ((Type *)srcbuf)[1]; \
873 srcbuf += sizeof(Type) * 2; \
875 srcbuf += run * bpp; \
886 switch(src
->format
->BytesPerPixel
) {
887 case 1: RLESKIP(1, Uint8
); break;
888 case 2: RLESKIP(2, Uint8
); break;
889 case 3: RLESKIP(3, Uint8
); break;
890 case 4: RLESKIP(4, Uint16
); break;
898 alpha
= (src
->flags
& SDL_SRCALPHA
) == SDL_SRCALPHA
899 ? src
->format
->alpha
: 255;
900 /* if left or right edge clipping needed, call clip blit */
901 if ( srcrect
->x
|| srcrect
->w
!= src
->w
) {
902 RLEClipBlit(w
, srcbuf
, dst
, dstbuf
, srcrect
, alpha
);
904 SDL_PixelFormat
*fmt
= src
->format
;
906 #define RLEBLIT(bpp, Type, do_blit) \
908 int linecount = srcrect->h; \
912 ofs += *(Type *)srcbuf; \
913 run = ((Type *)srcbuf)[1]; \
914 srcbuf += 2 * sizeof(Type); \
916 do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \
917 srcbuf += run * bpp; \
923 dstbuf += dst->pitch; \
930 CHOOSE_BLIT(RLEBLIT
, alpha
, fmt
);
936 /* Unlock the destination if necessary */
937 if ( SDL_MUSTLOCK(dst
) ) {
938 SDL_UnlockSurface(dst
);
946 * Per-pixel blitting macros for translucent pixels:
947 * These use the same techniques as the per-surface blitting macros
951 * For 32bpp pixels, we have made sure the alpha is stored in the top
952 * 8 bits, so proceed as usual
954 #define BLIT_TRANSL_888(src, dst) \
958 unsigned alpha = s >> 24; \
959 Uint32 s1 = s & 0xff00ff; \
960 Uint32 d1 = d & 0xff00ff; \
961 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
964 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
969 * For 16bpp pixels, we have stored the 5 most significant alpha bits in
970 * bits 5-10. As before, we can process all 3 RGB components at the same time.
972 #define BLIT_TRANSL_565(src, dst) \
976 unsigned alpha = (s & 0x3e0) >> 5; \
978 d = (d | d << 16) & 0x07e0f81f; \
979 d += (s - d) * alpha >> 5; \
981 dst = (Uint16)(d | d >> 16); \
984 #define BLIT_TRANSL_555(src, dst) \
988 unsigned alpha = (s & 0x3e0) >> 5; \
990 d = (d | d << 16) & 0x03e07c1f; \
991 d += (s - d) * alpha >> 5; \
993 dst = (Uint16)(d | d >> 16); \
996 /* used to save the destination format in the encoding. Designed to be
997 macro-compatible with SDL_PixelFormat but without the unneeded fields */
1013 /* blit a pixel-alpha RLE surface clipped at the right and/or left edges */
1014 static void RLEAlphaClipBlit(int w
, Uint8
*srcbuf
, SDL_Surface
*dst
,
1015 Uint8
*dstbuf
, SDL_Rect
*srcrect
)
1017 SDL_PixelFormat
*df
= dst
->format
;
1019 * clipped blitter: Ptype is the destination pixel type,
1020 * Ctype the translucent count type, and do_blend the macro
1021 * to blend one pixel.
1023 #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \
1025 int linecount = srcrect->h; \
1026 int left = srcrect->x; \
1027 int right = left + srcrect->w; \
1028 dstbuf -= left * sizeof(Ptype); \
1031 /* blit opaque pixels on one line */ \
1034 ofs += ((Ctype *)srcbuf)[0]; \
1035 run = ((Ctype *)srcbuf)[1]; \
1036 srcbuf += 2 * sizeof(Ctype); \
1038 /* clip to left and right borders */ \
1041 if(left - cofs > 0) { \
1042 crun -= left - cofs; \
1045 if(crun > right - cofs) \
1046 crun = right - cofs; \
1048 PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \
1049 srcbuf + (cofs - ofs) * sizeof(Ptype), \
1050 (unsigned)crun, sizeof(Ptype)); \
1051 srcbuf += run * sizeof(Ptype); \
1056 /* skip padding if necessary */ \
1057 if(sizeof(Ptype) == 2) \
1058 srcbuf += (uintptr_t)srcbuf & 2; \
1059 /* blit translucent pixels on the same line */ \
1063 ofs += ((Uint16 *)srcbuf)[0]; \
1064 run = ((Uint16 *)srcbuf)[1]; \
1067 /* clip to left and right borders */ \
1070 if(left - cofs > 0) { \
1071 crun -= left - cofs; \
1074 if(crun > right - cofs) \
1075 crun = right - cofs; \
1077 Ptype *dst = (Ptype *)dstbuf + cofs; \
1078 Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \
1080 for(i = 0; i < crun; i++) \
1081 do_blend(src[i], dst[i]); \
1083 srcbuf += run * 4; \
1087 dstbuf += dst->pitch; \
1088 } while(--linecount); \
1091 switch(df
->BytesPerPixel
) {
1093 if(df
->Gmask
== 0x07e0 || df
->Rmask
== 0x07e0
1094 || df
->Bmask
== 0x07e0)
1095 RLEALPHACLIPBLIT(Uint16
, Uint8
, BLIT_TRANSL_565
);
1097 RLEALPHACLIPBLIT(Uint16
, Uint8
, BLIT_TRANSL_555
);
1100 RLEALPHACLIPBLIT(Uint32
, Uint16
, BLIT_TRANSL_888
);
1105 /* blit a pixel-alpha RLE surface */
1106 int SDL_RLEAlphaBlit(SDL_Surface
*src
, SDL_Rect
*srcrect
,
1107 SDL_Surface
*dst
, SDL_Rect
*dstrect
)
1111 Uint8
*srcbuf
, *dstbuf
;
1112 SDL_PixelFormat
*df
= dst
->format
;
1114 /* Lock the destination if necessary */
1115 if ( SDL_MUSTLOCK(dst
) ) {
1116 if ( SDL_LockSurface(dst
) < 0 ) {
1123 dstbuf
= (Uint8
*)dst
->pixels
1124 + y
* dst
->pitch
+ x
* df
->BytesPerPixel
;
1125 srcbuf
= (Uint8
*)src
->map
->sw_data
->aux_data
+ sizeof(RLEDestFormat
);
1128 /* skip lines at the top if necessary */
1129 int vskip
= srcrect
->y
;
1132 if(df
->BytesPerPixel
== 2) {
1133 /* the 16/32 interleaved format */
1135 /* skip opaque line */
1150 srcbuf
+= (uintptr_t)srcbuf
& 2;
1152 /* skip translucent line */
1156 ofs
+= ((Uint16
*)srcbuf
)[0];
1157 run
= ((Uint16
*)srcbuf
)[1];
1158 srcbuf
+= 4 * (run
+ 1);
1163 /* the 32/32 interleaved format */
1164 vskip
<<= 1; /* opaque and translucent have same format */
1169 ofs
+= ((Uint16
*)srcbuf
)[0];
1170 run
= ((Uint16
*)srcbuf
)[1];
1183 /* if left or right edge clipping needed, call clip blit */
1184 if(srcrect
->x
|| srcrect
->w
!= src
->w
) {
1185 RLEAlphaClipBlit(w
, srcbuf
, dst
, dstbuf
, srcrect
);
1189 * non-clipped blitter. Ptype is the destination pixel type,
1190 * Ctype the translucent count type, and do_blend the
1191 * macro to blend one pixel.
1193 #define RLEALPHABLIT(Ptype, Ctype, do_blend) \
1195 int linecount = srcrect->h; \
1198 /* blit opaque pixels on one line */ \
1201 ofs += ((Ctype *)srcbuf)[0]; \
1202 run = ((Ctype *)srcbuf)[1]; \
1203 srcbuf += 2 * sizeof(Ctype); \
1205 PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \
1206 run, sizeof(Ptype)); \
1207 srcbuf += run * sizeof(Ptype); \
1212 /* skip padding if necessary */ \
1213 if(sizeof(Ptype) == 2) \
1214 srcbuf += (uintptr_t)srcbuf & 2; \
1215 /* blit translucent pixels on the same line */ \
1219 ofs += ((Uint16 *)srcbuf)[0]; \
1220 run = ((Uint16 *)srcbuf)[1]; \
1223 Ptype *dst = (Ptype *)dstbuf + ofs; \
1225 for(i = 0; i < run; i++) { \
1226 Uint32 src = *(Uint32 *)srcbuf; \
1227 do_blend(src, *dst); \
1234 dstbuf += dst->pitch; \
1235 } while(--linecount); \
1238 switch(df
->BytesPerPixel
) {
1240 if(df
->Gmask
== 0x07e0 || df
->Rmask
== 0x07e0
1241 || df
->Bmask
== 0x07e0)
1242 RLEALPHABLIT(Uint16
, Uint8
, BLIT_TRANSL_565
);
1244 RLEALPHABLIT(Uint16
, Uint8
, BLIT_TRANSL_555
);
1247 RLEALPHABLIT(Uint32
, Uint16
, BLIT_TRANSL_888
);
1253 /* Unlock the destination if necessary */
1254 if ( SDL_MUSTLOCK(dst
) ) {
1255 SDL_UnlockSurface(dst
);
1261 * Auxiliary functions:
1262 * The encoding functions take 32bpp rgb + a, and
1263 * return the number of bytes copied to the destination.
1264 * The decoding functions copy to 32bpp rgb + a, and
1265 * return the number of bytes copied from the source.
1266 * These are only used in the encoder and un-RLE code and are therefore not
1270 /* encode 32bpp rgb + a into 16bpp rgb, losing alpha */
1271 static int copy_opaque_16(void *dst
, Uint32
*src
, int n
,
1272 SDL_PixelFormat
*sfmt
, SDL_PixelFormat
*dfmt
)
1276 for(i
= 0; i
< n
; i
++) {
1278 RGB_FROM_PIXEL(*src
, sfmt
, r
, g
, b
);
1279 PIXEL_FROM_RGB(*d
, dfmt
, r
, g
, b
);
1286 /* decode opaque pixels from 16bpp to 32bpp rgb + a */
1287 static int uncopy_opaque_16(Uint32
*dst
, void *src
, int n
,
1288 RLEDestFormat
*sfmt
, SDL_PixelFormat
*dfmt
)
1292 unsigned alpha
= dfmt
->Amask
? 255 : 0;
1293 for(i
= 0; i
< n
; i
++) {
1295 RGB_FROM_PIXEL(*s
, sfmt
, r
, g
, b
);
1296 PIXEL_FROM_RGBA(*dst
, dfmt
, r
, g
, b
, alpha
);
1305 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */
1306 static int copy_transl_565(void *dst
, Uint32
*src
, int n
,
1307 SDL_PixelFormat
*sfmt
, SDL_PixelFormat
*dfmt
)
1311 for(i
= 0; i
< n
; i
++) {
1312 unsigned r
, g
, b
, a
;
1314 RGBA_FROM_8888(*src
, sfmt
, r
, g
, b
, a
);
1315 PIXEL_FROM_RGB(pix
, dfmt
, r
, g
, b
);
1316 *d
= ((pix
& 0x7e0) << 16) | (pix
& 0xf81f) | ((a
<< 2) & 0x7e0);
1323 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */
1324 static int copy_transl_555(void *dst
, Uint32
*src
, int n
,
1325 SDL_PixelFormat
*sfmt
, SDL_PixelFormat
*dfmt
)
1329 for(i
= 0; i
< n
; i
++) {
1330 unsigned r
, g
, b
, a
;
1332 RGBA_FROM_8888(*src
, sfmt
, r
, g
, b
, a
);
1333 PIXEL_FROM_RGB(pix
, dfmt
, r
, g
, b
);
1334 *d
= ((pix
& 0x3e0) << 16) | (pix
& 0xfc1f) | ((a
<< 2) & 0x3e0);
1341 /* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */
1342 static int uncopy_transl_16(Uint32
*dst
, void *src
, int n
,
1343 RLEDestFormat
*sfmt
, SDL_PixelFormat
*dfmt
)
1347 for(i
= 0; i
< n
; i
++) {
1348 unsigned r
, g
, b
, a
;
1350 a
= (pix
& 0x3e0) >> 2;
1351 pix
= (pix
& ~0x3e0) | pix
>> 16;
1352 RGB_FROM_PIXEL(pix
, sfmt
, r
, g
, b
);
1353 PIXEL_FROM_RGBA(*dst
, dfmt
, r
, g
, b
, a
);
1359 /* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
1360 static int copy_32(void *dst
, Uint32
*src
, int n
,
1361 SDL_PixelFormat
*sfmt
, SDL_PixelFormat
*dfmt
)
1365 for(i
= 0; i
< n
; i
++) {
1366 unsigned r
, g
, b
, a
;
1368 RGBA_FROM_8888(*src
, sfmt
, r
, g
, b
, a
);
1369 PIXEL_FROM_RGB(pixel
, dfmt
, r
, g
, b
);
1370 *d
++ = pixel
| a
<< 24;
1376 /* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
1377 static int uncopy_32(Uint32
*dst
, void *src
, int n
,
1378 RLEDestFormat
*sfmt
, SDL_PixelFormat
*dfmt
)
1382 for(i
= 0; i
< n
; i
++) {
1383 unsigned r
, g
, b
, a
;
1384 Uint32 pixel
= *s
++;
1385 RGB_FROM_PIXEL(pixel
, sfmt
, r
, g
, b
);
1387 PIXEL_FROM_RGBA(*dst
, dfmt
, r
, g
, b
, a
);
1393 #define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255)
1395 #define ISTRANSL(pixel, fmt) \
1396 ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U)
1398 /* convert surface to be quickly alpha-blittable onto dest, if possible */
1399 static int RLEAlphaSurface(SDL_Surface
*surface
)
1402 SDL_PixelFormat
*df
;
1405 int max_transl_run
= 65535;
1407 Uint8
*rlebuf
, *dst
;
1408 int (*copy_opaque
)(void *, Uint32
*, int,
1409 SDL_PixelFormat
*, SDL_PixelFormat
*);
1410 int (*copy_transl
)(void *, Uint32
*, int,
1411 SDL_PixelFormat
*, SDL_PixelFormat
*);
1413 dest
= surface
->map
->dst
;
1417 if(surface
->format
->BitsPerPixel
!= 32)
1418 return -1; /* only 32bpp source supported */
1420 /* find out whether the destination is one we support,
1421 and determine the max size of the encoded result */
1422 masksum
= df
->Rmask
| df
->Gmask
| df
->Bmask
;
1423 switch(df
->BytesPerPixel
) {
1425 /* 16bpp: only support 565 and 555 formats */
1428 if(df
->Gmask
== 0x07e0
1429 || df
->Rmask
== 0x07e0 || df
->Bmask
== 0x07e0) {
1430 copy_opaque
= copy_opaque_16
;
1431 copy_transl
= copy_transl_565
;
1436 if(df
->Gmask
== 0x03e0
1437 || df
->Rmask
== 0x03e0 || df
->Bmask
== 0x03e0) {
1438 copy_opaque
= copy_opaque_16
;
1439 copy_transl
= copy_transl_555
;
1446 max_opaque_run
= 255; /* runs stored as bytes */
1448 /* worst case is alternating opaque and translucent pixels,
1449 with room for alignment padding between lines */
1450 maxsize
= surface
->h
* (2 + (4 + 2) * (surface
->w
+ 1)) + 2;
1453 if(masksum
!= 0x00ffffff)
1454 return -1; /* requires unused high byte */
1455 copy_opaque
= copy_32
;
1456 copy_transl
= copy_32
;
1457 max_opaque_run
= 255; /* runs stored as short ints */
1459 /* worst case is alternating opaque and translucent pixels */
1460 maxsize
= surface
->h
* 2 * 4 * (surface
->w
+ 1) + 4;
1463 return -1; /* anything else unsupported right now */
1466 maxsize
+= sizeof(RLEDestFormat
);
1467 rlebuf
= (Uint8
*)SDL_malloc(maxsize
);
1473 /* save the destination format so we can undo the encoding later */
1474 RLEDestFormat
*r
= (RLEDestFormat
*)rlebuf
;
1475 r
->BytesPerPixel
= df
->BytesPerPixel
;
1476 r
->Rloss
= df
->Rloss
;
1477 r
->Gloss
= df
->Gloss
;
1478 r
->Bloss
= df
->Bloss
;
1479 r
->Rshift
= df
->Rshift
;
1480 r
->Gshift
= df
->Gshift
;
1481 r
->Bshift
= df
->Bshift
;
1482 r
->Ashift
= df
->Ashift
;
1483 r
->Rmask
= df
->Rmask
;
1484 r
->Gmask
= df
->Gmask
;
1485 r
->Bmask
= df
->Bmask
;
1486 r
->Amask
= df
->Amask
;
1488 dst
= rlebuf
+ sizeof(RLEDestFormat
);
1490 /* Do the actual encoding */
1493 int h
= surface
->h
, w
= surface
->w
;
1494 SDL_PixelFormat
*sf
= surface
->format
;
1495 Uint32
*src
= (Uint32
*)surface
->pixels
;
1496 Uint8
*lastline
= dst
; /* end of last non-blank line */
1498 /* opaque counts are 8 or 16 bits, depending on target depth */
1499 #define ADD_OPAQUE_COUNTS(n, m) \
1500 if(df->BytesPerPixel == 4) { \
1501 ((Uint16 *)dst)[0] = n; \
1502 ((Uint16 *)dst)[1] = m; \
1510 /* translucent counts are always 16 bit */
1511 #define ADD_TRANSL_COUNTS(n, m) \
1512 (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4)
1514 for(y
= 0; y
< h
; y
++) {
1515 int runstart
, skipstart
;
1517 /* First encode all opaque pixels of a scan line */
1522 while(x
< w
&& !ISOPAQUE(src
[x
], sf
))
1525 while(x
< w
&& ISOPAQUE(src
[x
], sf
))
1527 skip
= runstart
- skipstart
;
1531 while(skip
> max_opaque_run
) {
1532 ADD_OPAQUE_COUNTS(max_opaque_run
, 0);
1533 skip
-= max_opaque_run
;
1535 len
= MIN(run
, max_opaque_run
);
1536 ADD_OPAQUE_COUNTS(skip
, len
);
1537 dst
+= copy_opaque(dst
, src
+ runstart
, len
, sf
, df
);
1541 len
= MIN(run
, max_opaque_run
);
1542 ADD_OPAQUE_COUNTS(0, len
);
1543 dst
+= copy_opaque(dst
, src
+ runstart
, len
, sf
, df
);
1549 /* Make sure the next output address is 32-bit aligned */
1550 dst
+= (uintptr_t)dst
& 2;
1552 /* Next, encode all translucent pixels of the same scan line */
1557 while(x
< w
&& !ISTRANSL(src
[x
], sf
))
1560 while(x
< w
&& ISTRANSL(src
[x
], sf
))
1562 skip
= runstart
- skipstart
;
1563 blankline
&= (skip
== w
);
1565 while(skip
> max_transl_run
) {
1566 ADD_TRANSL_COUNTS(max_transl_run
, 0);
1567 skip
-= max_transl_run
;
1569 len
= MIN(run
, max_transl_run
);
1570 ADD_TRANSL_COUNTS(skip
, len
);
1571 dst
+= copy_transl(dst
, src
+ runstart
, len
, sf
, df
);
1575 len
= MIN(run
, max_transl_run
);
1576 ADD_TRANSL_COUNTS(0, len
);
1577 dst
+= copy_transl(dst
, src
+ runstart
, len
, sf
, df
);
1585 src
+= surface
->pitch
>> 2;
1587 dst
= lastline
; /* back up past trailing blank lines */
1588 ADD_OPAQUE_COUNTS(0, 0);
1591 #undef ADD_OPAQUE_COUNTS
1592 #undef ADD_TRANSL_COUNTS
1594 /* Now that we have it encoded, release the original pixels */
1595 if((surface
->flags
& SDL_PREALLOC
) != SDL_PREALLOC
1596 && (surface
->flags
& SDL_HWSURFACE
) != SDL_HWSURFACE
) {
1597 SDL_free( surface
->pixels
);
1598 surface
->pixels
= NULL
;
1601 /* realloc the buffer to release unused memory */
1603 Uint8
*p
= SDL_realloc(rlebuf
, dst
- rlebuf
);
1606 surface
->map
->sw_data
->aux_data
= p
;
1612 static Uint32
getpix_8(Uint8
*srcbuf
)
1617 static Uint32
getpix_16(Uint8
*srcbuf
)
1619 return *(Uint16
*)srcbuf
;
1622 static Uint32
getpix_24(Uint8
*srcbuf
)
1624 #if SDL_BYTEORDER == SDL_LIL_ENDIAN
1625 return srcbuf
[0] + (srcbuf
[1] << 8) + (srcbuf
[2] << 16);
1627 return (srcbuf
[0] << 16) + (srcbuf
[1] << 8) + srcbuf
[2];
1631 static Uint32
getpix_32(Uint8
*srcbuf
)
1633 return *(Uint32
*)srcbuf
;
1636 typedef Uint32 (*getpix_func
)(Uint8
*);
1638 static getpix_func getpixes
[4] = {
1639 getpix_8
, getpix_16
, getpix_24
, getpix_32
1642 static int RLEColorkeySurface(SDL_Surface
*surface
)
1644 Uint8
*rlebuf
, *dst
;
1647 Uint8
*srcbuf
, *curbuf
, *lastline
;
1650 int bpp
= surface
->format
->BytesPerPixel
;
1652 Uint32 ckey
, rgbmask
;
1655 /* calculate the worst case size for the compressed surface */
1658 /* worst case is alternating opaque and transparent pixels,
1659 starting with an opaque pixel */
1660 maxsize
= surface
->h
* 3 * (surface
->w
/ 2 + 1) + 2;
1664 /* worst case is solid runs, at most 255 pixels wide */
1665 maxsize
= surface
->h
* (2 * (surface
->w
/ 255 + 1)
1666 + surface
->w
* bpp
) + 2;
1669 /* worst case is solid runs, at most 65535 pixels wide */
1670 maxsize
= surface
->h
* (4 * (surface
->w
/ 65535 + 1)
1671 + surface
->w
* 4) + 4;
1675 rlebuf
= (Uint8
*)SDL_malloc(maxsize
);
1676 if ( rlebuf
== NULL
) {
1681 /* Set up the conversion */
1682 srcbuf
= (Uint8
*)surface
->pixels
;
1684 maxn
= bpp
== 4 ? 65535 : 255;
1687 rgbmask
= ~surface
->format
->Amask
;
1688 ckey
= surface
->format
->colorkey
& rgbmask
;
1690 getpix
= getpixes
[bpp
- 1];
1694 #define ADD_COUNTS(n, m) \
1696 ((Uint16 *)dst)[0] = n; \
1697 ((Uint16 *)dst)[1] = m; \
1705 for(y
= 0; y
< h
; y
++) {
1713 /* find run of transparent, then opaque pixels */
1714 while(x
< w
&& (getpix(srcbuf
+ x
* bpp
) & rgbmask
) == ckey
)
1717 while(x
< w
&& (getpix(srcbuf
+ x
* bpp
) & rgbmask
) != ckey
)
1719 skip
= runstart
- skipstart
;
1724 /* encode segment */
1725 while(skip
> maxn
) {
1726 ADD_COUNTS(maxn
, 0);
1729 len
= MIN(run
, maxn
);
1730 ADD_COUNTS(skip
, len
);
1731 SDL_memcpy(dst
, srcbuf
+ runstart
* bpp
, len
* bpp
);
1736 len
= MIN(run
, maxn
);
1738 SDL_memcpy(dst
, srcbuf
+ runstart
* bpp
, len
* bpp
);
1747 srcbuf
+= surface
->pitch
;
1749 dst
= lastline
; /* back up bast trailing blank lines */
1754 /* Now that we have it encoded, release the original pixels */
1755 if((surface
->flags
& SDL_PREALLOC
) != SDL_PREALLOC
1756 && (surface
->flags
& SDL_HWSURFACE
) != SDL_HWSURFACE
) {
1757 SDL_free( surface
->pixels
);
1758 surface
->pixels
= NULL
;
1761 /* realloc the buffer to release unused memory */
1763 /* If realloc returns NULL, the original block is left intact */
1764 Uint8
*p
= SDL_realloc(rlebuf
, dst
- rlebuf
);
1767 surface
->map
->sw_data
->aux_data
= p
;
1773 int SDL_RLESurface(SDL_Surface
*surface
)
1777 /* Clear any previous RLE conversion */
1778 if ( (surface
->flags
& SDL_RLEACCEL
) == SDL_RLEACCEL
) {
1779 SDL_UnRLESurface(surface
, 1);
1782 /* We don't support RLE encoding of bitmaps */
1783 if ( surface
->format
->BitsPerPixel
< 8 ) {
1787 /* Lock the surface if it's in hardware */
1788 if ( SDL_MUSTLOCK(surface
) ) {
1789 if ( SDL_LockSurface(surface
) < 0 ) {
1795 if((surface
->flags
& SDL_SRCCOLORKEY
) == SDL_SRCCOLORKEY
) {
1796 retcode
= RLEColorkeySurface(surface
);
1798 if((surface
->flags
& SDL_SRCALPHA
) == SDL_SRCALPHA
1799 && surface
->format
->Amask
!= 0)
1800 retcode
= RLEAlphaSurface(surface
);
1802 retcode
= -1; /* no RLE for per-surface alpha sans ckey */
1805 /* Unlock the surface if it's in hardware */
1806 if ( SDL_MUSTLOCK(surface
) ) {
1807 SDL_UnlockSurface(surface
);
1813 /* The surface is now accelerated */
1814 surface
->flags
|= SDL_RLEACCEL
;
1820 * Un-RLE a surface with pixel alpha
1821 * This may not give back exactly the image before RLE-encoding; all
1822 * completely transparent pixels will be lost, and colour and alpha depth
1823 * may have been reduced (when encoding for 16bpp targets).
1825 static SDL_bool
UnRLEAlpha(SDL_Surface
*surface
)
1829 SDL_PixelFormat
*sf
= surface
->format
;
1830 RLEDestFormat
*df
= surface
->map
->sw_data
->aux_data
;
1831 int (*uncopy_opaque
)(Uint32
*, void *, int,
1832 RLEDestFormat
*, SDL_PixelFormat
*);
1833 int (*uncopy_transl
)(Uint32
*, void *, int,
1834 RLEDestFormat
*, SDL_PixelFormat
*);
1836 int bpp
= df
->BytesPerPixel
;
1839 uncopy_opaque
= uncopy_opaque_16
;
1840 uncopy_transl
= uncopy_transl_16
;
1842 uncopy_opaque
= uncopy_transl
= uncopy_32
;
1845 surface
->pixels
= SDL_malloc(surface
->h
* surface
->pitch
);
1846 if ( !surface
->pixels
) {
1849 /* fill background with transparent pixels */
1850 SDL_memset(surface
->pixels
, 0, surface
->h
* surface
->pitch
);
1852 dst
= surface
->pixels
;
1853 srcbuf
= (Uint8
*)(df
+ 1);
1855 /* copy opaque pixels */
1864 ofs
+= ((Uint16
*)srcbuf
)[0];
1865 run
= ((Uint16
*)srcbuf
)[1];
1869 srcbuf
+= uncopy_opaque(dst
+ ofs
, srcbuf
, run
, df
, sf
);
1875 /* skip padding if needed */
1877 srcbuf
+= (uintptr_t)srcbuf
& 2;
1879 /* copy translucent pixels */
1883 ofs
+= ((Uint16
*)srcbuf
)[0];
1884 run
= ((Uint16
*)srcbuf
)[1];
1887 srcbuf
+= uncopy_transl(dst
+ ofs
, srcbuf
, run
, df
, sf
);
1891 dst
+= surface
->pitch
>> 2;
1893 /* Make the compiler happy */
1897 void SDL_UnRLESurface(SDL_Surface
*surface
, int recode
)
1899 if ( (surface
->flags
& SDL_RLEACCEL
) == SDL_RLEACCEL
) {
1900 surface
->flags
&= ~SDL_RLEACCEL
;
1902 if(recode
&& (surface
->flags
& SDL_PREALLOC
) != SDL_PREALLOC
1903 && (surface
->flags
& SDL_HWSURFACE
) != SDL_HWSURFACE
) {
1904 if((surface
->flags
& SDL_SRCCOLORKEY
) == SDL_SRCCOLORKEY
) {
1906 unsigned alpha_flag
;
1908 /* re-create the original surface */
1909 surface
->pixels
= SDL_malloc(surface
->h
* surface
->pitch
);
1910 if ( !surface
->pixels
) {
1912 surface
->flags
|= SDL_RLEACCEL
;
1916 /* fill it with the background colour */
1917 SDL_FillRect(surface
, NULL
, surface
->format
->colorkey
);
1919 /* now render the encoded surface */
1920 full
.x
= full
.y
= 0;
1921 full
.w
= surface
->w
;
1922 full
.h
= surface
->h
;
1923 alpha_flag
= surface
->flags
& SDL_SRCALPHA
;
1924 surface
->flags
&= ~SDL_SRCALPHA
; /* opaque blit */
1925 SDL_RLEBlit(surface
, &full
, surface
, &full
);
1926 surface
->flags
|= alpha_flag
;
1928 if ( !UnRLEAlpha(surface
) ) {
1930 surface
->flags
|= SDL_RLEACCEL
;
1936 if ( surface
->map
&& surface
->map
->sw_data
->aux_data
) {
1937 SDL_free(surface
->map
->sw_data
->aux_data
);
1938 surface
->map
->sw_data
->aux_data
= NULL
;