1 /***************************************************************************
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
10 * Copyright (C) 2005 Miika Pekkarinen
12 * All files in this archive are subject to the GNU General Public License.
13 * See the file COPYING in the source tree root for full license agreement.
15 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
16 * KIND, either express or implied.
18 ****************************************************************************/
30 #include "replaygain.h"
34 /* 16-bit samples are scaled based on these constants. The shift should be
38 #define WORD_FRACBITS 27
40 #define NATIVE_DEPTH 16
41 /* If the buffer sizes change, check the assembly code! */
42 #define SAMPLE_BUF_COUNT 256
43 #define RESAMPLE_BUF_COUNT (256 * 4) /* Enough for 11,025 Hz -> 44,100 Hz*/
44 #define DEFAULT_GAIN 0x01000000
45 #define SAMPLE_BUF_LEFT_CHANNEL 0
46 #define SAMPLE_BUF_RIGHT_CHANNEL (SAMPLE_BUF_COUNT/2)
47 #define RESAMPLE_BUF_LEFT_CHANNEL 0
48 #define RESAMPLE_BUF_RIGHT_CHANNEL (RESAMPLE_BUF_COUNT/2)
50 /* enums to index conversion properly with stereo mode and other settings */
53 SAMPLE_INPUT_LE_NATIVE_I_STEREO
= STEREO_INTERLEAVED
,
54 SAMPLE_INPUT_LE_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
,
55 SAMPLE_INPUT_LE_NATIVE_MONO
= STEREO_MONO
,
56 SAMPLE_INPUT_GT_NATIVE_I_STEREO
= STEREO_INTERLEAVED
+ STEREO_NUM_MODES
,
57 SAMPLE_INPUT_GT_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
+ STEREO_NUM_MODES
,
58 SAMPLE_INPUT_GT_NATIVE_MONO
= STEREO_MONO
+ STEREO_NUM_MODES
,
59 SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
= STEREO_NUM_MODES
64 SAMPLE_OUTPUT_MONO
= 0,
66 SAMPLE_OUTPUT_DITHERED_MONO
,
67 SAMPLE_OUTPUT_DITHERED_STEREO
70 /****************************************************************************
71 * NOTE: Any assembly routines that use these structures must be updated
72 * if current data members are moved or changed.
76 uint32_t delta
; /* 00h */
77 uint32_t phase
; /* 04h */
78 int32_t last_sample
[2]; /* 08h */
82 /* This is for passing needed data to assembly dsp routines. If another
83 * dsp parameter needs to be passed, add to the end of the structure
84 * and remove from dsp_config.
85 * If another function type becomes assembly optimized and requires dsp
86 * config info, add a pointer paramter of type "struct dsp_data *".
87 * If removing something from other than the end, reserve the spot or
88 * else update every implementation for every target.
89 * Be sure to add the offset of the new member for easy viewing as well. :)
90 * It is the first member of dsp_config and all members can be accessesed
91 * through the main aggregate but this is intended to make a safe haven
92 * for these items whereas the c part can be rearranged at will. dsp_data
93 * could even moved within dsp_config without disurbing the order.
97 int output_scale
; /* 00h */
98 int num_channels
; /* 04h */
99 struct resample_data resample_data
; /* 08h */
100 int32_t clip_min
; /* 18h */
101 int32_t clip_max
; /* 1ch */
102 int32_t gain
; /* 20h - Note that this is in S8.23 format. */
109 long error
[3]; /* 00h */
110 long random
; /* 0ch */
114 struct crossfeed_data
116 int32_t gain
; /* 00h - Direct path gain */
117 int32_t coefs
[3]; /* 04h - Coefficients for the shelving filter */
118 int32_t history
[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
119 int32_t delay
[13][2]; /* 20h */
120 int32_t *index
; /* 88h - Current pointer into the delay line */
124 /* Current setup is one lowshelf filters three peaking filters and one
125 * highshelf filter. Varying the number of shelving filters make no sense,
126 * but adding peaking filters is possible.
130 char enabled
[5]; /* 00h - Flags for active filters */
131 struct eqfilter filters
[5]; /* 08h - packing is 4? */
135 /* Include header with defines which functions are implemented in assembly
136 code for the target */
139 /* Typedefs keep things much neater in this case */
140 typedef void (*sample_input_fn_type
)(int count
, const char *src
[],
142 typedef int (*resample_fn_type
)(int count
, struct dsp_data
*data
,
143 int32_t *src
[], int32_t *dst
[]);
144 typedef void (*sample_output_fn_type
)(int count
, struct dsp_data
*data
,
145 int32_t *src
[], int16_t *dst
);
146 /* Single-DSP channel processing in place */
147 typedef void (*channels_process_fn_type
)(int count
, int32_t *buf
[]);
148 /* DSP local channel processing in place */
149 typedef void (*channels_process_dsp_fn_type
)(int count
, struct dsp_data
*data
,
154 ***************************************************************************/
158 struct dsp_data data
; /* Config members for use in asm routines */
159 long codec_frequency
; /* Sample rate of data coming from the codec */
160 long frequency
; /* Effective sample rate after pitch shift (if any) */
165 /* Functions that change depending upon settings - NULL if stage is
167 sample_input_fn_type input_samples
;
168 resample_fn_type resample
;
169 sample_output_fn_type output_samples
;
170 /* These will be NULL for the voice codec and is more economical that
172 channels_process_dsp_fn_type apply_gain
;
173 channels_process_fn_type apply_crossfeed
;
174 channels_process_fn_type channels_process
;
177 /* General DSP config */
178 static struct dsp_config dsp_conf
[2] IBSS_ATTR
; /* 0=A, 1=V */
180 static struct dither_data dither_data
[2] IBSS_ATTR
; /* 0=left, 1=right */
181 static long dither_mask IBSS_ATTR
;
182 static long dither_bias IBSS_ATTR
;
184 struct crossfeed_data crossfeed_data IDATA_ATTR
= /* A */
186 .index
= (int32_t *)crossfeed_data
.delay
190 static struct eq_state eq_data
; /* A/V */
191 #ifdef HAVE_SW_TONE_CONTROLS
195 /* Filter struct for software bass/treble controls */
196 static struct eqfilter tone_filter
;
199 /* Settings applicable to audio codec only */
200 static int pitch_ratio
= 1000;
201 static int channels_mode
;
204 static bool dither_enabled
;
205 static bool eq_enabled IBSS_ATTR
;
206 static long eq_precut
;
207 static long track_gain
;
208 static bool new_gain
;
209 static long album_gain
;
210 static long track_peak
;
211 static long album_peak
;
212 static long replaygain
;
213 static bool crossfeed_enabled
;
215 #define audio_dsp (&dsp_conf[CODEC_IDX_AUDIO])
216 #define voice_dsp (&dsp_conf[CODEC_IDX_VOICE])
217 static struct dsp_config
*dsp IDATA_ATTR
= audio_dsp
;
219 /* The internal format is 32-bit samples, non-interleaved, stereo. This
220 * format is similar to the raw output from several codecs, so the amount
221 * of copying needed is minimized for that case.
224 int32_t sample_buf
[SAMPLE_BUF_COUNT
] IBSS_ATTR
;
225 static int32_t resample_buf
[RESAMPLE_BUF_COUNT
] IBSS_ATTR
;
227 /* set a new dsp and return old one */
228 static inline struct dsp_config
* switch_dsp(struct dsp_config
*_dsp
)
230 struct dsp_config
* old_dsp
= dsp
;
236 /* Clip sample to arbitrary limits where range > 0 and min + range = max */
237 static inline long clip_sample(int32_t sample
, int32_t min
, int32_t range
)
239 int32_t c
= sample
- min
;
240 if ((uint32_t)c
> (uint32_t)range
)
251 /* Clip sample to signed 16 bit range */
252 static inline int32_t clip_sample_16(int32_t sample
)
254 if ((int16_t)sample
!= sample
)
255 sample
= 0x7fff ^ (sample
>> 31);
259 int sound_get_pitch(void)
264 void sound_set_pitch(int permille
)
266 pitch_ratio
= permille
;
268 dsp_configure(DSP_SWITCH_FREQUENCY
, dsp
->codec_frequency
);
271 /* Convert count samples to the internal format, if needed. Updates src
272 * to point past the samples "consumed" and dst is set to point to the
273 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
274 * is no point in processing the same data twice.
277 /* convert count 16-bit mono to 32-bit mono */
278 static void sample_input_lte_native_mono(
279 int count
, const char *src
[], int32_t *dst
[])
281 const int16_t *s
= (int16_t *) src
[0];
282 const int16_t * const send
= s
+ count
;
283 int32_t *d
= dst
[0] = dst
[1] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
284 int scale
= WORD_SHIFT
;
288 *d
++ = *s
++ << scale
;
295 /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
296 static void sample_input_lte_native_i_stereo(
297 int count
, const char *src
[], int32_t *dst
[])
299 const int32_t *s
= (int32_t *) src
[0];
300 const int32_t * const send
= s
+ count
;
301 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
302 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
303 int scale
= WORD_SHIFT
;
308 #ifdef ROCKBOX_LITTLE_ENDIAN
309 *dl
++ = (slr
>> 16) << scale
;
310 *dr
++ = (int32_t)(int16_t)slr
<< scale
;
311 #else /* ROCKBOX_BIG_ENDIAN */
312 *dl
++ = (int32_t)(int16_t)slr
<< scale
;
313 *dr
++ = (slr
>> 16) << scale
;
321 /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
322 static void sample_input_lte_native_ni_stereo(
323 int count
, const char *src
[], int32_t *dst
[])
325 const int16_t *sl
= (int16_t *) src
[0];
326 const int16_t *sr
= (int16_t *) src
[1];
327 const int16_t * const slend
= sl
+ count
;
328 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
329 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
330 int scale
= WORD_SHIFT
;
334 *dl
++ = *sl
++ << scale
;
335 *dr
++ = *sr
++ << scale
;
343 /* convert count 32-bit mono to 32-bit mono */
344 static void sample_input_gt_native_mono(
345 int count
, const char *src
[], int32_t *dst
[])
347 dst
[0] = dst
[1] = (int32_t *)src
[0];
348 src
[0] = (char *)(dst
[0] + count
);
351 /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
352 static void sample_input_gt_native_i_stereo(
353 int count
, const char *src
[], int32_t *dst
[])
355 const int32_t *s
= (int32_t *)src
[0];
356 const int32_t * const send
= s
+ 2*count
;
357 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
358 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
367 src
[0] = (char *)send
;
370 /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
371 static void sample_input_gt_native_ni_stereo(
372 int count
, const char *src
[], int32_t *dst
[])
374 dst
[0] = (int32_t *)src
[0];
375 dst
[1] = (int32_t *)src
[1];
376 src
[0] = (char *)(dst
[0] + count
);
377 src
[1] = (char *)(dst
[1] + count
);
381 * sample_input_new_format()
383 * set the to-native sample conversion function based on dsp sample parameters
386 * needs syncing with changes to the following dsp parameters:
387 * * dsp->stereo_mode (A/V)
388 * * dsp->sample_depth (A/V)
390 static void sample_input_new_format(void)
392 static const sample_input_fn_type sample_input_functions
[] =
394 [SAMPLE_INPUT_LE_NATIVE_MONO
] = sample_input_lte_native_mono
,
395 [SAMPLE_INPUT_LE_NATIVE_I_STEREO
] = sample_input_lte_native_i_stereo
,
396 [SAMPLE_INPUT_LE_NATIVE_NI_STEREO
] = sample_input_lte_native_ni_stereo
,
397 [SAMPLE_INPUT_GT_NATIVE_MONO
] = sample_input_gt_native_mono
,
398 [SAMPLE_INPUT_GT_NATIVE_I_STEREO
] = sample_input_gt_native_i_stereo
,
399 [SAMPLE_INPUT_GT_NATIVE_NI_STEREO
] = sample_input_gt_native_ni_stereo
,
402 int convert
= dsp
->stereo_mode
;
404 if (dsp
->sample_depth
> NATIVE_DEPTH
)
405 convert
+= SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
;
407 dsp
->input_samples
= sample_input_functions
[convert
];
410 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
411 /* write mono internal format to output format */
412 static void sample_output_mono(int count
, struct dsp_data
*data
,
413 int32_t *src
[], int16_t *dst
)
415 const int32_t *s0
= src
[0];
416 const int scale
= data
->output_scale
;
420 int32_t lr
= clip_sample_16(*s0
++ >> scale
);
426 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
428 /* write stereo internal format to output format */
429 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
430 static void sample_output_stereo(int count
, struct dsp_data
*data
,
431 int32_t *src
[], int16_t *dst
)
433 const int32_t *s0
= src
[0];
434 const int32_t *s1
= src
[1];
435 const int scale
= data
->output_scale
;
439 *dst
++ = clip_sample_16(*s0
++ >> scale
);
440 *dst
++ = clip_sample_16(*s1
++ >> scale
);
444 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
447 * The "dither" code to convert the 24-bit samples produced by libmad was
448 * taken from the coolplayer project - coolplayer.sourceforge.net
450 * This function handles mono and stereo outputs.
452 static void sample_output_dithered(int count
, struct dsp_data
*data
,
453 int32_t *src
[], int16_t *dst
)
455 const int32_t mask
= dither_mask
;
456 const int32_t bias
= dither_bias
;
457 const int scale
= data
->output_scale
;
458 const int32_t min
= data
->clip_min
;
459 const int32_t max
= data
->clip_max
;
460 const int32_t range
= max
- min
;
464 for (ch
= 0; ch
< dsp
->data
.num_channels
; ch
++)
466 struct dither_data
* const dither
= &dither_data
[ch
];
467 int32_t *s
= src
[ch
];
470 for (i
= 0, d
= &dst
[ch
]; i
< count
; i
++, s
++, d
+= 2)
472 int32_t output
, sample
;
475 /* Noise shape and bias */
477 sample
+= dither
->error
[0] - dither
->error
[1] + dither
->error
[2];
478 dither
->error
[2] = dither
->error
[1];
479 dither
->error
[1] = dither
->error
[0]/2;
481 output
= sample
+ bias
;
484 random
= dither
->random
*0x0019660dL
+ 0x3c6ef35fL
;
485 output
+= (random
& mask
) - (dither
->random
& mask
);
486 dither
->random
= random
;
489 int32_t c
= output
- min
;
490 if ((uint32_t)c
> (uint32_t)range
)
499 else if (sample
< min
)
508 dither
->error
[0] = sample
- output
;
511 *d
= output
>> scale
;
515 if (dsp
->data
.num_channels
== 2)
518 /* Have to duplicate left samples into the right channel since
519 pcm buffer and hardware is interleaved stereo */
531 * sample_output_new_format()
533 * set the from-native to ouput sample conversion routine
536 * needs syncing with changes to the following dsp parameters:
537 * * dsp->stereo_mode (A/V)
538 * * dither_enabled (A)
540 static void sample_output_new_format(void)
542 static const sample_output_fn_type sample_output_functions
[] =
545 sample_output_stereo
,
546 sample_output_dithered
,
547 sample_output_dithered
550 int out
= dsp
->data
.num_channels
- 1;
552 if (dsp
== audio_dsp
&& dither_enabled
)
555 dsp
->output_samples
= sample_output_functions
[out
];
559 * Linear interpolation resampling that introduces a one sample delay because
560 * of our inability to look into the future at the end of a frame.
562 #ifndef DSP_HAVE_ASM_RESAMPLING
563 static int dsp_downsample(int count
, struct dsp_data
*data
,
564 int32_t *src
[], int32_t *dst
[])
566 int ch
= data
->num_channels
- 1;
567 uint32_t delta
= data
->resample_data
.delta
;
571 /* Rolled channel loop actually showed slightly faster. */
574 /* Just initialize things and not worry too much about the relatively
575 * uncommon case of not being able to spit out a sample for the frame.
577 int32_t *s
= src
[ch
];
578 int32_t last
= data
->resample_data
.last_sample
[ch
];
580 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
582 phase
= data
->resample_data
.phase
;
585 /* Do we need last sample of previous frame for interpolation? */
589 while (pos
< (uint32_t)count
)
591 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
599 /* Wrap phase accumulator back to start of next frame. */
600 data
->resample_data
.phase
= phase
- (count
<< 16);
604 static int dsp_upsample(int count
, struct dsp_data
*data
,
605 int32_t *src
[], int32_t *dst
[])
607 int ch
= data
->num_channels
- 1;
608 uint32_t delta
= data
->resample_data
.delta
;
612 /* Rolled channel loop actually showed slightly faster. */
615 /* Should always be able to output a sample for a ratio up to
616 RESAMPLE_BUF_COUNT / SAMPLE_BUF_COUNT. */
617 int32_t *s
= src
[ch
];
618 int32_t last
= data
->resample_data
.last_sample
[ch
];
620 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
622 phase
= data
->resample_data
.phase
;
627 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[0] - last
);
632 while (pos
< (uint32_t)count
)
635 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
642 /* Wrap phase accumulator back to start of next frame. */
643 data
->resample_data
.phase
= phase
& 0xffff;
646 #endif /* DSP_HAVE_ASM_RESAMPLING */
648 static void resampler_new_delta(void)
650 dsp
->data
.resample_data
.delta
= (unsigned long)
651 dsp
->frequency
* 65536LL / NATIVE_FREQUENCY
;
653 if (dsp
->frequency
== NATIVE_FREQUENCY
)
655 /* NOTE: If fully glitch-free transistions from no resampling to
656 resampling are desired, last_sample history should be maintained
657 even when not resampling. */
658 dsp
->resample
= NULL
;
659 dsp
->data
.resample_data
.phase
= 0;
660 dsp
->data
.resample_data
.last_sample
[0] = 0;
661 dsp
->data
.resample_data
.last_sample
[1] = 0;
663 else if (dsp
->frequency
< NATIVE_FREQUENCY
)
664 dsp
->resample
= dsp_upsample
;
666 dsp
->resample
= dsp_downsample
;
669 /* Resample count stereo samples. Updates the src array, if resampling is
670 * done, to refer to the resampled data. Returns number of stereo samples
671 * for further processing.
673 static inline int resample(int count
, int32_t *src
[])
677 &resample_buf
[RESAMPLE_BUF_LEFT_CHANNEL
],
678 &resample_buf
[RESAMPLE_BUF_RIGHT_CHANNEL
],
681 count
= dsp
->resample(count
, &dsp
->data
, src
, dst
);
684 src
[1] = dst
[dsp
->data
.num_channels
- 1];
689 static void dither_init(void)
691 /* Voice codec should not reset the audio codec's dither data */
692 if (dsp
!= audio_dsp
)
695 memset(dither_data
, 0, sizeof (dither_data
));
696 dither_bias
= (1L << (dsp
->frac_bits
- NATIVE_DEPTH
));
697 dither_mask
= (1L << (dsp
->frac_bits
+ 1 - NATIVE_DEPTH
)) - 1;
700 void dsp_dither_enable(bool enable
)
702 /* Be sure audio dsp is current to set correct function */
703 struct dsp_config
*old_dsp
= switch_dsp(audio_dsp
);
704 dither_enabled
= enable
;
705 sample_output_new_format();
709 /* Applies crossfeed to the stereo signal in src.
710 * Crossfeed is a process where listening over speakers is simulated. This
711 * is good for old hard panned stereo records, which might be quite fatiguing
712 * to listen to on headphones with no crossfeed.
714 #ifndef DSP_HAVE_ASM_CROSSFEED
715 static void apply_crossfeed(int count
, int32_t *buf
[])
717 int32_t *hist_l
= &crossfeed_data
.history
[0];
718 int32_t *hist_r
= &crossfeed_data
.history
[2];
719 int32_t *delay
= &crossfeed_data
.delay
[0][0];
720 int32_t *coefs
= &crossfeed_data
.coefs
[0];
721 int32_t gain
= crossfeed_data
.gain
;
722 int32_t *di
= crossfeed_data
.index
;
728 for (i
= 0; i
< count
; i
++)
733 /* Filter delayed sample from left speaker */
734 ACC_INIT(acc
, *di
, coefs
[0]);
735 ACC(acc
, hist_l
[0], coefs
[1]);
736 ACC(acc
, hist_l
[1], coefs
[2]);
737 /* Save filter history for left speaker */
738 hist_l
[1] = GET_ACC(acc
);
741 /* Filter delayed sample from right speaker */
742 ACC_INIT(acc
, *di
, coefs
[0]);
743 ACC(acc
, hist_r
[0], coefs
[1]);
744 ACC(acc
, hist_r
[1], coefs
[2]);
745 /* Save filter history for right speaker */
746 hist_r
[1] = GET_ACC(acc
);
749 /* Now add the attenuated direct sound and write to outputs */
750 buf
[0][i
] = FRACMUL(left
, gain
) + hist_r
[1];
751 buf
[1][i
] = FRACMUL(right
, gain
) + hist_l
[1];
753 /* Wrap delay line index if bigger than delay line size */
754 if (di
>= delay
+ 13*2)
757 /* Write back local copies of data we've modified */
758 crossfeed_data
.index
= di
;
760 #endif /* DSP_HAVE_ASM_CROSSFEED */
763 * dsp_set_crossfeed(bool enable)
766 * needs syncing with changes to the following dsp parameters:
767 * * dsp->stereo_mode (A)
769 void dsp_set_crossfeed(bool enable
)
771 crossfeed_enabled
= enable
;
772 audio_dsp
->apply_crossfeed
=
773 (enable
&& audio_dsp
->data
.num_channels
> 1)
774 ? apply_crossfeed
: NULL
;
777 void dsp_set_crossfeed_direct_gain(int gain
)
779 crossfeed_data
.gain
= get_replaygain_int(gain
* -10) << 7;
780 /* If gain is negative, the calculation overflowed and we need to clamp */
781 if (crossfeed_data
.gain
< 0)
782 crossfeed_data
.gain
= 0x7fffffff;
785 /* Both gains should be below 0 dB (when inverted) */
786 void dsp_set_crossfeed_cross_params(long lf_gain
, long hf_gain
, long cutoff
)
788 int32_t *c
= crossfeed_data
.coefs
;
789 long scaler
= get_replaygain_int(lf_gain
* -10) << 7;
791 cutoff
= 0xffffffff/NATIVE_FREQUENCY
*cutoff
;
793 /* Divide cutoff by sqrt(10^(-hf_gain/20)) to place cutoff at the -3 dB
794 * point instead of shelf midpoint. This is for compatibility with the old
795 * crossfeed shelf filter and should be removed if crossfeed settings are
796 * ever made incompatible for any other good reason.
798 cutoff
= DIV64(cutoff
, get_replaygain_int(-hf_gain
*5), 24);
799 filter_shelf_coefs(cutoff
, -hf_gain
, false, c
);
800 /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
801 * over 1 and can do this safely
803 c
[0] = FRACMUL_SHL(c
[0], scaler
, 4);
804 c
[1] = FRACMUL_SHL(c
[1], scaler
, 4);
808 /* Apply a constant gain to the samples (e.g., for ReplayGain).
809 * Note that this must be called before the resampler.
811 #ifndef DSP_HAVE_ASM_APPLY_GAIN
812 static void dsp_apply_gain(int count
, struct dsp_data
*data
, int32_t *buf
[])
814 const int32_t gain
= data
->gain
;
815 int ch
= data
->num_channels
- 1;
819 int32_t *s
= buf
[ch
];
820 int32_t *d
= buf
[ch
];
826 FRACMUL_8_LOOP(samp
, gain
, s
, d
);
832 #endif /* DSP_HAVE_ASM_APPLY_GAIN */
834 /* Combine all gains to a global gain. */
835 static void set_gain(struct dsp_config
*dsp
)
837 dsp
->data
.gain
= DEFAULT_GAIN
;
839 /* Replay gain not relevant to voice */
840 if (dsp
== audio_dsp
&& replaygain
)
842 dsp
->data
.gain
= replaygain
;
845 if (eq_enabled
&& eq_precut
)
848 (long) (((int64_t) dsp
->data
.gain
* eq_precut
) >> 24);
851 if (dsp
->data
.gain
== DEFAULT_GAIN
)
857 dsp
->data
.gain
>>= 1;
860 dsp
->apply_gain
= dsp
->data
.gain
!= 0 ? dsp_apply_gain
: NULL
;
864 * Use to enable the equalizer.
866 * @param enable true to enable the equalizer
868 void dsp_set_eq(bool enable
)
874 * Update the amount to cut the audio before applying the equalizer.
876 * @param precut to apply in decibels (multiplied by 10)
878 void dsp_set_eq_precut(int precut
)
880 eq_precut
= get_replaygain_int(precut
* -10);
882 set_gain(voice_dsp
); /* For EQ precut */
886 * Synchronize the equalizer filter coefficients with the global settings.
888 * @param band the equalizer band to synchronize
890 void dsp_set_eq_coefs(int band
)
894 unsigned long cutoff
, q
;
896 /* Adjust setting pointer to the band we actually want to change */
897 setting
= &global_settings
.eq_band0_cutoff
+ (band
* 3);
899 /* Convert user settings to format required by coef generator functions */
900 cutoff
= 0xffffffff / NATIVE_FREQUENCY
* (*setting
++);
907 /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
908 which it should be, since we're executed from the main thread. */
910 /* Assume a band is disabled if the gain is zero */
913 eq_data
.enabled
[band
] = 0;
918 eq_ls_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
920 eq_hs_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
922 eq_pk_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
924 eq_data
.enabled
[band
] = 1;
928 /* Apply EQ filters to those bands that have got it switched on. */
929 static void eq_process(int count
, int32_t *buf
[])
931 static const int shifts
[] =
933 EQ_SHELF_SHIFT
, /* low shelf */
934 EQ_PEAK_SHIFT
, /* peaking */
935 EQ_PEAK_SHIFT
, /* peaking */
936 EQ_PEAK_SHIFT
, /* peaking */
937 EQ_SHELF_SHIFT
, /* high shelf */
939 unsigned int channels
= dsp
->data
.num_channels
;
942 /* filter configuration currently is 1 low shelf filter, 3 band peaking
943 filters and 1 high shelf filter, in that order. we need to know this
944 so we can choose the correct shift factor.
946 for (i
= 0; i
< 5; i
++)
948 if (!eq_data
.enabled
[i
])
950 eq_filter(buf
, &eq_data
.filters
[i
], count
, channels
, shifts
[i
]);
954 void dsp_set_stereo_width(int value
)
956 long width
, straight
, cross
;
958 width
= value
* 0x7fffff / 100;
962 straight
= (0x7fffff + width
) / 2;
963 cross
= straight
- width
;
967 /* straight = (1 + width) / (2 * width) */
968 straight
= ((int64_t)(0x7fffff + width
) << 22) / width
;
969 cross
= straight
- 0x7fffff;
972 dsp_sw_gain
= straight
<< 8;
973 dsp_sw_cross
= cross
<< 8;
976 #if CONFIG_CODEC == SWCODEC
978 #ifdef HAVE_SW_TONE_CONTROLS
979 static void set_tone_controls(void)
981 filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY
*200,
982 0xffffffff/NATIVE_FREQUENCY
*3500,
983 bass
, treble
, -prescale
, tone_filter
.coefs
);
987 int dsp_callback(int msg
, intptr_t param
)
990 #ifdef HAVE_SW_TONE_CONTROLS
991 case DSP_CALLBACK_SET_PRESCALE
:
995 /* prescaler is always set after calling any of these, so we wait with
996 * calculating coefs until the above case is hit.
998 case DSP_CALLBACK_SET_BASS
:
1001 case DSP_CALLBACK_SET_TREBLE
:
1004 case DSP_CALLBACK_SET_CHANNEL_CONFIG
:
1005 dsp_set_channel_config(param
);
1007 case DSP_CALLBACK_SET_STEREO_WIDTH
:
1008 dsp_set_stereo_width(param
);
1018 * Implements the different channel configurations and stereo width.
1021 /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
1024 static void channels_process_sound_chan_stereo(int count
, int32_t *buf
[])
1026 /* The channels are each just themselves */
1027 (void)count
; (void)buf
;
1031 #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
1032 static void channels_process_sound_chan_mono(int count
, int32_t *buf
[])
1034 int32_t *sl
= buf
[0], *sr
= buf
[1];
1038 int32_t lr
= *sl
/2 + *sr
/2;
1042 while (--count
> 0);
1044 #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
1046 #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
1047 static void channels_process_sound_chan_custom(int count
, int32_t *buf
[])
1049 const int32_t gain
= dsp_sw_gain
;
1050 const int32_t cross
= dsp_sw_cross
;
1051 int32_t *sl
= buf
[0], *sr
= buf
[1];
1057 *sl
++ = FRACMUL(l
, gain
) + FRACMUL(r
, cross
);
1058 *sr
++ = FRACMUL(r
, gain
) + FRACMUL(l
, cross
);
1060 while (--count
> 0);
1062 #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
1064 static void channels_process_sound_chan_mono_left(int count
, int32_t *buf
[])
1066 /* Just copy over the other channel */
1067 memcpy(buf
[1], buf
[0], count
* sizeof (*buf
));
1070 static void channels_process_sound_chan_mono_right(int count
, int32_t *buf
[])
1072 /* Just copy over the other channel */
1073 memcpy(buf
[0], buf
[1], count
* sizeof (*buf
));
1076 #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
1077 static void channels_process_sound_chan_karaoke(int count
, int32_t *buf
[])
1079 int32_t *sl
= buf
[0], *sr
= buf
[1];
1083 int32_t ch
= *sl
/2 - *sr
/2;
1087 while (--count
> 0);
1089 #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
1091 void dsp_set_channel_config(int value
)
1093 static const channels_process_fn_type channels_process_functions
[] =
1095 /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
1096 [SOUND_CHAN_STEREO
] = NULL
,
1097 [SOUND_CHAN_MONO
] = channels_process_sound_chan_mono
,
1098 [SOUND_CHAN_CUSTOM
] = channels_process_sound_chan_custom
,
1099 [SOUND_CHAN_MONO_LEFT
] = channels_process_sound_chan_mono_left
,
1100 [SOUND_CHAN_MONO_RIGHT
] = channels_process_sound_chan_mono_right
,
1101 [SOUND_CHAN_KARAOKE
] = channels_process_sound_chan_karaoke
,
1104 if ((unsigned)value
>= ARRAYLEN(channels_process_functions
) ||
1105 audio_dsp
->stereo_mode
== STEREO_MONO
)
1106 value
= SOUND_CHAN_STEREO
;
1108 /* This doesn't apply to voice */
1109 channels_mode
= value
;
1110 audio_dsp
->channels_process
= channels_process_functions
[value
];
1113 /* Process and convert src audio to dst based on the DSP configuration,
1114 * reading count number of audio samples. dst is assumed to be large
1115 * enough; use dsp_output_count() to get the required number. src is an
1116 * array of pointers; for mono and interleaved stereo, it contains one
1117 * pointer to the start of the audio data and the other is ignored; for
1118 * non-interleaved stereo, it contains two pointers, one for each audio
1119 * channel. Returns number of bytes written to dst.
1121 int dsp_process(char *dst
, const char *src
[], int count
)
1127 #if defined(CPU_COLDFIRE)
1128 /* set emac unit for dsp processing, and save old macsr, we're running in
1129 codec thread context at this point, so can't clobber it */
1130 unsigned long old_macsr
= coldfire_get_macsr();
1131 coldfire_set_macsr(EMAC_FRACTIONAL
| EMAC_SATURATE
);
1135 dsp_set_replaygain(); /* Gain has changed */
1137 /* Testing function pointers for NULL is preferred since the pointer
1138 will be preloaded to be used for the call if not. */
1141 samples
= MIN(SAMPLE_BUF_COUNT
/2, count
);
1144 dsp
->input_samples(samples
, src
, tmp
);
1146 if (dsp
->apply_gain
)
1147 dsp
->apply_gain(samples
, &dsp
->data
, tmp
);
1149 if (dsp
->resample
&& (samples
= resample(samples
, tmp
)) <= 0)
1150 break; /* I'm pretty sure we're downsampling here */
1152 if (dsp
->apply_crossfeed
)
1153 dsp
->apply_crossfeed(samples
, tmp
);
1155 /* TODO: EQ and tone controls need separate structs for audio and voice
1156 * DSP processing thanks to filter history. isn't really audible now, but
1157 * might be the day we start handling voice more delicately. Planned
1158 * changes may well run all relevent channels through the same EQ so
1162 eq_process(samples
, tmp
);
1164 #ifdef HAVE_SW_TONE_CONTROLS
1165 if ((bass
| treble
) != 0)
1166 eq_filter(tmp
, &tone_filter
, samples
, dsp
->data
.num_channels
,
1167 FILTER_BISHELF_SHIFT
);
1170 if (dsp
->channels_process
)
1171 dsp
->channels_process(samples
, tmp
);
1173 dsp
->output_samples(samples
, &dsp
->data
, tmp
, (int16_t *)dst
);
1176 dst
+= samples
* sizeof (int16_t) * 2;
1180 #if defined(CPU_COLDFIRE)
1181 /* set old macsr again */
1182 coldfire_set_macsr(old_macsr
);
1187 /* Given count number of input samples, calculate the maximum number of
1188 * samples of output data that would be generated (the calculation is not
1189 * entirely exact and rounds upwards to be on the safe side; during
1190 * resampling, the number of samples generated depends on the current state
1191 * of the resampler).
1193 /* dsp_input_size MUST be called afterwards */
1194 int dsp_output_count(int count
)
1198 count
= (int)(((unsigned long)count
* NATIVE_FREQUENCY
1199 + (dsp
->frequency
- 1)) / dsp
->frequency
);
1202 /* Now we have the resampled sample count which must not exceed
1203 * RESAMPLE_BUF_COUNT/2 to avoid resample buffer overflow. One
1204 * must call dsp_input_count() to get the correct input sample
1207 if (count
> RESAMPLE_BUF_COUNT
/2)
1208 count
= RESAMPLE_BUF_COUNT
/2;
1213 /* Given count output samples, calculate number of input samples
1214 * that would be consumed in order to fill the output buffer.
1216 int dsp_input_count(int count
)
1218 /* count is now the number of resampled input samples. Convert to
1219 original input samples. */
1222 /* Use the real resampling delta =
1223 * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
1224 * round towards zero to avoid buffer overflows. */
1225 count
= (int)(((unsigned long)count
*
1226 dsp
->data
.resample_data
.delta
) >> 16);
1232 int dsp_stereo_mode(void)
1234 return dsp
->stereo_mode
;
1237 static void dsp_set_gain_var(long *var
, long value
)
1239 /* Voice shouldn't mess with these */
1240 if (dsp
== audio_dsp
)
1247 static void dsp_update_functions(void)
1249 sample_input_new_format();
1250 sample_output_new_format();
1251 if (dsp
== audio_dsp
)
1252 dsp_set_crossfeed(crossfeed_enabled
);
1255 bool dsp_configure(int setting
, intptr_t value
)
1259 case DSP_SWITCH_CODEC
:
1260 if ((uintptr_t)value
<= 1)
1261 switch_dsp(&dsp_conf
[value
]);
1264 case DSP_SET_FREQUENCY
:
1265 memset(&dsp
->data
.resample_data
, 0,
1266 sizeof (dsp
->data
.resample_data
));
1267 /* Fall through!!! */
1268 case DSP_SWITCH_FREQUENCY
:
1269 dsp
->codec_frequency
= (value
== 0) ? NATIVE_FREQUENCY
: value
;
1270 /* Account for playback speed adjustment when setting dsp->frequency
1271 if we're called from the main audio thread. Voice UI thread should
1272 not need this feature.
1274 if (dsp
== audio_dsp
)
1275 dsp
->frequency
= pitch_ratio
* dsp
->codec_frequency
/ 1000;
1277 dsp
->frequency
= dsp
->codec_frequency
;
1279 resampler_new_delta();
1282 case DSP_SET_SAMPLE_DEPTH
:
1283 dsp
->sample_depth
= value
;
1285 if (dsp
->sample_depth
<= NATIVE_DEPTH
)
1287 dsp
->frac_bits
= WORD_FRACBITS
;
1288 dsp
->sample_bytes
= sizeof (int16_t); /* samples are 16 bits */
1289 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1290 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1294 dsp
->frac_bits
= value
;
1295 dsp
->sample_bytes
= sizeof (int32_t); /* samples are 32 bits */
1296 dsp
->data
.clip_max
= (1 << value
) - 1;
1297 dsp
->data
.clip_min
= -(1 << value
);
1300 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1301 sample_input_new_format();
1305 case DSP_SET_STEREO_MODE
:
1306 dsp
->stereo_mode
= value
;
1307 dsp
->data
.num_channels
= value
== STEREO_MONO
? 1 : 2;
1308 dsp_update_functions();
1312 dsp
->stereo_mode
= STEREO_NONINTERLEAVED
;
1313 dsp
->data
.num_channels
= 2;
1314 dsp
->sample_depth
= NATIVE_DEPTH
;
1315 dsp
->frac_bits
= WORD_FRACBITS
;
1316 dsp
->sample_bytes
= sizeof (int16_t);
1317 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1318 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1319 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1320 dsp
->codec_frequency
= dsp
->frequency
= NATIVE_FREQUENCY
;
1322 if (dsp
== audio_dsp
)
1331 dsp_update_functions();
1332 resampler_new_delta();
1336 memset(&dsp
->data
.resample_data
, 0,
1337 sizeof (dsp
->data
.resample_data
));
1338 resampler_new_delta();
1342 case DSP_SET_TRACK_GAIN
:
1343 dsp_set_gain_var(&track_gain
, value
);
1346 case DSP_SET_ALBUM_GAIN
:
1347 dsp_set_gain_var(&album_gain
, value
);
1350 case DSP_SET_TRACK_PEAK
:
1351 dsp_set_gain_var(&track_peak
, value
);
1354 case DSP_SET_ALBUM_PEAK
:
1355 dsp_set_gain_var(&album_peak
, value
);
1365 void dsp_set_replaygain(void)
1371 if (global_settings
.replaygain
|| global_settings
.replaygain_noclip
)
1373 bool track_mode
= get_replaygain_mode(track_gain
!= 0,
1374 album_gain
!= 0) == REPLAYGAIN_TRACK
;
1375 long peak
= (track_mode
|| !album_peak
) ? track_peak
: album_peak
;
1377 if (global_settings
.replaygain
)
1379 gain
= (track_mode
|| !album_gain
) ? track_gain
: album_gain
;
1381 if (global_settings
.replaygain_preamp
)
1383 long preamp
= get_replaygain_int(
1384 global_settings
.replaygain_preamp
* 10);
1386 gain
= (long) (((int64_t) gain
* preamp
) >> 24);
1392 /* So that noclip can work even with no gain information. */
1393 gain
= DEFAULT_GAIN
;
1396 if (global_settings
.replaygain_noclip
&& (peak
!= 0)
1397 && ((((int64_t) gain
* peak
) >> 24) >= DEFAULT_GAIN
))
1399 gain
= (((int64_t) DEFAULT_GAIN
<< 24) / peak
);
1402 if (gain
== DEFAULT_GAIN
)
1404 /* Nothing to do, disable processing. */
1409 /* Store in S8.23 format to simplify calculations. */
1411 set_gain(audio_dsp
);