2 ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
3 ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com
5 ** This program is free software; you can redistribute it and/or modify
6 ** it under the terms of the GNU General Public License as published by
7 ** the Free Software Foundation; either version 2 of the License, or
8 ** (at your option) any later version.
10 ** This program is distributed in the hope that it will be useful,
11 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
12 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 ** GNU General Public License for more details.
15 ** You should have received a copy of the GNU General Public License
16 ** along with this program; if not, write to the Free Software
17 ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 ** Any non-GPL usage of this software or parts of this software is strictly
22 ** Commercial non-GPL licensing of this software is possible.
23 ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com.
34 /* static function declarations */
35 static void gen_rand_vector(real_t
*spec
, int16_t scale_factor
, uint16_t size
,
41 #define DIV(A, B) (((int64_t)A << REAL_BITS)/B)
44 if ((0x40000000l >> shift) + root <= value) \
46 value -= (0x40000000l >> shift) + root; \
47 root = (root >> 1) | (0x40000000l >> shift); \
52 /* fixed point square root approximation */
53 /* !!!! ONLY WORKS FOR EVEN %REAL_BITS% !!!! */
54 real_t
fp_sqrt(real_t value
)
58 step( 0); step( 2); step( 4); step( 6);
59 step( 8); step(10); step(12); step(14);
60 step(16); step(18); step(20); step(22);
61 step(24); step(26); step(28); step(30);
66 root
<<= (REAL_BITS
/2);
71 static real_t pow2_table
[] =
74 COEF_CONST(1.18920711500272),
75 COEF_CONST(1.41421356237310),
76 COEF_CONST(1.68179283050743)
80 /* The function gen_rand_vector(addr, size) generates a vector of length
81 <size> with signed random values of average energy MEAN_NRG per random
82 value. A suitable random number generator can be realized using one
83 multiplication/accumulation per random value.
85 static INLINE
void gen_rand_vector(real_t
*spec
, int16_t scale_factor
, uint16_t size
,
92 real_t scale
= (real_t
)1.0/(real_t
)size
;
94 for (i
= 0; i
< size
; i
++)
96 real_t tmp
= scale
*(real_t
)(int32_t)random_int();
101 scale
= (real_t
)1.0/(real_t
)sqrt(energy
);
102 scale
*= (real_t
)pow(2.0, 0.25 * scale_factor
);
103 for (i
= 0; i
< size
; i
++)
109 real_t energy
= 0, scale
;
112 for (i
= 0; i
< size
; i
++)
114 /* this can be replaced by a 16 bit random generator!!!! */
115 real_t tmp
= (int32_t)random_int();
117 tmp
= -(tmp
& ((1<<(REAL_BITS
-1))-1));
119 tmp
= (tmp
& ((1<<(REAL_BITS
-1))-1));
121 energy
+= MUL_R(tmp
,tmp
);
126 energy
= fp_sqrt(energy
);
129 scale
= DIV(REAL_CONST(1),energy
);
131 exp
= scale_factor
>> 2;
132 frac
= scale_factor
& 3;
134 /* IMDCT pre-scaling */
143 scale
= MUL_C(scale
, pow2_table
[frac
]);
145 for (i
= 0; i
< size
; i
++)
147 spec
[i
] = MUL_R(spec
[i
], scale
);
153 void pns_decode(ic_stream
*ics_left
, ic_stream
*ics_right
,
154 real_t
*spec_left
, real_t
*spec_right
, uint16_t frame_len
,
155 uint8_t channel_pair
, uint8_t object_type
)
161 uint16_t nshort
= frame_len
>> 3;
167 if (object_type
== LD
)
171 if (ics_left
->window_sequence
== EIGHT_SHORT_SEQUENCE
)
178 for (g
= 0; g
< ics_left
->num_window_groups
; g
++)
180 /* Do perceptual noise substitution decoding */
181 for (b
= 0; b
< ics_left
->window_group_length
[g
]; b
++)
183 for (sfb
= 0; sfb
< ics_left
->max_sfb
; sfb
++)
185 if (is_noise(ics_left
, g
, sfb
))
188 /* Simultaneous use of LTP and PNS is not prevented in the
189 syntax. If both LTP, and PNS are enabled on the same
190 scalefactor band, PNS takes precedence, and no prediction
191 is applied to this band.
193 ics_left
->ltp
.long_used
[sfb
] = 0;
194 ics_left
->ltp2
.long_used
[sfb
] = 0;
198 /* For scalefactor bands coded using PNS the corresponding
199 predictors are switched to "off".
201 ics_left
->pred
.prediction_used
[sfb
] = 0;
204 offs
= ics_left
->swb_offset
[sfb
];
205 size
= ics_left
->swb_offset
[sfb
+1] - offs
;
207 /* Generate random vector */
208 gen_rand_vector(&spec_left
[(group
*nshort
)+offs
],
209 ics_left
->scale_factors
[g
][sfb
], size
, sub
);
213 If the same scalefactor band and group is coded by perceptual noise
214 substitution in both channels of a channel pair, the correlation of
215 the noise signal can be controlled by means of the ms_used field: While
216 the default noise generation process works independently for each channel
217 (separate generation of random vectors), the same random vector is used
218 for both channels if ms_used[] is set for a particular scalefactor band
219 and group. In this case, no M/S stereo coding is carried out (because M/S
220 stereo coding and noise substitution coding are mutually exclusive).
221 If the same scalefactor band and group is coded by perceptual noise
222 substitution in only one channel of a channel pair the setting of ms_used[]
227 if (is_noise(ics_right
, g
, sfb
))
229 if (((ics_left
->ms_mask_present
== 1) &&
230 (ics_left
->ms_used
[g
][sfb
])) ||
231 (ics_left
->ms_mask_present
== 2))
235 offs
= ics_right
->swb_offset
[sfb
];
236 size
= ics_right
->swb_offset
[sfb
+1] - offs
;
238 for (c
= 0; c
< size
; c
++)
240 spec_right
[(group
*nshort
) + offs
+ c
] =
241 spec_left
[(group
*nshort
) + offs
+ c
];
243 } else /*if (ics_left->ms_mask_present == 0)*/ {
245 ics_right
->ltp
.long_used
[sfb
] = 0;
246 ics_right
->ltp2
.long_used
[sfb
] = 0;
249 ics_right
->pred
.prediction_used
[sfb
] = 0;
252 offs
= ics_right
->swb_offset
[sfb
];
253 size
= ics_right
->swb_offset
[sfb
+1] - offs
;
255 /* Generate random vector */
256 gen_rand_vector(&spec_right
[(group
*nshort
)+offs
],
257 ics_right
->scale_factors
[g
][sfb
], size
, sub
);